Основные физические свойства жидкости гидравлика кратко

Обновлено: 05.07.2024

Под жидкостью подразумевают физическое тело, обладающее двумя отличительными свойствами:

1) незначительно изменяет свой объём при изменении давления и температуры (в этом жидкость сходна с твердым телом);

2) обладает текучестью, благодаря чему не имеет собственной формы и принимает форму того сосуда, в котором находится (в этом жидкость сходна с газом).

Поскольку газ также обладает свойством текучести, то многие теоретические положения, разработанные по отношению к жидкому телу, могут быть распространены на газообразные тела.

а) абсолютной несжимаемостью;

б) полным отсутствием вязкости, т.е. сил трения при движении.

К основным физическим свойствам жидкостей, широко используемых при решении различных задач гидравлики, относятся: плотность, удельный объём, удельный вес, сжимаемость, температурное расширение, вязкость, поверхностное натяжение, гидравлическое давление.

Вязкость – свойство жидкости оказывать сопротивление усилиям, вызывающим относительное перемещение её частиц. Чтобы сместить один слой жидкости относительно другого необходимо приложить силу РТ. Эта сила, отнесённая к поверхности слоя, называется напряжением внутреннего трения или касательным напряжением t, Па:

(F – площадь слоя, м 2 ; РТ – сила, Н).

Согласно закону трения Ньютона

где – градиент скорости – относительное изменение скорости в направлении нормали к поверхности.

Коэффициент пропорциональности, входящий в последнее уравнение, называется динамическим коэффициентом вязкости или просто вязкостью m, Па×с.

Отношение вязкости к плотности жидкости называют кинематическим коэффициентом вязкости или кинематической вязкостью n, м 2 /с:

Вязкость проявляется только при движении жидкости и не может быть обнаружена в состоянии покоя. Вязкостью жидкости объясняется сопротивление, которое возникает при движении её по трубопроводу, а также при движении твёрдых тел внутри жидкости. Вязкость зависит от рода жидкости и температуры. Величина m не поддаётся теоретическому расчёту, а определяется опытным путём.

Зависимость вязкости жидкости от температуры описывается приближённым уравнением:

где А и В – константы, зависящие от природы жидкости. Коэффициент вязкости m у капельных жидкостей с повышением температуры уменьшается в силу увеличения межмолекулярного расстояния и падения сопротивления деформации жидкости.

Вязкость же газов растёт с повышением температуры Т. Согласно кинетической теории газов где С – константа, зависящая от природы газа. Однако для реальных газов эта зависимость более сложная. Согласно Сатерлэнду

где S – постоянная величина для данного газа, определяемая опытным путём.

Вязкость жидкостных смесей mсм не подчиняется закону аддитивности. Для неассоциированных жидкостных смесей можно воспользоваться выражением

где m1, m2, …, mn – вязкости отдельных компонентов; m1, m2, …, mn – мольные доли компонентов в смеси.

Закон трения Ньютона справедлив для жидкостей с небольшой молекулярной массой, вязкость которых является функцией температуры и давления, но не зависит от градиента скорости Dw/Dn (скорости сдвига). Такие жидкости носят название ньютоновских, для них характерна линейная зависимость t от D w/Dn (рис. 1.1), при этом тангенс угла наклона прямой равен μ.


Рисунок 1.1 – Зависимости между напряжением и скоростью сдвига (кривые течения): 1 – ньютоновские жидкости; 2 – бингамовские пластичные жидкости; 3 – псевдопластичные жидкости; 4 – дилатантные жидкости

Зависимости t = f(Dw/Dn) для неньютоновских жидкостей являются криволинейными (рис. 1.1) и носят название кривых течения. Вид кривой течения зависит от типа неньютоновской жидкости, которые подразделяются на три группы.

К первой группе относятся вязкие или реологически стационарные жидкости, для которых функция t = f(Dw/Dn) не зависит от времени. По виду этой функции, в свою очередь, различают следующие разновидности жидкостей этой группы.

Бингамовские жидкости – при малых значениях напряжения t лишь деформируются, начинают течь по достижении некоторого значения t0, называемого пределом текучести. Для бингамовских жидкостей справедлива зависимость

где mn – коэффициент пропорциональности, называемый пластической вязкостью.

К этому типу жидкостей относятся густые суспензии, пасты, масляные краски, шламы и т.п.

Псевдопластичные жидкости – предел текучести отсутствует, но кажущаяся вязкость mк с ростом скорости сдвига падает:

Показатель степени а можно рассматривать как степень отклонения от ньютоновской жидкости, для которой а = 1.

К псевдопластичным жидкостям относятся суспензии с асимметричными частицами, растворы полимеров.




Дилатантные жидкости, подобно псевдопластичным, не имеют предела текучести, но их кажущаяся вязкость mк растёт с увеличением скорости сдвига, т.е. а > 1.

К таким жидкостям относят суспензии с большим содержанием растворённого вещества.

В зависимости от характера влияния продолжительности сдвига на структуру жидкости различают тиксотропные и реопектантные жидкости.

У тиксотропных жидкостей с увеличением продолжительности воздействия напряжения сдвига структура разрушается и текучесть возрастает. Однако после снятия напряжения структура постепенно восстанавливается, и жидкость перестаёт течь.

К числу тиксотропных жидкостей относятся различные краски, молочные кислые продукты.

Реопектантные жидкости характерны тем, что с увеличением продолжительности воздействия напряжения сдвига текучесть снижается.

К третьей группе относятся вязкоупругие, или максвелловские, жидкости, которые текут под воздействием напряжения t, но после снятия напряжения частично восстанавливают свою форму, подобно упругим твёрдым телам (смолы, тестообразные тела).

Влияние температуры на вязкость неньютоновских жидкостей описывается уравнением Аррениуса:

где m0 – вязкость при Т = 273 К; DЕ – энергия активации, кДж/моль.

Элементы гидростатики

В гидростатике изучается равновесие жидкостей, находящихся в состоянии относительного или абсолютного покоя. Относительный покой – это состояние, при котором в движущейся жидкости отдельные частицы не перемещаются относительно друг друга. Отсутствие такого перемещения позволяет считать любую жидкость в состоянии покоя идеальной, так как силы внутреннего трения отсутствуют. В состоянии относительного покоя форма объёма жидкости не изменяется, и она перемещается подобно твёрдому телу, как единое целое (например, жидкость во вращающемся с постоянной частотой барабане центрифуги). Жидкость внутри неподвижного сосуда находится в состоянии абсолютного покоя относительно поверхности Земли.

Независимо от вида покоя на жидкость действуют силы тяжести и давления.

Если в покоящейся жидкости, заполняющей какой-либо открытый сверху сосуд, соединить между собой все точки с одинаковым давлением, то получим так называемую поверхность равного давления или поверхность уровня. Так как на эту поверхность действуют только силы тяжести (собственный вес жидкости и атмосферное давление), направленные по вертикали, то поверхность уровня согласно свойству гидростатического давления будет горизонтальной. Верхняя, пограничная с атмосферой поверхность жидкости называется свободной.

Гидростатическое давление часто измеряют высотой столба жидкости, используя известное выражение (ρ – плотность жидкости, кг/м 3 ; g – ускорение силы тяжести в точке измерения, м/с 2 ).

При этом высота столба жидкости Н носит название напора. Напор бывает гидростатическим и пьезометрическим. Под гидростатическим напором подразумевают полное гидростатическое давление жидкости, взятое относительно какой-то горизонтальной плоскости, называемой плоскостью отсчёта, и выраженное в линейных единицах. Под пьезометрическим напором понимают превышение в линейных единицах свободной поверхности жидкости в пьезометрической трубке над плоскостью отсчёта.

Напор является мерой удельной потенциальной энергии жидкости. Эта энергия соответствует работе, затрачиваемой любой частицей жидкости при падении её, от данной точки до плоскости отсчёта.

Один из необходимых составляющих элементов современного инженерного благоустройства городских территорий – подземные инженерные сети. Они состоят из систем водоснабжения (холодного и горячего), канализации, водоотвода поверхностных вод, отопления, которые являются гидравлическими, организуют движение жидкостей в ограниченных пространствах соответствующих систем. Для их расчета используется теоретическая база науки о механике жидкости – гидравлики, которая включает в себя гидростатику и гидродинамику.

Гидравлика – наука, изучающая законы равновесия и движения жидкостей и рассматривающая способы приложения этих законов к решению конкретных практических задач. Гидравлика лежит в основе многих инженерных расчетов специальных сооружений.

Начало развития гидравлики относится к античному периоду. Еще за 250 лет до н.э. появился трактат Архимеда о плавающих телах, где был сформулирован закон о воздействии воды на погруженное в нее тело. Особое развитие гидравлика как наука получила в XV–XVII вв. Леонардо да Винчи (1452–1519 гг.) изучал движение воды. В 1612 г. Г.Галилей теоретически подтвердил закон Архимеда. Позже, в 1643 г., Э.Торричелли установил закон истечения жидкости из отверстия. Б. Паскаль в 1650 г. сформулировал закон о передаче жидкостью давления, а в 1687 г. И. Ньютон выдвинул гипотезу о наличии внутреннего трения в движущейся жидкости и дал понятие вязкости жидкости.

Дальнейшее развитие гидравлики связано с именами М. В.Ломоносова, Д.Бернулли и Л.Эйлера, установивших основные законы гидродинамики.

Гидравлика как прикладная инженерная наука необходима для расчетов при проектировании сети и сооружений систем водоснабжения, канализации, водоотведения, осушения и орошения, гидротехнических сооружений, мостов, для расчета транспортирования строительных растворов по трубам, конструирования насосов, компрессоров и т. п.

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным – все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости – несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.

Плотность – это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м 3 ). Плотность воды составляет 1000 кг/м 3 .

Давление – это отношение силы, действующей на площадку в нормальном к ней направлении, к площади площадки:

Давление в системе СИ измеряется единицей паскаль (Па). Давление в 1 Па равно силе в 1 Н, действующей на площадь в 1 м 2 :

Используются также укрупненные показатели:

• килопаскаль – 1 кПа 10 3 Па;

• мегапаскаль – 1 МПа = 10 6 Па.

Сжимаемость жидкости – это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 °С.




В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается.
При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости – ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.

Понятие о гидравлике

Глава 6

Один из необходимых составляющих элементов современного инженерного благоустройства городских территорий – подземные инженерные сети. Они состоят из систем водоснабжения (холодного и горячего), канализации, водоотвода поверхностных вод, отопления, которые являются гидравлическими, организуют движение жидкостей в ограниченных пространствах соответствующих систем. Для их расчета используется теоретическая база науки о механике жидкости – гидравлики, которая включает в себя гидростатику и гидродинамику.

Гидравлика – наука, изучающая законы равновесия и движения жидкостей и рассматривающая способы приложения этих законов к решению конкретных практических задач. Гидравлика лежит в основе многих инженерных расчетов специальных сооружений.

Начало развития гидравлики относится к античному периоду. Еще за 250 лет до н.э. появился трактат Архимеда о плавающих телах, где был сформулирован закон о воздействии воды на погруженное в нее тело. Особое развитие гидравлика как наука получила в XV–XVII вв. Леонардо да Винчи (1452–1519 гг.) изучал движение воды. В 1612 г. Г.Галилей теоретически подтвердил закон Архимеда. Позже, в 1643 г., Э.Торричелли установил закон истечения жидкости из отверстия. Б. Паскаль в 1650 г. сформулировал закон о передаче жидкостью давления, а в 1687 г. И. Ньютон выдвинул гипотезу о наличии внутреннего трения в движущейся жидкости и дал понятие вязкости жидкости.

Дальнейшее развитие гидравлики связано с именами М. В.Ломоносова, Д.Бернулли и Л.Эйлера, установивших основные законы гидродинамики.

Гидравлика как прикладная инженерная наука необходима для расчетов при проектировании сети и сооружений систем водоснабжения, канализации, водоотведения, осушения и орошения, гидротехнических сооружений, мостов, для расчета транспортирования строительных растворов по трубам, конструирования насосов, компрессоров и т. п.

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным – все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости – несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.

Плотность – это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м 3 ). Плотность воды составляет 1000 кг/м 3 .

Давление – это отношение силы, действующей на площадку в нормальном к ней направлении, к площади площадки:

Давление в системе СИ измеряется единицей паскаль (Па). Давление в 1 Па равно силе в 1 Н, действующей на площадь в 1 м 2 :

Используются также укрупненные показатели:

• килопаскаль – 1 кПа 10 3 Па;

• мегапаскаль – 1 МПа = 10 6 Па.

Сжимаемость жидкости – это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 °С.

В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается.
При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости – ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.


.

Если жидкость неоднородна в объеме V, то эта формула позволяет вычислить лишь среднее значение плотности, а истинная плотность в какой-либо точке может быть определена как


.

Значения плотностей жидкостей возрастают при повышении давления. Например, плотность воды при температуре 0°С изменяется с ростом давления (от 0,1 до 400 МПа) от 999 до 1146 кг/м3. С ростом температуры плотность жидкостей снижается. Исключением из этого правила является только вода в диапазоне температур от 0 до 4°С: ее плотность возрастает и достигает своего максимума (1000 кг/м3) при t = 3,98°С. При дальнейшем нагреве ее плотность снижается как и у других жидкостей. Именно по этой причине температура воды на дне глубоких водоемов зимой всегда 4°С. При остывании воды до 4°С циркуляция воды в водоеме прекращается, что препятствует промерзанию его до дна.

Значения плотностей некоторых широко распространенных жидкостей при нормальных условиях (t = 20°С, p = 0,1 МПа):

* ртуть – 13 546 кг/м3;

* нефть натуральная – 760 – 900 кг/м3;

* масла минеральные – 850 – 930 кг/м3;

* бензин – 712 – 780 кг/м3.

Удельный объем. Удельный объем – это объем жидкости единичной массы, то есть величина, обратная плотности:


.

Так уж сложилось исторически, что эта характеристика редко используется для капельных жидкостей, но очень широко применяется для газов.

Удельный вес. Удельный вес – это вес жидкости единичного объема:

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.


.

Относительная плотность. Относительная плотность – это отношение плотности жидкости к плотности дистиллированной воды при 4°С:


.

Так как rводы+4 = 1000 кг/м3, то вычислять относительные плотности очень просто.

Все указанные характеристики жидкостей практически характеризуют одно и то же свойство.

Плотность жидкости можно вычислить по вышеприведенным формулам, а можно и измерить специальным прибором, называемым ареометром. Этот прибор похож на поплавок для рыбалки. Глубина его погружения зависит от плотности жидкости.

Сжимаемость. Сжимаемость – это свойство жидкости изменять свой объем под действием давления. Сжимаемость характеризуется двумя величинами: коэффициентом объемного сжатия bp и объемным модулем упругости K.

Коэффициент объемного сжатия – это относительное изменение объема жидкости, приходящееся на единицу давления


.


Знак “минус” в этом выражении введен для того, чтобы этот коэффициент имел положительные значения, так как производная всегда отрицательная.


Если принять, что , то можно приближенно рассчитать объем и плотность жидкости при изменении давления:


где V0, r0 – объем и плотность жидкости при давлении p0;

Dp = p – p0 – изменение давления.

Величина, обратная коэффициенту объемного сжатия, называется объемным модулем упругости



то есть изменение объема жидкости при столь существенном изменении давления составило 0,67%. По этой причине в гидравлике очень часто жидкость считают несжимаемой.

Температурное расширение. Температурное расширение – это свойство жидкости изменять свой объем при изменении температуры. Характеризуется коэффициентом температурного расширения bT , который представляет собой относительное изменение объема, приходящееся на 1 градус:


Для воды коэффициент при увеличении температуры возрастает (при p = 0,1 МПа и изменении температуры от 0 до 100°С приблизительно от – 0,000025 до +0,000720). Рост давления при низких температурах приводит к увеличению , а при температурах выше 50°С – к его снижению. Для большинства других капельных жидкостей с ростом давления уменьшается.

В конечной форме при bT = const (при малом изменении температуры)

; ,

где DT = T – T0 – изменение температуры жидкости.

Изменение объема при нагревании жидкостей весьма ощутимо, поэтому его необходимо учитывать при проектировании гидравлических устройств, в которых жидкость существенно нагревается.

Капиллярность. На поверхности раздела жидкости и газа действуют силы поверхностного натяжения, которые стремятся придать объему жидкости сферическую форму, но сила тяжести не позволяет сделать это, если жидкость находится в значительном объеме. Это явление заметно только, когда жидкость рассматривается в объеме капли или находится в тонком капилляре или зазоре. Силы поверхностного натяжения создают в жидкости дополнительное давление


,

где s – коэффициент поверхностного натяжения жидкости ;

r1, r2 – радиусы кривизны.

В капиллярах и зазорах это давление вызывает подъем или опускание жидкости относительно нормального уровня. Это явление называется капиллярностью. Дополнительное давление направлено всегда к центру кривизны мениска. Если жидкость не смачивает поверхность капилляра, то мениск имеет выпуклую форму, и давление от сил поверхностного натяжения совпадает по направлению с атмосферным давлением – уровень жидкости в капилляре снижается. Если жидкость смачивает поверхность капилляра, то мениск имеет вогнутую форму, и дополнительное давление будет направлено вверх, навстречу атмосферному давлению. Как следствие этого – подъем жидкости по капилляру. Высота подъема (опускания) жидкости в стеклянной трубке вычисляется по формуле:


,

где d – диаметр капилляра ;

k – коэффициент, индивидуальный для каждой жидкости .

Например, для воды k = 30 мм2; для спирта k = 11,5 мм2; для ртути k = –10,1 мм2.

В жидкостных приборах для измерения давления применяют трубки диаметром 10 – 12 мм. В этом случае эффект капиллярности мало ощутим. В зазоре один из радиусов кривизны стремится к бесконечности, поэтому и дополнительное давление, и высота отклонения уровня получаются в 2 раза меньше, чем в капилляре.

Вязкость. Вязкость – это свойство жидкости сопротивляться сдвигу ее слоев. При течении жидкости вдоль твердой стенки слои жидкости, прилегающие к ней, тормозятся силами трения между слоями, то есть из-за вязкости (Рис. 1).


Согласно гипотезе Ньютона, подтвержденной экспериментально Н.П. Петровым, касательные напряжения при слоистом течении:


,


где – модуль поперечного градиента скорости ,;

Рис. 1. Профиль скоростей при m – коэффициент динамической

течении вязкой жидкости вдоль вязкости .


Из закона вязкого трения Ньютона следует, что касательные напряжения возможны только в движущейся жидкости. Если имеется градиент скорости еще и в направлении, нормальном плоскости рисунка, то следует записывать в формуле частную производную .

Кроме Па×с используют такую единицу измерения, как Пуаз: 1П = 0,1 Па×с.

Кроме коэффициента динамической вязкости, в технике широко используют коэффициент кинематической вязкости:


.

В старой литературе можно встретить такие единицы измерения, как стоксы: 1 Ст = 1 см2/с = 10-4 м2/с.

Иногда в названиях m и n слово “коэффициент” для краткости опускают, хотя, в принципе, этого делать не следует.

С ростом температуры вязкость капельных жидкостей очень сильно падает (по экспоненте), а газов – растет по линейному закону. Например, при нагревании пресной воды от 0 до 100°С коэффициент кинематической вязкости падает от 1,79×10-6 до 0,29×10-6 м2/с, то есть 6 с лишним раз. В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз. При отрицательных температурах вязкость масел резко возрастает.

Измеряют вязкость специальными приборами, называемыми вискозиметрами. Принцип действия этих приборов состоит в сравнении времени истечения заданного количества испытуемой и эталонной жидкостей через капилляр.

Следует сказать, что существуют жидкости, которые не подчиняются закону вязкого трения Ньютона. В качестве примеров можно назвать глинистые, цементные, известковые и коллоидные растворы, нефтепродукты и смазочные масла при температурах, близких к температуре застывания, краски, клеи, смолы, различные белки, жиры, суспензии крахмала, желатина и т.п. Это так называемые неньютоновские или аномальные жидкости. Для неньютоновских жидкостей зависимость касательных напряжений от поперечного градиента скорости может иметь один из следующих видов:

; .

Испаряемость. Испаряемость присуща всем жидкостям, но в различной степени, причем она сильно зависит от условий, в которых находится жидкость. Одной из характеристик испаряемости является температура кипения при нормальном атмосферном давлении. Но атмосферное давление – это лишь частный случай давления в гидросистеме, поэтому более полной характеристикой испаряемости является давление (упругость) насыщенных паров pн.п.. Чем выше pн.п, тем более летучая жидкость. С ростом температуры оно возрастает, но для разных жидкостей в различной степени. Поэтому даже сухой воздух в квартире зимой при контакте с предметом, занесенным с мороза, при остывании становится влажным, и из него конденсируются капельки воды. Это хорошо знают люди, носящие очки. Образование конденсата можно наблюдать на поверхности труб, по которым подается холодная вода, на оконных стеклах и т.п.

Для многокомпонентных жидкостей (смесей) давление насыщенных паров зависит еще и от соотношения объемов паровой и жидкой фаз. Для них давление насыщенных паров тем больше, чем большая доля объема занята жидкостью. В справочниках для них приводятся значения pн.п. при соотношении объемов паровой и жидкой фаз 4:1.

Растворимость газов в жидкостях. Растворимость газов в жидкостях характеризуется количеством растворенного газа в единице объема жидкости. Эта величина увеличивается с ростом давления и различна для различных жидкостей.

Относительный объем растворенного газа можно подсчитать по закону Генри:


где – объем растворенного газа, приведенный к нормальным условиям (p0,T0);

k – коэффициент растворимости;

p – давление жидкости.


Например, при t = 20° C имеет следующие значения:

При увеличении плотности и вязкости минерального масла растворимость газов немного снижается. С увеличением температуры коэффициент растворимости почти не меняется, но учитывать это малое влияние надо, когда жидкость работает в широком температурном диапазоне: насыщенная газом жидкость при одной температуре может начать выделять растворенный газ при другой температуре, что приведет к образованию пены, которая нарушает сплошность среды и может вызвать отказ привода.

В обычном состоянии минеральное масло насыщается воздухом в течение нескольких часов, но если масло взбалтывается в баке, образуется пена. Площадь соприкосновения жидкости и воздуха возрастает во много раз. Это может вызвать насыщение жидкости газом в течение нескольких минут.

При уменьшении давления газы из насыщенной жидкости начинают выделяться, причем делают это значительно быстрее, чем растворяются в ней. Выделиться газ может в считанные секунды или даже доли секунды.

Жидкость - физическое тело, которое обладает свойством текучести, т. е. не имеющее способности самостоятельно сохранять свою форму.Текучесть жидкости обусловлена подвижностью молекул, составляющих жидкость.

Жидкостью называется агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость характеризуется следующими свойствами: 1) сохраняет объем; 2) образует поверхность; 3) обладает прочностью на разрыв; 4) принимает форму сосуда; 5) обладает текучестью. Свойства жидкости с 1) по 3) подобны свойствам твёрдых тел, а свойство 4) - свойству жидкости.

Жидкости, законы движения и равновесия которых изучаются в гидравлике (механике жидкости и жидкости), делятся на два класса: сжимаемые жидкости или газы, почти несжимаемые - капельные жидкости.

В гидравлике рассматриваются как идеальные, так и реальные жидкости.

Идеальная жидкость - жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого такая жидкость не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается, она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует - это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.

Реальная жидкость - жидкость, которая не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям, а также отчасти сжимается. Для решения многих задач гидравлики этим отличием в свойствах идеальной и реальной жидкостей можно пренебречь. В связи с этим физические законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками.

Ниже кратко представлены общие сведения, касающиеся физических свойств жидкостей. Ссылки на страницы с конкретными физическими свойствами разных жидкостей находятся в здесь. Эти разделы будут постепенно пополняться новой информацией, которая, возможно, окажется полезной инженерам и конструкторам при выполнении расчётов.

Плотность жидкости

Килограмм на кубический метр [кг/м 3 ] равен плотности однородного газообразного вещества, масса которого при объёме 1 м 3 равна 1 кг.

dm - масса элемента жидкости, объёмом dV;

dV - объём элемента жидкости.

Динамическая вязкость жидкости

F - сила внутреннего трения жидкости.

ΔS - площадь поверхности слоя жидкости, на которую рассчитывается сила внутреннего трения.

- величина, обратная градиенту скорости жидкости.

Паскаль-секунда [Па • с] равна динамической вязкости жидкости, касательное напряжение в которой при ламинарном течении на расстоянии 1 м по нормали к направлению скорости, равно 1 Па.

Поверхностное натяжение жидкости

dF - сила, действующая на участо контура свободной поверхности нормально к контуру и по касательной к поверхности к длине dl этого участка.

dl - длина участка поверхности жидкости.

Ньютон на метр [Н/м] равен поверхностному натяжению жидкости, создаваемому силой 1 Н, действующей на участок контура свободной поверхности длиной 1 м нормально к контуру и по касательной к поверхности.

Кинематическая вязкость жидкости

μ - динамическая вязкость жидкости;

ρ - плотность жидкости;

Квадратный метр на секунду [м 2 /с] равен кинематической вязкости жидкости с динамической вязкостью 1 Па с и плотностью 1 кг/м 3 .

Коэффициент теплопроводности жидкости

S - площадь поверхности;

Q - количество теплоты [Дж], перенесённое за время t через поверхность площадью S.

- величина, обратная градиенту температуры жидкости.

Ватт на метр-Кельвин [Вт/(м • К)] равен коэффициенту теплопроводности жидкости, в котором при стационарном режиме с поверхностной плотностью теплового потока 1 Вт/м 2 устанавливается температурный градиент 1 К/м.

Теплоемкость жидкости

dQ - количество теплоты, необходимое для нагревания жидкости;

dT - разность температуры.

Джоуль на Кельвин [Дж/К] равен теплоемкости жидкости, температура которого повышается на 1 К при подведении к нему количества теплоты 1 Дж.

Удельная массовая теплоемкость жидкости при постоянном давлении

Джоуль на килограмм-Кельвин [Дж/(кг • К)] равен удельной теплоемкости жидкости, имеющего при массе 1 кг теплоемкость 1 Дж/К.

Температуропроводность жидкости

λ - теплопроводность жидкости;

Cp - удельная массовая теплоемкость жидкости.

ρ - плотность жидкости.

Квадратный метр на секунду [м 2 /с] равен температуропроводности жидкости с коэффициентом теплопроводности 1 Вт/(м • К), удельной теплоемкостью при постоянном давлении 1 [Дж/(кг • К) и плотностью 1 кг/м 3 .

Если рассмотреть произвольный объем жидкости W, то он имеет массу M.

Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна


где M – масса жидкости.

Если требуется узнать r в каждой точке А объема W, то


где D – элементарность рассматриваемых характеристик в точке А.

Сжимаемость.

Характеризуется коэффициентом объемного сжатия.


Из формулы видно, что речь идет о способности жидкостей уменьшать объем при единичном изменении давления: из-за уменьшения присутствует знак минус.

Температурное расширение.



Отношение динамической вязкости к плотности жидкости называется кинематической вязкостью.

Поверхностное натяжение: из-за этого свойства жидкость стремится занимать наименьший объем, например, капли в шарообразных формах.

В заключение приведем краткий список свойств жидкостей, которые рассмотрены выше.

4. Объемное сжатие.

6. Температурное расширение.

7. Сопротивление растяжению.

8. Свойство растворять газы.

9. Поверхностное натяжение.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Повышенный расход охлаждающей жидкости

Повышенный расход охлаждающей жидкости Неисправности системы охлаждения Повреждение радиатора. Проверить герметичность радиатора. Мелкие дефекты радиатора устранить пайкой. При сильных повреждениях радиатор заменить.Повреждение шлангов или прокладок в соединениях.

3. Силы, действующие в жидкости

3. Силы, действующие в жидкости Жидкости делятся на покоящиеся и движущиеся.Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.Сами эти силы можно разделить на две группы.1. Силы массовые. По-другому эти силы называют силами, распределенными по

14. Методы определения движения жидкости

14. Методы определения движения жидкости Гидростатика изучает жидкость в ее равновесном состоянии.Кинематика жидкости изучает жидкость в движении, не рассматривая сил, порождавших или сопровождавших это движение.Гидродинамика также изучает движение жидкости, но в

15. Основные понятия, используемые в кинематике жидкости

15. Основные понятия, используемые в кинематике жидкости Сутью вышеупомянутого поля скоростей являются векторные линии, которые часто называют линиями тока.Линия тока – такая кривая линия, для любой точки которой в выбранный момент времени вектор местной скорости

19. Уравнение неразрывности жидкости

19. Уравнение неразрывности жидкости Довольно часто при решении задач приходится определять неизвестные функции типа:1) р = р (х, у, z, t) – давление;2) nx(х, у, z, t), ny(х, у, z, t), nz(х, у, z, t) – проекции скорости на оси координат х, у, z;3) ? (х, у, z, t) – плотность жидкости.Эти неизвестные,

20. Характеристики потока жидкости

20. Характеристики потока жидкости В гидравлике потоком считают такое движение массы, когда эта масса ограничена:1) твердыми поверхностями;2) поверхностями, которые разделяют разные жидкости;3) свободными поверхностями.В зависимости от того, какого рода поверхностями

31. Уравнения движения вязкой жидкости

31. Уравнения движения вязкой жидкости Для получения уравнения движения вязкой жидкости рассмотрим такой же объем жидкости dV = dxdydz, который принадлежит вязкой жидкости (рис. 1).Грани этого объема обозначим как 1, 2, 3, 4, 5, 6. Рис. 1. Силы, действующие на элементарный объем

32. Деформация в движущейся вязкой жидкости

32. Деформация в движущейся вязкой жидкости В вязкой жидкости имеются силы трения, в силу этого при движении один слой тормозит другой. В итоге возникает сжатие, деформация жидкости. Из-за этого свойства жидкость и называют вязкой.Если вспомнить из механики закон Гука, то

27. Основные свойства газовых смесей

27. Основные свойства газовых смесей Множество нескольких различных газов, между которыми невозможно осуществить химическое взаимодействие, называют смесью идеальных газов. Давление рассчитывается по формуле:Pi = NikT/ V,где i= 1, 2, r, называется парциальным,r– число газов в

4.1. Основные механические свойства материалов

4.1. Основные механические свойства материалов Изготовление ювелирных изделий – процесс многоступенчатый и начинается всегда с литья, т. е. получения сплава в жидком состоянии, заливки его в форму, кристаллизации. В отдельных случаях сплав используют в виде

О добавлении охлаждающей жидкости

О добавлении охлаждающей жидкости Если при значительном охлаждении автомобиля (-30 °C) уровень ОЖ в расширительном бачке существенно понизится, то не торопитесь доливать. Включите УОПД, запустите мотор, прогрейте его, зарядите ТА. Если после этого уровень ОЖ будет

§ 5.ОСНОВНЫЕ свойства танков.

§ 5.ОСНОВНЫЕ свойства танков. Основным свойством танка является его способность двигаться по местности. Это достигается гусеничным ходом и определяет тактические свойства танка в отличие от свойств бронированного автомобиля, который может двигаться лишь по дорогам.

Охлаждающие жидкости и основные требования к ним

Охлаждающие жидкости и основные требования к ним Большой недостаток воды как охлаждающей жидкости в системах охлаждения автомобильных двигателей – высокая температура замерзания, что делает ее непригодной для применения в зимнее время. Еще один недостаток – наличие

6.1.3. Рабочие и специальные жидкости

6.1.3. Рабочие и специальные жидкости В зависимости от назначения и свойств жидкости делятся на охлаждающие, тормозные, амортизационные и пусковые.Гидравлические масла работают при больших перепадах температур (от —40 до +80 °C), давлениях 10–15 МПа, скоростях скольжения до

Читайте также: