Основные компоненты компьютера их функциональное назначение и принципы работы кратко

Обновлено: 05.07.2024

Монитор ПК является устройством визуального отображения процессов работы ПК аналогично телевизионному приемнику. Клавиа­тура предназначена для ввода в ПК числовой, текстовой информации и команд, а на мониторе отображается процесс работы компьютера в графической и (или) тексто­вой формах. Мышь – ручной манипулятор, предназначенный для указания различных графических объектов на экране монитора и выбора на нем команд управления информационными процессами компьютера.

Центральная часть персонального компьютера – это систем­ный блок, поскольку в нем располагаются его основные компоненты по обработке информации. К сис­темному блоку можно подключить множество различных внешних устройства для ввода/вывода информации, таких, как:

Многие внешние устройства подключаются к компьютеру через его типовые разъемы, для других уст­ройств необходимы дополнительные электронные платы (контроллеры), сопрягающие работу устройства с ПК.. Контроллер монитора, например, называют видеоадаптером или видеокартой.

Обзор системного блока и его функций следует начать с его корпуса.

2.3.2. Корпус системного блока компьютера.

В корпусе системного блока, центрального в компьютере, располагаются все его важнейшие компоненты:

  • материнская (системная) плата, на которой устанавливаются и подключаются все остальные платы и мик­росхемы (микропроцессор, оперативная память, контролеры различных устройств и т. д.);
  • накопитель на жестком магнитном диске (винчестер).
  • дисководы для чтения и записи гибких магнитных дисков, магнитооптических дисков, компакт-дисков и дисков DVD;
  • блок питания, преобразующий напряжение сети в постоянный ток низкого напряже­ния для питания компонентов компьютера;
  • индикаторы и выключатели .

На лицевой части корпуса обычно располагаются дисководы для чтения дискет и компакт-дисков, световые индикаторы, кнопки для включения и перезапуска компьютера. На задней стороне корпуса находятся разъемы для подключения монитора, клавиатуры, мыши и других внешних устройств.

  • Корпус системного блока может располагаться на столе горизонтально – Desktop ([Де­сктоп] – настольный) или- Slim ([Слим] – худой), а мо­жет стоять вертикально в виде башни-Tower([Тауэр ]- башня) . Корпус в виде башни занимает меньше места на рабочем столе, его можно выполнить большей высоты и разместить в нем большее количество устройств. По физическим размерам корпус-башня системного блока может быть типа Minitower [Минитауэр] – Мини-башня, Middletower [Мидлтауэр] – Средняя башня и Bigtowor [Биггауэр] – Большая башня. Корпус типа Slim используется в компьютерах, имеющих минимальный набор компо­нентов, например, в рабочих станциях локальной сети. В корпусе Slim можно установить материнскую плату только определенного размера. установить материнские платы АТХ, Baby-AT или полноразмерную плату AT.

Металлический корпус не только защищает расположенные в нем компоненты персо­нального компьютера, но и является полноправным функциональным элементом, слу­жащим основой для последующего расширения и обновления (апгрэйда) системы, а также поддержания температурных режимов внутренних блоков с помощью вентиляторов (кулеров).

Блок питания встроен в корпус нераздельно. Основная задача блока питания – преобразование напряжения сети 220-240 В в напряжение питания конструктивных элементов компьютера ±12 и ±5 В. Современные импульсные блоки питания весят намного меньше, чем трансформаторные. С введением напряжения +3,3 В стандарт АТХ возник другой набор управляю­щих сигналов, отличающийся от формируемых обычными стандартными системами. В корпусах не АТХ– стандарта вентиляторы располагаются на тыльной стенке корпуса блока питания, и воздух вдувается снаружи. Преимуществом такого расположения вентилятора является уменьшение загрязнения внутренних узлов персонального компьютера, поскольку в кор­пусе создается избыточное давление, и воздух выходит через щели в корпусе..

2.3.3. Интерфейсы

Компоненты системного блока персонального компьютера соединяются между собой через стан­дартные интерфейсы. Дадим краткую харак­теристику некоторых, наиболее распространенных сегодня интерфейсов.

PCI (Peripheral Component Interconnect – Соединение внешних компонентов). Поддерживает тактовую частоту до 33 МГц, имеет максимальную пропускную способность до 132 Мбайт/с на частоте 33 МГц для 32-разрядной шины (264 Мбайт/с для 32-разрядных и 528 Мбайт/с для 64-разрядных данных на частоте 66 МГц). Интерфейс PCI обеспечивает поддержку режимов Bus Mastering и автоматической кон­фигурации компонентов при установке (PlugandPlay). В настоящее время интерфейс PCI является самым распространенным интерфейсом для подключения к материнской плате различных компонентов – звуковых карт, контролле­ров SCSI, видеоплат и других устройств.

CSA (Communication Streaming Architecture) – обеспечивает более высокую, по сравне­нию с шиной PCI, пропускную способность в 2 Гбит/с. Поскольку шина PCI не может обеспечить скорость передачи данных выше 1 Гбит/с, компания Intel ввела новую шину CSA с удвоенной, по сравнению с PCI, пропускной способностью.

USB (Universal Serial Bus – Универсальная последовательная шина). К одному USB-каналу можно цепочкой подключить до 127 внешних устройств. На современных материнских платах обычно имеется по два канала USB на контроллер. Обмен данными по шине USB проходит в пакетном режиме при максимальной пропускной способности до 12 Мбит/с.

Интерфейс USB 2 является логическим развитием шины USB. Интерфейс USB 2 полно­стью совместим с USB, т.е. любое устройство USB будет работать и для USB 2. Макси­мальная пропускная способность шины USB 2 составляет 480 Мбит/с.

Socket 423 – разъем с 423 контактами. Предназначен для установки процессоров Pen­tium 4 фирмы Intel.

Socket 478 – разъем с 478 контактами. Предназначен для установки более поздних про­цессоров Pentium 4 фирмы Intel.

Socket 754 – разъем для установки 64-разрядных процессоров Athlon 64 от AMD.

Socket 940 – разъем для установки 64-разрядных процессоров семейства Athlon 64 и Opieron от AMD.

Slot M – разъем для установки 64-разрядных процессоров фирмы Intel. Socket A (Socket 462) – разъем для процессоров Athlon и Duron фирмы AMD. Разъем обладает 462 контактами.

Slot A – разъем для процессоров Athlon фирмы AMD.

2.3.4. Материнская плата и порты Ввода/Вывода

Главная часть системного блока – материнская плата, на которой располагаются процессор, микросхемы и другие электронные платы, организующие работу персонального компьютера

2.3.4.1. Основные компоненты материнской платы

На материнской плате размещаются следующие компоненты:

Дополнительно на некоторых материнских платах могут быть установлены микросхемы, выполняющие функции видеоадаптера, звуковой карты, сетевой карты и т.д. Как правило, подобные материнские платы выполнены в форм-факторе LPX или mini–LPX. Интеграция перечисленных устройств на материнской плате помогает экономить место в корпусе персонального компьютера и позволяет подключать другие устройства в освободившиеся слоты расширения.

Все компоненты материнской платы связаны друг с другом посредством шин – проводников, по которым обмениваются информацией компоненты и устройства персонального ком­пьютера. Шина (Bus) отличается от простого проводника тем, что имеет три типа линий из параллельных проводов, по числу которых определяется разрядность этих линий:

  • линии данных (шина данных);
  • линии адреса (шина адреса);
  • линии управления (шина управления).

Кроме этого, каждая шина имеет контроллер. Контроллер шины осуществляет управле­ние процессом обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо интегрируется в микросхемы чипсета.

По шине данных происходит обмен данными между центральным процессором и уста­новленными в слоты памятью и картами расширения. Особую роль при этом играет так называемый режим DMA (Direct Memory Access – Прямой доступ к памяти). Управление обменом данными в этом режиме осуществляется DMA-контроллером, минуя централь­ный процессор. DMA-контроллер обычно интегрируется в одну из микросхем чипсета.

Чем выше разрядность шины данных, тем больше данных может быть передано за опре­деленный промежуток времени и тем выше производительность персонального компью­тера. Компьютеры с процессором 80286 имели 16-разрядную системную шину данных, с процессором 80386 и 80486 – 32-разрядную, а компьютеры с процессорами семейства Pentium имеют уже 64-разрядную системную шину данных.

Максимальный объем адресуемой оперативной памяти зависит от разрядности адресной шины (числа линий) и равен 2 n , где n – число линий шины адреса. Компьютеры с процессором 8088 имели 20 адресных линий в систем­ной шине данных и могли адресовать память объемом лишь 1 Мб (2 20 = 1048 576 байт), с процессором 80286 – 24 адресные линии, а компьютеры с процессором 80486 и выше имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гб памяти.

Для того, чтобы данные были записаны/считаны в регистры устройств, подключенных к шине, необходим ряд служебных сигналов, которые переда­ются по шине управления.

Шина управления предназначена для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом. Обычно шина имеет места для подключения внешних устройств, которые при подключении сами становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

В персональном компьютере имеются следующие типы шин, различающиеся по своему функциональному назначению:

  • системная шина (или шина центрального процессора). Часто системную шину назы­вают английской аббревиатурой FSB (FrontSideBus – шина переднего плана);
  • шинаAGP для подключения видеоадаптера;
  • шина кэш-памяти, предназначенная для обмена информацией между централь- ным процессором и кэш-памятью;
  • шина памяти, используемая для обмена информацией между оперативной памя- тью и центральным процессором;
  • шины ввода/вывода (интерфейсные шины – PCI,IEEE1394,USB).

2.3.4.2. Характеристики чипсетов для материнских плат

Набор микросхем материнской платы, обеспечивающий обмен данными между цен­тральнымпроцессором, оперативной памятью и периферийными устройствами, называют системным набором или чипсетом (chipset). Чипсет определяет такие функциональные возмож­ности материнской платы, как тип устанавливаемых процес­соров, тип и объем оперативной памяти и кэш-памяти второго уровня, тактовую час­тоту системной шины, поддерживаемые интерфейсные шины. На материнской плате, в зависимости от ее мо­дификации, может нахо­диться различное количество разъемов для подключения допол­нительных устройств и наращи­вания оперативной памяти. Каждая материнская плата имеет разъем для установки централь­ного процессора определен­ного типа. В современ­ных материнских платах применяются разъ­емы стандартов Slot I, Slot 2, Socket 370, Socket 478 и т.д.

2.3.4.3. Чипсеты фирмы Intel

Корпорация Intel занимает ведущие позиции на рынке системных наборов мик­росхем для процессоров Pentium III, Pentium 4 и других, так как в отличие от конкурен­тов, начала разработку соответствующих микросхем параллельно с разработ­кой своих процессоров. Кратко охарактеризуем некоторые из распространенных.

Чипсет 460GX предназначен для мощных многопроцессорных серверов на базе про­цес­сора Itanium с интерфейсом РАС418. Поддерживается работа четырех процессо­ров. Отме­тим, что существуют чипсеты, которые организуют работу 32 процессоров Itanium.

Чипсет i815 проектировался как преемник популярного чипсета 440ВХ. Он поддер­жи­ва­ет процессоры Pentium III и Celeron на ядре Coppermine. Поддерживаются час­тоты сис­темной шины 66, 100 и 133 МГц. Чипсет iS 15 имел встроенное графическое ядроi752. Более поздние модификации чипсета iS 15 поддерживали процес­соры Pentium III и Celeron на ядре Tualatin, шину USB 2.0 и интерфейс АТА-100.

Чипсет (865РЕ – поддерживает процессоры Pentium 4 и Celeron с частотами шины 400/533/800 МГц, а также двухканальную память SDRAM DDR266/DDR333/DDR400. В чипсете реализована шина AGP 8х. Новый южный мост ICH5 поддерживает Serial ATA-150. Чипсет I865G отличается отi865PE наличием интегри­рованного графического ядра Intel Extreme Graphics

2.3.4.4. Чипсеты фирм ALi, SiS, Via и NVIDIA

Одним из преимуществ продукции Ali, VIA и SiS всегда являлась шина. Рассмотрим сна­чала Чипсеты для процессоров Intel Pentium 4.

Чипсет SIS648 в свое время имел высокую производительность и был реальным кон­ку­рентом связке i85OE+RDRAM (PC1066), причем плата на SiS648 с DDR400 стоила за­метно дешевле сочетания Intd+Rambus. Но этот чипсет не поддерживал техноло­гию НТ HyperThreading – Многопоточность).

Чипсет SIS655FX – это чипсет с двухканальной поддержкой памяти DDR400 и процес­со­ров Pentium 4 (FSB 800 МГц) с технологией Hyper–Threading. Пропускная спо­собность чип­сета (процессор-северный/южный мост – память) 6,4 Гб/с. Южный мост, SiS964 имеет интер­фейс Serial ATA и способен обеспечить поддержкуRAID-массива.

Чипсет VIA PT880 – набор системной логики для процессоров Pentium 4. Чипсет поддер­живает частоты системной шины 400, 533 и 800 МГц.

Чипсеты SiS733, SiS735, SiS745, SiS746, SiS746FX, SiS748 предназначены для плат­фор­мы Socket А, т.е. процессо­ров фирмы AMD 7 поколения (Athlon/Duron). Чипсет NVIDIA nForce2 Ultra 400 для платформы AMD Athlon XP (Socket А) поддержи­вает двухканальную память DDR266/333/400, системную шину 400 ГГц, AGP, 4 порта USB 2.0, FireWire, ATA133, Serial ATA.

Чипсет NVIDIA nForce3 Pro предназначен для новых 64-разрядных процес­соров семей­ства Opteron от AMD. Выпу­щено несколько вариантов чипсета. Напри­мер, вариант nForce3 Pro 150 имеет 10/100 Мбит/с Ethernet и три Ultra ATA-133, под­держивает USB 2.0, АС’97 аудио, PCI, AGP 8х и RAID уровня 0, 1 и 0+1, Socket 754.

2.3.4.5. Последовательные и параллельные порты Ввода/вывода

Обычно шина предназначена для обмена информацией между несколькими уст­ройства ми, в то время как порт – только между двумя (между шиной и внешним устрой­ством). Например, шина AGP фак­тически является портом.

Вы познакомившись с общим устройством материнской платы современного компьютера, узнали, что производитель­ность материнской платы напрямую связана с набором мик­ро­схем (чипсетом) и частотой системной шины.

Вопросы
1. Основные компоненты компьютера, их функциональное назначение и принципы работы. Программный принцип работы компьютера.
2. Построение алгоритма для обработки величин с реализацией на языке программирования (ветвление, цикл). Отладка программы и получение результатов.

Ответ на вопрос №1

Аппаратное обеспечение -узлы, составляющие аппаратные средства компьютера

Программное обеспечение - Совокупность программ, хранящихся на компьютере

1.1
Устройство компьютера:
- устройства ввода информации
- устройства обработки информации
- устройства хранения
- устройства вывода информации.

- Оперативная память. Её можно представить как обширный массив ячеек, в которых хранятся числовые данные и команды в то время, когда компьютер включен. Процессор может обратиться к любой ячейке оперативной памяти, поскольку она имеет неповторимый числовой адрес.

- Материнская плата. На ней располагаются магистрали, связывающие процессор с оперативной памятью, — так называемые шины. Различают шину данных, по которой процессор копирует данные из ячеек памяти, адресную шину, по которой он подключается к конкретным ячейкам памяти, и шину команд, по которой в процессор поступают команды из программ. К шинам материнской платы подключаются также все прочие внутренние устройства компьютера.

- Видеоадаптер. Имеют собственный вычислительный процессор, который снизил нагрузку на основной процессор при построении сложных изображений. Особенно большую роль видеопроцессор играет при построении на плоском экране трехмерных изображений. В ходе таких операций ему приходится выполнять особенно много математических расчетов.

- Звуковой адаптер. Разъемы звуковой карты выведены на заднюю стенку компьютера. Для воспроизведения звука к ним подключают звуковые колонки или наушники. Отдельный разъем предназначен для подключения микрофона. При наличии специальной программы это позволяет записывать звук.

- Жесткий диск. Принцип действия жесткого диска основан на регистрации изменений магнитного поля вблизи записывающей головки.

- Дисковод гибких дисков. Для транспортировки данных между удаленными компьютерами используют гибкие диски (дискеты). Для записи и чтения данных, размещенных на гибких дисках, служит специальное устройство — дисковод. Приемное отверстие дисковода выведено на лицевую панель системного блока.

- Дисковод CD-ROM. Для транспортировки больших объемов данных удобно использовать компакт-диски CD-ROM. Эти диски позволяют только читать ранее записанные данные — производить запись на них нельзя. Для чтения компакт-дисков служат дисководы CD-ROM.

- Коммуникационные порты. Для связи с другими устройствами, например принтером, сканером, клавиатурой, мышью и т. п., компьютер оснащается так называемыми портами.

- Сетевые адаптеры необходимы компьютерам, чтобы они могли обмениваться данными между собой. Этот прибор следит за тем, чтобы процессор не подал новую порцию данных на внешний порт, пока сетевой адаптер соседнего компьютера не скопировал к себе предыдущую порцию. После этого процессору дается сигнал о том, что данные забраны и можно подавать новые. Так осуществляется передача.
Сетевые адаптеры могут быть встроены в материнскую плату, но чаще устанавливаются отдельно, в виде дополнительных плат, называемых сетевыми картами.

1.2
Любой компьютер представляет собой автоматическое устройство, работающее по заложенным в него программам. Компьютерная программа представляет собой последовательность команд, записанных в двоичной форме на машинном языке, понятном процессору компьютера. Компьютерная программа является формой записи алгоритмов решения поставленных задач.
Одним из принципов, входящих в основу построения подавляющего большинства компьютеров, является Принцип программного управления:
Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Несмотря на огромное разнообразие вычислительной техники и ее стремительное совершенствование, фундаментальные принци­пы устройства машин во многом остаются неизменными. В основу построения большинства компьютеров положены принципы, сфор­мулированные Джоном фон Нейманом — это:

• принцип программного управления;

• принцип однородности памяти;

Компьютеры, построенные на этих принципах, имеют класси­ческую архитектуру. Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение основных логических узлов (компонентов) компьютера. К основным компо­нентам относятся:

Процессор

Процессор является главным устройством компьютера, в кото­ром происходит обработка всех видов информации. Кроме этого процессор обеспечивает согласованное взаимодействие всех узлов, входящих в состав компьютера. Наиболее важными, частями про­цессора являются арифметико-логическое устройство и устройство управления.

Внутри процессора имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации. Однако в нем не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство память.

Память

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю. Исторически это было связано с размещением устройств памяти внутри или вне процессорного шкафа. Однако с уменьшением размеров машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее, терминология сохранилась.

В состав внутренней памяти современного компьютера помимо ОЗУ также входят и некоторые другие разновидности памяти. Среди них — постоянное запоминающее устройство (ПЗУ). Эта память используется компьютером только для чтения и служит для хранения программ и данных начальной загрузки компьютера и тестирования его узлов. Информация в ПЗУ не зависит от состояния компьютера.

Для долговременного хранения информации используется внешняя память. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках (НГМД), накопители на жестких магнитных дисках (винчестерах) и оптические накопители (CD-ROM и DVD-ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее, внешняя память позволяет сохранить огромные объемы информации с целью последующего использования.




Внешние устройства

В составе любого компьютера необходимы специальные устройства ввода и вывода информации (так называемые внешние или периферийные устройства).

К устройствам ввода информации можно отнести:

• клавиатуру (служит для ввода числовой и текстовой информации);

• манипулятор-мышь (для ввода графической информации или работы с графическим интерфейсом программ);

• сканер (используется для ввода в компьютер фотографий или рисунков, позволяет не просто преобразовать картинку с листа бумаги в графический компьютерный файл, но и с помощью специ­ального программного обеспечения распознать в прочитанном изображении текст и сохранить его в виде, пригодном для редактирования в обычном текстовом редакторе);

• цифровую камеру (формирует изображение сразу в компьютерном формате);

• микрофон (служит для ввода звуковой информации).

К наиболее универсальным устройствам вывода можно отнести монитор, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.

Для сохранения информации на бумаге служит принтер, а для вывода на бумагу сложных чертежей, рисунков и схем большого формата — плоттер (графопостроитель).

Вывод звуковой информации осуществляется с помощью акус­тических колонок или наушников.

Процесс общения процессора с внешним миром через устройства ввода-вывода по сравнению с информационными процессами внутри него протекает в сотни и тысячи раз медленнее. Это связано с тем, что устройства ввода и вывода информации часто имеют ме­ханический принцип действия (принтеры, клавиатура, мышь) и работают медленно. Чтобы освободить процессор от простоя при ожи-;злни окончания работы таких устройств, в компьютер вставляют специализированные микропроцессоры-контроллеры. Получив от центрального процессора компьютера команду на вывод информации контроллер самостоятельно управляет работой внешнего устройства. Окончив вывод информации, контроллер сообщает процессору о завершении выполнения команды и готовности к получению следующей.

Число таких контроллеров соответствует числу подключенных к процессору устройств ввода и вывода. Так, для управления работой клавиатуры и мыши используется свой отдельный контроллер. Таким образом, использование специальных контроллеров для уп­равления устройствами ввода-вывода, усложняя устройство компью­тера, одновременно разгружает его центральный процессор от непроизводительных трат времени и повышает общую производительность компьютера.

Взаимосвязь основных устройств

Все контроллеры устройств взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных (системную шину). Системная шина является основной интерфейсной системой компьютера, реализующей сопряжение и связь всех его устройств между собой. Системная шина обеспечивает передачу информации в трех направлениях:

• между процессором и основной памятью;

• между процессором и внешними устройствами;

• между основной памятью и внешними устройствами.

Центральные устройства (процессор и основная память) под­соединены к шине непосредственно, а периферийные — через устройства сопряжения (контроллеры или адаптеры). Таким образом, персональный компьютер состоит из отдельных модулей, объединяемых системной магистралью. При этом можно заменять отдельные модули на более современные, а также добавлять но­вые модули. Такой принцип построения компьютера называется принципом открытой архитектуры (магистралъно-модульным).

Программный принцип работы компьютера

Любая программа состоит из набора команд, которые выполня­ются процессором автоматически друг за другом в определенной последовательности. Таким образом, процессор исполняет программу автоматически, без вмешательства человека. Программы и данные хранятся в одной и той же памяти, т. е. компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда, поэтому над командами можно выполнять такие же действия, как и над данными.

Основные компоненты компьютера, их функциональное назначение и принципы работы. Программный принцип работы компьютера.

План ответа

1. Основные компоненты компьютера.

2. Процессор.

4. Внешние устройства.

5. Взаимосвязь основных устройств.

6. Программный принцип работы компьютера.

■■ Основные компоненты компьютера

Несмотря на огромное разнообразие вычислительной техники и ее стремительное совершенствование, фундаментальные принци­пы устройства машин во многом остаются неизменными. В основу построения большинства компьютеров положены принципы, сфор­мулированные Джоном фон Нейманом — это:

• принцип программного управления;

• принцип однородности памяти;

Компьютеры, построенные на этих принципах, имеют класси­ческую архитектуру. Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение основных логических узлов (компонентов) компьютера. К основным компо­нентам относятся:

Процессор

Процессор является главным устройством компьютера, в кото­ром происходит обработка всех видов информации. Кроме этого процессор обеспечивает согласованное взаимодействие всех узлов, входящих в состав компьютера. Наиболее важными, частями про­цессора являются арифметико-логическое устройство и устройство управления.

Внутри процессора имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации. Однако в нем не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство память.

Память

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю. Исторически это было связано с размещением устройств памяти внутри или вне процессорного шкафа. Однако с уменьшением размеров машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее, терминология сохранилась.

В состав внутренней памяти современного компьютера помимо ОЗУ также входят и некоторые другие разновидности памяти. Среди них — постоянное запоминающее устройство (ПЗУ). Эта память используется компьютером только для чтения и служит для хранения программ и данных начальной загрузки компьютера и тестирования его узлов. Информация в ПЗУ не зависит от состояния компьютера.

Для долговременного хранения информации используется внешняя память. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках (НГМД), накопители на жестких магнитных дисках (винчестерах) и оптические накопители (CD-ROM и DVD-ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее, внешняя память позволяет сохранить огромные объемы информации с целью последующего использования.

Внешние устройства

В составе любого компьютера необходимы специальные устройства ввода и вывода информации (так называемые внешние или периферийные устройства).

К устройствам ввода информации можно отнести:

• клавиатуру (служит для ввода числовой и текстовой информации);

• манипулятор-мышь (для ввода графической информации или работы с графическим интерфейсом программ);

• сканер (используется для ввода в компьютер фотографий или рисунков, позволяет не просто преобразовать картинку с листа бумаги в графический компьютерный файл, но и с помощью специ­ального программного обеспечения распознать в прочитанном изображении текст и сохранить его в виде, пригодном для редактирования в обычном текстовом редакторе);

• цифровую камеру (формирует изображение сразу в компьютерном формате);

• микрофон (служит для ввода звуковой информации).

К наиболее универсальным устройствам вывода можно отнести монитор, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.

Для сохранения информации на бумаге служит принтер, а для вывода на бумагу сложных чертежей, рисунков и схем большого формата — плоттер (графопостроитель).

Вывод звуковой информации осуществляется с помощью акус­тических колонок или наушников.

Процесс общения процессора с внешним миром через устройства ввода-вывода по сравнению с информационными процессами внутри него протекает в сотни и тысячи раз медленнее. Это связано с тем, что устройства ввода и вывода информации часто имеют ме­ханический принцип действия (принтеры, клавиатура, мышь) и работают медленно. Чтобы освободить процессор от простоя при ожи-;злни окончания работы таких устройств, в компьютер вставляют специализированные микропроцессоры-контроллеры. Получив от центрального процессора компьютера команду на вывод информации контроллер самостоятельно управляет работой внешнего устройства. Окончив вывод информации, контроллер сообщает процессору о завершении выполнения команды и готовности к получению следующей.

Число таких контроллеров соответствует числу подключенных к процессору устройств ввода и вывода. Так, для управления работой клавиатуры и мыши используется свой отдельный контроллер. Таким образом, использование специальных контроллеров для уп­равления устройствами ввода-вывода, усложняя устройство компью­тера, одновременно разгружает его центральный процессор от непроизводительных трат времени и повышает общую производительность компьютера.

Взаимосвязь основных устройств

Все контроллеры устройств взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных (системную шину). Системная шина является основной интерфейсной системой компьютера, реализующей сопряжение и связь всех его устройств между собой. Системная шина обеспечивает передачу информации в трех направлениях:

• между процессором и основной памятью;

• между процессором и внешними устройствами;

• между основной памятью и внешними устройствами.

Центральные устройства (процессор и основная память) под­соединены к шине непосредственно, а периферийные — через устройства сопряжения (контроллеры или адаптеры). Таким образом, персональный компьютер состоит из отдельных модулей, объединяемых системной магистралью. При этом можно заменять отдельные модули на более современные, а также добавлять но­вые модули. Такой принцип построения компьютера называется принципом открытой архитектуры (магистралъно-модульным).

Программный принцип работы компьютера

Любая программа состоит из набора команд, которые выполня­ются процессором автоматически друг за другом в определенной последовательности. Таким образом, процессор исполняет программу автоматически, без вмешательства человека. Программы и данные хранятся в одной и той же памяти, т. е. компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда, поэтому над командами можно выполнять такие же действия, как и над данными.


Итак, переходим к рассмотрению комплектующих любого на примере обычного домашнего компьютера. В ноутбуках и нетбуках вы сможете найти всё тоже самое, просто в гораздо уменьшенном варианте.

Из каких основных компонентов состоит компьютер?

Процессор. Это мозг компьютера. Он является главным компонентом и производит все вычисления в компьютере, контролирует все операции и процессы. Также является одним из самых дорогих компонентов, и цена очень хорошего современного процессора может переваливать за 50 000 рублей.

Бывают процессоры фирмы Intel и AMD. Тут кому что нравится, а так, Интелы меньше нагреваются, потребляют меньше электроэнергии. При всём этом у AMD лучше идёт обработка графики, т.е. больше подошёл бы для игровых компьютеров и тех, где работа будет вестись с мощными редакторами изображений, 3D графики, видео. На мой взгляд эта разница между процессорами не столь существенна и заметна…

Основной характеристикой является частота процессора (измеряется в Герцах. Например 2.5GHz), а также – разъём для подключения к материнской плате (сокет. Например, LGA 1150).

Вот так выглядит процессор (сверху указана фирма и модель):




Материнская (системная) плата. Эта самая большая плата в компьютере, которая является связующим звеном между всеми остальными компонентами. К материнской плате подключаются все остальные устройства, включая периферийные. Производителей материнских плат множество, а на верхушке держатся ASUS и Gigabyte, как самые надёжные и одновременно дорогие, соответственно. Основными характеристиками являются: тип поддерживаемого процессора (сокет), тип поддерживаемой оперативной памяти (DDR2, DDR3, DDR4), форм фактор (определяет в какой корпус вы сможете поместить данную плату), а также – типы разъёмов для подключения остальных компонентов компьютера. Например, современные жесткие диски (HDD) и диски SSD подключаются через разъёмы SATA3, видеоадаптеры – через разъёмы PCI-E x16 3.0.

Вот так выглядит материнская плата:




Память. Тут разделим её на 2 основных типа, на которые важно будет обратить внимание при покупке:

Чем больше объём оперативной памяти, тем лучше и тем быстрее будет работать компьютер (конечно, если все остальные компоненты соответствуют уровню). Оперативная память выглядит как небольшие продолговатые планки (модули) и объём одного модуля у памяти поколения DDR4 уже может достигать 128 Гб.!

Вот так выглядят модули оперативной памяти:




Жёсткий диск (HDD) и SSD. Вот это как раз-таки та память, на которой у вас постоянно хранятся все ваши файлы, куда устанавливаются программы, игры, скачиваются фильмы, музыка и всё прочее. Этот вид памяти не очищается после перезагрузки или выключения компьютера, как в случае с оперативной памятью, т.е. является энергонезависимой.

Бывают диски HDD и SSD. Последние начали массово использоваться не так-то и давно и постепенно вытесняют HDD за счёт своих неоспоримых преимуществ, главное из которых – скорость записи / считывания данных. У SSD она в 10-ки раз превышает скорость HDD. Помимо этого, SSD диски намного прочнее (поскольку в них отсутствуют движущиеся механизмы как в HDD), потребляют меньше энергии (HDD около 6 Вт, а SSD меньше 2Вт), бесшумны, намного легче по весу, меньше нагреваются.

Недостаток SSD – высокая стоимость. Например, диск SSD объёмом 120 Гб. может стоить около 6000 рублей, в то время как за эти же деньги можно купить диск HDD объёмом около 2-х терабайт :) Поэтому SSD диск целесообразнее покупать не очень небольшого размера (например, 120 Гб) и использовать его только для хранения операционной системы и установленных программ, а все нужные файлы (документы для работы, фильмы, фотки и прочее) хранить уже на HDD большого размера.

Ну и второй недостаток – число циклов перезаписи значительно меньше чем у HDD. А это значит, что SSD диски меньше служат. Но прогресс не стоит на месте и со временем эта проблема будет, я думаю, тоже решена.

Основная характеристика у HDD и SSD – объём для хранения данных. Чем он больше, тем, соответственно, больше вы сможете хранить на компьютере всякого барахла и важных документов :) На данный момент объёмы и тех, и других примерно уравниваются. Объёмы HDD для домашних компьютеров достигают уже 10 Тб. (терабайт). 10 Тб = 10 000 Гб. Это просто огромное пространство для хранения данных! Также не менее важной характеристикой для SDD является скорость записи / считывания. Чем она больше, тем лучше и хорошо если будет в районе 500 Мб/cек. Для HDD похожий параметр – скорость вращения шпинделя. Здесь вполне подойдут диски со скоростью 7200 оборотов в минуту.

Вот так выглядит жесткий диск (HDD):




А вот так выглядит диск SSD:




Какая разница между ними, спросите вы? Разница в том, что встроенная видеокарта не предназначена для запуска ресурсоёмких игр, работы в профессиональных редакторах изображения и видео. Ей просто не хватит мощности для обработки такой графики и всё будет сильно тормозить. Встроенная видюха на сегодняшний день может использоваться скорее как запасной временный вариант. Для всего остального нужна хоть какая-то простенькая внешняя видеокарта и какая именно уже зависит от предпочтений пользования компьютером: для интернет-сёрфинга, работы с документами или же для игр.

Основной характеристикой видеокарты является: разъём для подключения к плате, частота графического процессора (чем она больше, тем лучше), объём и тип видеопамяти, разрядность шины видеопамяти.

Вот так выглядит видеокарта:




Звуковой адаптер. В каждом компьютере имеется, как минимум, встроенная звуковая карта и отвечает, соответственно, за обработку и вывод звука. Очень часто именно встроенная и далеко не все покупают себе дискретную звуковую карту, которая подключается к материнской плате. Лично мне, например, встроенной вполне достаточно и на этот компонент компьютера я, в принципе, и внимания вообще не обращаю. Дискретная звуковая карта будет выдавать намного качественнее звук и незаменима если вы занимаетесь музыкой, работаете в каких-либо программах для обработки музыки. А если ничем подобным не увлекаетесь, то можно спокойно пользоваться встроенной и не задумываться об этом компоненте при покупке.

Вот так выглядит дискретная звуковая карта:




Сетевой адаптер. Служит для подключения компьютера к внутренней сети и к интернету. Также, как и звуковой адаптер, очень часто может быть встроенным, чего многим достаточно. Т.е. в таком случае в компьютере вы не увидите дополнительной платы сетевого адаптера. Основной характеристикой является пропускная способность, измеряемая в Мбит / сек. Если на материнской плате имеется встроенный сетевой адаптер, а он, как правило, имеется в подавляющем большинстве материнских плат, то и новый покупать для дома не за чем. Определить его наличие на плате можно по разъёму для подключения интернет-кабеля (витая пара). Если такой разъём имеется, значит в плате есть встроенный сетевой адаптер, соответственно.

Вот так выглядит дискретная сетевая карта:




Блок питания (БП). Очень важный компонент компьютера. Он подключается к электросети и служит для снабжения постоянным током всех других компонентов компьютера, преобразуя сетевое напряжения до требуемых значений. А устройства компьютера работают на напряжениях: +3.3В, +5В, +12В. Отрицательные напряжения практически не используются. Основной характеристикой блока питания является его мощность и измеряется, соответственно, в Ваттах. В компьютер ставится блок питания с такой мощностью, чтобы её хватило для питания всех компонентов компьютера. Больше всего будет потреблять видеоадаптер (потребляемая им мощность будет обязательно указана в документации), поэтому ориентироваться нужно на него и брать просто с небольшим запасом. Также блок питания должен иметь все необходимые разъёмы для подключения ко всем имеющимся компонентам компьютера: материнской плате, процессору, HDD и SSD дискам, видеоадаптеру, дисководу.

Вот так выглядит блок питания:




Дисковод (привод). Это уже дополнительное устройство, без которого, в принципе, можно и вообще обойтись. Служит, соответственно, для чтения CD/DVD/Blu-Ray дисков. Если планируется на компьютере читать или записывать какие-либо диски, то, конечно же, такое устройство необходимо. Из характеристик можно отметить только способность дисковода читать и записывать различные типы дисков, а также разъём для подключения к плате, который на сегодняшний день практически всегда – SATA.

Вот так выглядит дисковод:




Всё что перечислено выше – основное, без чего, как правило, не обходится ни один компьютер. В ноутбуках всё аналогично, только часто может отсутствовать дисковод, но это уже зависит от того, какую модель вы выбираете и нужен ли вам вообще этот дисковод. Также могут быть и другие компоненты, которые тоже будут подключаться к материнской плате, например: Wi-Fi адаптер, TV тюнер, устройства для видео захвата. Могут быть и другие дополнительные компоненты, которые являются совсем не обязательными, поэтому останавливаться на них пока что не будем. Сейчас практически в каждом ноутбуке имеется Wi-Fi адаптер для подключения к интернету по беспроводной сети, а также бывает и встроенный TV-тюнер. В стационарных домашних компьютерах, всё это приобретается, как правило, отдельно!

Корпус компьютера

Все те основные компоненты, которые я перечислил выше, должны быть где-то расположены, а не просто валяться на полу, верно? :) Все компоненты компьютера помещаются в специальный корпус (системный блок) для того чтобы исключить на них внешнее воздействие, защитить от повреждений и поддерживать внутри корпуса нужную температуру за счёт имеющихся в нём вентиляторов. Также запускаете вы свой компьютер именно при помощи кнопки на корпусе, поэтому без корпуса никак не обойтись :)

Корпуса бывают разного размера и в самый маленький корпус, понятное дело, не поместится, например, стандартная материнская плата. Поэтому основной характеристикой корпуса является формфактор поддерживаемых материнских плат. Если Самые большие корпуса (Full Tower) способны вместить в себя платы любого размера и любые компоненты так, что ещё и будет более-менее свободно и в случае необходимости вынуть какой-либо из компонентов, не возникнет неудобств.

Вот так выглядит корпус компьютера:




Монитор

Также, уже вне корпуса, будет расположено ещё одно важное устройство – монитор. Монтитор подключается проводом к материнской плате и без него вы, соответственно, не увидите всего что делаете на компьютере :) Основными параметрами монитора являются:

Диагональ экрана в дюймах;

Поддерживаемое разрешение экрана, например, 1920×1080. Чем оно больше, тем лучше;

Угол обзора. Влияет на то, как будет видно изображение если смотреть на монитор со стороны или чуть выше / ниже. Чем больше угол обзора, тем лучше.

Яркость и контрастность. Яркость измеряется в кд/м2 и в хороших моделях лежит за пределами 300, а контрастность должна быть не менее 1:1000 для хорошего отображения.

Вот так выглядит монитор:




Помимо перечисленных выше основных компонентов компьютера, существуют ещё и периферийные устройства. Периферией называют различные дополнительные и вспомогательные устройства, которые позволяют расширить возможности компьютера. Сюда относится множество устройств, например: компьютерная мышь, клавиатура, наушники, микрофон, принтер, сканер, копир, графический планшет, джойстик, web-камера.

Все эти устройства уже удобно будет затронуть в отдельных темах, поскольку каждое из них имеет свои характеристики и особенности. Клавиатуру и мышь выбрать проще всего, главное, чтобы подключение к компьютеру было по USB или же вообще по радиоканалу без провода, а все остальные параметры подбираются уже индивидуально и здесь главное, чтобы просто было удобно.

О выборе самых основных периферийных устройств читайте в статье:

На этом разбор компонентов компьютера я заканчиваю. Надеюсь, что подобная статья окажется для новичков в какой-то степени полезной и те, кто совсем не понимали, что находится в компьютере и для чего нужно, теперь смогу более-менее представить себе :) Также данная информация, я думаю, станет полезна при выборе компьютера и тем более последующие статьи как раз будут о выборе и покупке домашнего компьютера.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 7 класса. Босова Л.Л. Оглавление

2.1.1. Компьютер

Одним из важных объектов, изучаемых на уроках информатики, является компьютер, получивший своё название по основной функции — проведению вычислений (англ, computer — вычислитель).

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Универсальным устройством компьютер называется потому, что он может применяться для многих целей — обрабатывать, хранить и передавать самую разнообразную информацию, использоваться человеком в разных видах деятельности.

Современные компьютеры могут обрабатывать разные виды информации: числа, текст, изображения, звуки. Информация любого вида представляется в компьютере в виде двоичного кода — последовательностей нулей и единиц. Некоторые способы двоичного кодирования представлены на рис. 2.1.


Информацию, предназначенную для обработки на компьютере и представленную в виде двоичного кода, принято называть двоичными данными или просто данными. Одним из основных достоинств двоичных данных является то, что их копируют, хранят и передают с использованием одних и тех же универсальных методов, независимо от вида исходной информации.

Обработку данных компьютер проводит в соответствии с программой — последовательностью команд, которые необходимо выполнить над данными для решения поставленной задачи. Как и данные, программы представляются в компьютере в виде двоичного кода. Программно управляемым устройством компьютер называется потому, что его работа осуществляется под управлением установленных на нём программ. Это программный принцип работы компьютера.

Современные компьютеры бывают самыми разными: от мощных компьютерных систем, занимающих целые залы и обеспечивающих одновременную работу многих пользователей, до мини-компьютеров, помещающихся на ладони (рис. 2.2).


Сегодня самым распространённым видом компьютеров является персональный компьютер (ПК) — компьютер, предназначенный для работы одного человека.

2.1.2. Устройства компьютера и их функции

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека (рис. 2.3). Но даже столь очевидное сходство не позволяет нам отождествлять человека с машиной хотя бы потому, что человек управляет своими действиями сам, а работа компьютера подчинена заложенной в него программе.


Процессор компьютера

Центральным устройством компьютера является процессор. Он организует приём данных, считывание из оперативной памяти очередной команды, её анализ и выполнение, а также отправку результатов работы на требуемое устройство. Основными характеристиками процессора являются его тактовая частота и разрядность.

Процессор обрабатывает поступающие к нему электрические сигналы (импульсы). Промежуток времени между двумя последовательными электрическими импульсами называется тактом. На выполнение процессором каждой операции выделяется определённое количество тактов.

Тактовая частота процессора равна количеству тактов обработки данных, которые процессор производит за 1 секунду. Тактовая частота измеряется в мегагерцах (МГц) — миллионах тактов в секунду. Чем больше тактовая частота, тем быстрее работает компьютер. Тактовая частота современных процессоров уже превышает 1000 МГц = 1 ГГц (гигагерц).

Разрядность процессора — это максимальная длина двоичного кода, который может обрабатываться или передаваться одновременно. Разрядность процессоров современных компьютеров достигает 64.

Память компьютера

Различают внутреннюю и внешнюю память.

Внутренняя память компьютера

Внутренней называется память, встроенная в компьютер и непосредственно управляемая процессором. Во внутренней памяти хранятся исполняемые в данный момент программы и оперативно необходимые для этого данные. Внутренняя память компьютера позволяет передавать процессору и принимать от него данные примерно с такой же скоростью, с какой процессор их обрабатывает. Поэтому внутренняя память иначе называется оперативной (быстрой). Объём оперативной памяти современных компьютеров измеряется в гигабайтах.

Электрические импульсы, в форме которых информация сохраняется в оперативной памяти, существуют только тогда, когда компьютер включён. После выключения компьютера вся информация, содержащаяся в оперативной памяти, теряется.

К внутренней памяти компьютера относится также ПЗУ — постоянное запоминающее устройтво. В нём хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. После выключения компьютера информация в ПЗУ сохраняется.

Внешняя память компьютера

Для долговременного хранения программ и данных предназначена внешняя (долговременная) память. Внешняя память позволяет сохранять огромные объёмы информации. Информация во внешней памяти после выключения компьютера сохраняется. Различают носители информации — магнитные и оптические диски, энергонезависимые электронные диски (карты флеш-памяти и флеш-диски) и накопители (дисководы) — устройства, обеспечивающие запись данных на носители и считывание данных с носителей. Жёсткий диск — устройство, совмещающее в себе накопитель (дисковод) и носитель (непосредственно диск).

При запуске пользователем некоторой программы, хранящейся во внешней памяти, она загружается в оперативную память и после этого начинает выполняться.

Устройства ввода и вывода информации

Различные устройства компьютера связаны между собой каналами передачи информации (рис. 2.4).


Самое главное

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека.

Вопросы

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Какими слайдами вы могли бы дополнить презентацию.

Читайте также: