Организация функционирования эвм с магистральной архитектурой кратко

Обновлено: 05.07.2024

Современные ЭВМ могут иметь различную архитектуру, но обязательно содержат в своей структуре следующие элементы (Арифметико-логическое устройство (АЛУ), выполняющее арифметические и логические операции. Устройство управления (УУ), которое организует процесс выполнения программ. Запоминающее устройство (память) для хранения программ и данных. Внешние устройства для ввода–вывода информации (ВУ).) и используют основной принцип функционирования ЭВМ – принцип программируемости, дополненный новыми принципами, к которым можно отнести принципы модульности, магистральности и микропрограммируемости.

Модульность – это способ построения компьютера на основе набора модулей. Модулем называется конструктивно и функционально законченный электронный блок в стандартном исполнении. Это означает, что с помощью модуля может быть реализована какая-то функция либо самостоятельно, либо совместно с другими модулями.

Магистральность – это способ соединения между различными модулями компьютера, когда входные и выходные устройства модулей соединяются одними и теми же проводами, совокупность которых называется шиной. Магистраль компьютера состоит из нескольких групп шин, разделяемых по функциональному признаку — шина адреса, шина данных, шина управления.

Децентрализация управления предполагает иерархическую организацию структуры ЭВМ. Централизованное управление осуществляет устройство управления главного, или центрального, процессора. Подключаемые к центральному процессору модули (контроллеры и КВВ) могут, в свою очередь, использовать специальные шины или магистрали для обмена управляющими сигналами, адресами и данными. Инициализация работы модулей обеспечивается по командам центральных устройств, после чего они продолжают работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими “вверх по иерархии” для правильной координации всех работ.

Иерархический принцип построения и управления характерен не только для структуры ЭВМ в целом, но и для отдельных ее подсистем.

Использование рассмотренных принципов и объединение в одном устройстве, названом центральный процессор (ЦП), АЛУ и УУ, привели к видоизмененной структуре современной ЭВМ, изображенной на рис. 1.

Наиболее распространенной является структура вычислительной системы (ВС), имеющая две или три (в большинстве случаев) общих магистрали (шины), к которым под воздействием устройств управления могут поочередно подключаться, входящие в систему узлы (см. рис. 2).

В приведенной на рис. 2. схеме, обработку информации осуществляет ЦП, синхронизируемый тактовыми импульсами устройства синхронизации. Обмен информацией между МП и остальными блоками ВС осуществляется по трем магистралям (шинам): адресной, данных и управляющей. Магистраль адреса (МА, ША) служит для передачи кода адреса, по которому производится обращение к устройствам памяти ввода-вывода и прочим внешним устройствам. Обрабатываемая информация и результаты вычислений передаются по магистрали данных (МД, ШД). Магистраль управления (МУ) передает управляющие сигналы на все блоки ВС, настраивая устройства, участвующие в выполняемой команде, на нужный режим работы.

Использование в ВС трех магистралей обеспечивает высокое быстродействие и упрощает процесс вычисления. Возможно построение ВС с одной или двумя магистралями, по которым последовательно передаются код адреса и обрабатываемая информация, но при этом значительно возрастает время выполнения команды и усложняется организация обмена информацией между узлами.

1.ЭВМ представляет собой совокупность устройств выполненных на больших интегральных схемах каждая из которых имеет своё функциональное назначение. Комплект интегральных схем из которых состоит ЭВМ называется микропроцессорном комплектом. В состав микропроцессорных компонентов входят: системный таймер, микропроцессор, сопроцессоры, контролёр прерываний, контролёр прямого доступа к памяти. Контролёры устройств ввода/вывода.

2.В центральных устройствах основным узлом связывающий микропроцессорный комплект в единое целое является системная магистраль. Она состоит из 3 узлов: шина данных, шина управления, шина адреса. В состав системной магистрали входят регистры защёлки, в которых запоминается передаваемая информация, шинные формирователи, шинные арбитры определяющие поочерёдность системной магистрали. Логика работы системной магистрали – количество разрядов в шинах данных адреса и управления порядок разрешения конфликтных систуаций возникающих при одновременном обращении различных устройств ЭВМ системной магистрали образуют интерфейс системной шины. Состав центральных устройств ЭВМ входят: центральный процессор, основная память и ряд дополнительных устройств (узлов), выполняющих служебные функции: контролёр прерываний, таймер, и контролёр прямого доступа к памяти. Периферийные устройства делятся на два вида: внешние запоминающие устройства (магнитные диски, носители на магнитных дисках), устройство ввода/вывода (клавиатура, адаптор каналов связи, принтер и др.).

Взаимодействие микропроцессора с внешними устройствами предусматривает выполнение логической последовательности действий, связанных с поисками устройств, определения его технического состояния обмена командами и информацией. Это логическая последовательность действий вместе с устройствами реализующими её называется интерфейсом ввода/вывода.

Организация работы ЭВМ при выполнении задания пользователя.

Организация процессов ввода, преобразования и вывода (отображения) результатов относится к сфере системного программного обеспечения. Написанное задание (программы представляет собой исходный модуль сопровождаемый управляющими предложениями, указывающие ОС ЭВМ на каком языке написана программа, и что с неё надо делать. Если программа написана на алгоритмическом языке, то управляющие предложения на языке управления ОС.

Исходный модуль пред исполнением должен быть переведён на внутренний язык машины. Эта операция выполняется специальной программой транслятором. Трансляторы выполняются в виде 2 различных программ – интерпретаторы и компиляторы. Интерпретатор после перевода на язык машины каждого оператора алгоритмического языка немедленно исполняет поученную машинную программу представленную ему в виде исходного модуля (ИМ) на язык машины. Получаемая при этом машинная программа представляет собой объективный модуль (ОМ) результат работы компилятора может быть записан в библиотеку объёктных модулей (БОМ) или передан другим программам для дальнейшей обработке т.к. полученная машинная программа не готова к исполнению по двум причинам:

I. Она содержит не разрешённые внешние ссылки т.е. (обращение к программам, которые не содержатся в исходном модуле, но необходимы для работы основной программы) Например к стандартным программам алгоритмического языка таким как, вычисление корня квадратичного, вычисление тригонометрических функций и др.

II. Объектный модуль представляет собой машинную программу в условных адресах. Каждый объектный модуль начинается с адреса (0h), тогда, как для исполнения программа должна быть привязана к конкретным физическим адресам основной памяти.

Недостающие программы должны быть взяты из библиотек компилятора, которые могут быть написаны в виде исходных, либо в виде объектных модулей и добавлены к основной программе. Эту операцию выполняют редактор связей в результате работы редактора связей образуется загрузочный модуль (ЗМ), который помещает в соответствующую библиотеку ЗМ. В ЗМ все ссылки разрешены т.е. он содержит все необходимые стандартные программы, но привязки к памяти у ЗМ нет.




Привязка к памяти загрузочного модуля производится программой выборки, которая переносит ЗМ из БЗМ (обычно хранящейся на магнитном носителе) в основную память во время этого переноса корректирует адреса учитывая с какого адрес основной памяти размещается загрузочный модуль. После перемещения ЗМ в основную память программе выборки инициирует её выполнение. Представление машинной программы в виде исходных, объектных и загрузочных модулей позволяет реализовать наиболее эффективные программные комплексы.

Виртуальная память

Имея иерархическую структуру запоминающих устройств на реальном объёме памяти значительно меньше максимального. Можно имитировать работу с максимальной памятью. В этом случае программист работает так, как будто ему предоставляется реальная память максимального объёма для данной ЭВМ, хотя имеющаяся реальная память значительно меньше по объёму. Такой режим работы называется режимом виртуальной памяти. Теоретически доступная пользователь оперативная память, объём которой определяется только разрядностью адресной части команды и которая не существует в действительности – называется виртуальной памятью. Виртуальная память имеет сегментно-стороничную организацию и реализована в иерархической системе памяти ЭВМ. Часть её размещается в страничных блоках основной памяти, а часть в ячейках внешней страничной памяти. Внешняя страничная память является частью внешней памяти.

Ячейка (слод) – это записываемая область во внешней страничной памяти. Например на жёстком магнитном диске. Она того же размера, что и страница. Вычислительная система с 24-х разрядным адресом может иметь адресеное пространство 16777216 байт. С 23-х разрядным адресом – 4 Гб. Все программные страницы физически располагаются в ячейках внешней страничной памяти. Виртуальная память существует только, как продукт деятельности ОС функционирующей на основе совместного использования внешней и страничной памяти. Загрузить программу в виртуальную память, значит переписать несколько программных страниц из внешней страничной памяти в основную память. Если в процессе выполнения программы система обнаружит, что требуемой странице нет в реальной памяти она должна переслать копию этой страницы из внешней страничной памяти в реальную память – этот метод называется принудительным страничным обменом.

1.ЭВМ как совокупность устройств.

2.Разделение устройств ЭВМ.

4.Однопрограммный режим работы.

5.Многопрограммный режим работы.

1.ЭВМ представляет собой совокупность устройств выполненных на больших интегральных схемах каждая из которых имеет своё функциональное назначение. Комплект интегральных схем из которых состоит ЭВМ называется микропроцессорном комплектом. В состав микропроцессорных компонентов входят: системный таймер, микропроцессор, сопроцессоры, контролёр прерываний, контролёр прямого доступа к памяти. Контролёры устройств ввода/вывода.

2.В центральных устройствах основным узлом связывающий микропроцессорный комплект в единое целое является системная магистраль. Она состоит из 3 узлов: шина данных, шина управления, шина адреса. В состав системной магистрали входят регистры защёлки, в которых запоминается передаваемая информация, шинные формирователи, шинные арбитры определяющие поочерёдность системной магистрали. Логика работы системной магистрали – количество разрядов в шинах данных адреса и управления порядок разрешения конфликтных систуаций возникающих при одновременном обращении различных устройств ЭВМ системной магистрали образуют интерфейс системной шины. Состав центральных устройств ЭВМ входят: центральный процессор, основная память и ряд дополнительных устройств (узлов), выполняющих служебные функции: контролёр прерываний, таймер, и контролёр прямого доступа к памяти. Периферийные устройства делятся на два вида: внешние запоминающие устройства (магнитные диски, носители на магнитных дисках), устройство ввода/вывода (клавиатура, адаптор каналов связи, принтер и др.).

Взаимодействие микропроцессора с внешними устройствами предусматривает выполнение логической последовательности действий, связанных с поисками устройств, определения его технического состояния обмена командами и информацией. Это логическая последовательность действий вместе с устройствами реализующими её называется интерфейсом ввода/вывода.

Организация работы ЭВМ при выполнении задания пользователя.

Организация процессов ввода, преобразования и вывода (отображения) результатов относится к сфере системного программного обеспечения. Написанное задание (программы представляет собой исходный модуль сопровождаемый управляющими предложениями, указывающие ОС ЭВМ на каком языке написана программа, и что с неё надо делать. Если программа написана на алгоритмическом языке, то управляющие предложения на языке управления ОС.

Исходный модуль пред исполнением должен быть переведён на внутренний язык машины. Эта операция выполняется специальной программой транслятором. Трансляторы выполняются в виде 2 различных программ – интерпретаторы и компиляторы. Интерпретатор после перевода на язык машины каждого оператора алгоритмического языка немедленно исполняет поученную машинную программу представленную ему в виде исходного модуля (ИМ) на язык машины. Получаемая при этом машинная программа представляет собой объективный модуль (ОМ) результат работы компилятора может быть записан в библиотеку объёктных модулей (БОМ) или передан другим программам для дальнейшей обработке т.к. полученная машинная программа не готова к исполнению по двум причинам:

I. Она содержит не разрешённые внешние ссылки т.е. (обращение к программам, которые не содержатся в исходном модуле, но необходимы для работы основной программы) Например к стандартным программам алгоритмического языка таким как, вычисление корня квадратичного, вычисление тригонометрических функций и др.

II. Объектный модуль представляет собой машинную программу в условных адресах. Каждый объектный модуль начинается с адреса (0h), тогда, как для исполнения программа должна быть привязана к конкретным физическим адресам основной памяти.

Недостающие программы должны быть взяты из библиотек компилятора, которые могут быть написаны в виде исходных, либо в виде объектных модулей и добавлены к основной программе. Эту операцию выполняют редактор связей в результате работы редактора связей образуется загрузочный модуль (ЗМ), который помещает в соответствующую библиотеку ЗМ. В ЗМ все ссылки разрешены т.е. он содержит все необходимые стандартные программы, но привязки к памяти у ЗМ нет.

Привязка к памяти загрузочного модуля производится программой выборки, которая переносит ЗМ из БЗМ (обычно хранящейся на магнитном носителе) в основную память во время этого переноса корректирует адреса учитывая с какого адрес основной памяти размещается загрузочный модуль. После перемещения ЗМ в основную память программе выборки инициирует её выполнение. Представление машинной программы в виде исходных, объектных и загрузочных модулей позволяет реализовать наиболее эффективные программные комплексы.

Виртуальная память

Имея иерархическую структуру запоминающих устройств на реальном объёме памяти значительно меньше максимального. Можно имитировать работу с максимальной памятью. В этом случае программист работает так, как будто ему предоставляется реальная память максимального объёма для данной ЭВМ, хотя имеющаяся реальная память значительно меньше по объёму. Такой режим работы называется режимом виртуальной памяти. Теоретически доступная пользователь оперативная память, объём которой определяется только разрядностью адресной части команды и которая не существует в действительности – называется виртуальной памятью. Виртуальная память имеет сегментно-стороничную организацию и реализована в иерархической системе памяти ЭВМ. Часть её размещается в страничных блоках основной памяти, а часть в ячейках внешней страничной памяти. Внешняя страничная память является частью внешней памяти.

Ячейка (слод) – это записываемая область во внешней страничной памяти. Например на жёстком магнитном диске. Она того же размера, что и страница. Вычислительная система с 24-х разрядным адресом может иметь адресеное пространство 16777216 байт. С 23-х разрядным адресом – 4 Гб. Все программные страницы физически располагаются в ячейках внешней страничной памяти. Виртуальная память существует только, как продукт деятельности ОС функционирующей на основе совместного использования внешней и страничной памяти. Загрузить программу в виртуальную память, значит переписать несколько программных страниц из внешней страничной памяти в основную память. Если в процессе выполнения программы система обнаружит, что требуемой странице нет в реальной памяти она должна переслать копию этой страницы из внешней страничной памяти в реальную память – этот метод называется принудительным страничным обменом.

Презентация на тему: " 1 Архитектура ИС Лекция 3 ФУНКЦИОНИРОВАНИЕ ЭВМ. 2 Организация функционирования ЭВМ с магистральной архитектурой Комплект интегральных схем, из которых." — Транскрипт:

1 1 Архитектура ИС Лекция 3 ФУНКЦИОНИРОВАНИЕ ЭВМ

2 2 Организация функционирования ЭВМ с магистральной архитектурой Комплект интегральных схем, из которых состоит ЭВМ, называется микропроцессорным комплектом (МК) В состав МК входят: системный таймер, микропроцессор (МП), сопроцессоры, контроллер прерываний, контроллер прямого доступа к памяти (ПДП), контроллеры устройств ввода-вывода и др.

3 3 Организация функционирования ЭВМ с магистральной архитектурой Все устройства ЭВМ делятся на центральные и периферийные. Центральные устройства полностью электронные, периферийные могут быть либо электронными, либо электромеханическими с электронным правлением.

4 4 Организация функционирования ЭВМ с магистральной архитектурой В центральных устройствах основным узлом, связывающим микропроцессорный комплект в единое целое, является системная магистраль. Она состоит из трех узлов, называемых шинами: 1)шина данных (ШД) 2)шина адресов (ША) 3)шина управления (ШУ).

6 6 Структура ЭВМ минимальной конфигурации i8086 Память ВидеоRS-232 Параллельный порт Сопроцессор ТаймерКлавиатураДиски

7 7 Структура ЭВМ минимальной конфигурации Па/ПеПамять/ПериферияРазличает обращение к памяти или периферии Сч/ЗпСчитывание/ЗаписьОперации считывания или записи информации ЗпШЗапрос ШиныЗапрос на захват шины другим ведущим РзШРазрешение ШиныРазрешение на захват шины другим ведущим ШУ содержит четыре линии

8 8 Структура ЭВМ минимальной конфигурации Системные сигналы СбросВнешний сигнал, осуществляющий начальный сброс системы, этот сигнал формируется при включении системы ГотовСигнал, получаемый от периферийных устройств о том, что в следующем такте шины данные будут восприняты или выданы устройством, служит признаком завершения шины в следующем такте

9 9 Структура ЭВМ минимальной конфигурации Для управления ШД используются следующие сигналы ГШГотовность ШиныСигнал, показывающий готовность к выдаче или приему данных Пр/ПеПрием/ПередачаПоказывает периферийным устройствам должны они передавать или принимать данные

10 10 Структура ЭВМ минимальной конфигурации Для управления ША используются следующие сигналы НЦШНачальный Цикл ШиныСигнал, показывающий наличие адреса на ША Б/СБайт/СловоПризнак размера передаваемых данных Сигнал INTR - запрос на разрешения прерывания. Сигнал INTA - подтверждение запроса. После получения INTA ПКП выставляет на ШД вектор прерывания, устройства сделавшего запрос.

11 11 Цикл работы и стандарты системной шины СШ синхронизирована сигналами тактового генератора процессора. Цикл шины состоит из нескольких тактов: четырёх обязательных тактов (Т1 - Т4) и бесконечного числа тактов ожидания (Т0). Когда процессор готов инициировать цикл шины, он в такте Т1 выдаёт сигнал НЦШ и сигналы, определяющие вид информации (Б/С), адресат (Па/Пе), вид данных (Б/С), режимы (Сч/Зп) и (Пр/Пе) и выставляет на выводы адреса адрес порта периферийного устройства или ячейки памяти.

12 12 Цикл работы и стандарты системной шины В конце такта регистры защёлки фиксируют адрес и он снимается с контактов адреса ЦП. Во втором такте устанавливается сигнал ГШ, разрешающая работу формирователей. В третьем такте, если периферийные устройства или память могут принять/передать информацию, то данные помещаются на шину. Если к моменту Т3 ЦП не получил от устройства сигнал Готов, он вводит между тактами Т3 и Т4 такты ожидания Т0 до получения сигнала Готов. В начале четвёртого такта данные принимаются/передаются ЦП, снимаются сигналы ГШ и Пр/Пе и цикл СШ заканчивается.

13 13 Структура микропроцессора i8086/8088

14 14 АРХИТЕКТУРА ЦЕНТРАЛЬНОГО ПРОЦЕССОРА

15 15 АРХИТЕКТУРА ЦЕНТРАЛЬНОГО ПРОЦЕССОРА Внутри микропроцессора информация содержится в группе 16-битовых элементов, называемых регистрами. Всего он имеет 14 регистров: 12 регистров данных и адресов и в дополнение к ним указатель команд (регистр адреса команд) и регистр состояния (регистр флагов). Можно подразделить 12 регистров данных и адресов на три группы по четыре регистра, а именно на регистры данных, регистры указателей и индексов и регистры сегментов.

16 16 АРХИТЕКТУРА ЦЕНТРАЛЬНОГО ПРОЦЕССОРА

18 18 Регистры данных Регистр АХ, аккумулятор (accumulator), используется при умножении и делении слов, в операциях ввода-вывода и в некоторых операциях над строками. Регистр AL используется при выполнении аналогичных операций над байтами, а также при преобразовании десятичных чисел и выполнении над ними арифметических операций. Регистр АН используется при умножении и делении байтов.

19 19 Регистры данных Регистр ВХ, базовый регистр (base register), часто используется при адресации данных в памяти. Регистр СХ, счетчик (count register), используется как счетчик числа повторений цикла и в качестве номера позиции элемента данных при операциях над строками. Регистр CL используется как счетчик при операциях сдвига и циклического сдвига на несколько битов. Регистр DX, регистр данных (data register), используется при умножении и делении слов. Кроме того, в операциях ввода-вывода он используется как номер порта.

20 20 Регистры сегментов Регистр сегмента команд CS (code segment) указывает на сегмент, содержащий текущую исполняемую программу. Для вычисления адреса следующей исполняемой команды микропроцессор добавляет к содержимому регистра CS содержимое указателя команд IP. Регистр сегмента стека SS (stack segment) указывает на текущий сегмент стека. Стек представляет собой область памяти, используемую для временного хранения данных и адресов. Микропроцессор 8088 использует стек для хранения адреса возврата из текущей подпрограммы, но стек можно использовать также для восстановления содержимого регистров, изменяемых при работе программы.

21 21 Регистры сегментов Регистр сегмента данных DS (data segment) указывает на текущий сегмент данных, обычно содержащий используемые в программе переменные. Регистр дополнительного сегмента ES (extra segment) указывает на текущий дополнительный сегмент, который используется при выполнении операций над строками.

22 22 Регистры указателей и индексов Для вычисления адреса команды в сегменте команд микропроцессор извлекает номер блока памяти из регистра CS, а смещение - из регистра IP. Для доступа к сегменту данных микропроцессор извлекает номер блока из регистра DS, а смещение - из регистра ВХ или индексного регистра (SI или DI). Для доступа к сегменту стека микропроцессор извлекает номер блока из регистра SS, а смещение - из регистра указателя (SP или ВР). Выбирая номер блока из регистра ES, микропроцессор может также получить доступ к дополнительному сегменту.

24 24 флаги В 16-битовом регистре флагов фиксируется информация о текущем состоянии дел, которая может помочь программе принять решение. Шесть битов регистра служат для хранения состояний, а три других могут быть использованы для программного управлений режимом работы микропроцессора

25 25 флаги 1. Бит 0, флаг переноса CF (carry flag), равен 1, если произошел перенос единицы при сложении или заем единицы при вычитании. В противном случае он равен нулю. Кроме того, CF содержит значение бита, который при сдвиге или циклическом сдвиге регистра или ячейки памяти вышел за их границы, и отражает результат операции сравнения. Наконец, CF служит индикатором результата умножения.

26 26 флаги 2. Бит 2, флаг четности PF (parity flag), равен 1, если в результате операции получено число с четным числом единиц в его битах. В противном случае он равен нулю. Флаг РF в основном используется в операциях обмена данными.

27 27 флаги 3. Бит 4, вспомогательный флаг переноса AF (auxiliary carry flag), аналогичен флагу CF, только контролирует перенос или заем для третьего бита данных. Полезен при выполнении операций над упакованными десятичными числами. 4. Бит 6 флаг нуля ZF (zero flag), равен 1, если в результате операции получен нуль; ненулевой результат сбрасывает ZF в нуль.

28 28 флаги 5. Бит 7, флаг знака SF (sign flag), имеет значение только при операциях над числами со знаком. Флаг SF равен 1, если в результате арифметической или логической операции, сдвига или циклического сдвига получено отрицательное число. В противном случае он равен нулю.

29 29 флаги 6. Бит 8, флаг трассировки TF (trap flag), разрешает микропроцессору исполнять программу "по шагам" и используется при отладке программ. 7. Бит 9, флаг прерывания IF (interrupt enable flag), разрешает микропроцессору реагировать на прерывания от внешних устройств. Сбрасывание IF в нуль заставляет микропроцессор игнорировать прерывания до тех пор, пока IF не станет равным 1.

30 30 флаги 8. Бит 10, флаг направления DF (direction flag), заставляет микропроцессор уменьшать на единицу (DF = 1) или увеличивать на единицу (DF = 0) регистр(ы) индекса после выполнения команды для работы со строками. Если DF = 0, то микропроцессор будет обрабатывать строку "слева направо" (от младших адресов к старшим). Если DF = 1, то обработка пойдет в обратном направлении (от старших адресов к младшим или справа налево).

31 31 флаги 9. Бит 11, флаг переполнения OF (overflow flag), в первую очередь служит индикатором ошибки при выполнении операций над числами со знаком. Флаг OF равен 1, если результат сложения двух чисел с одинаковым знаком или результат вычитания двух чисел с противоположными знаками выйдет за пределы допустимого диапазона значений операндов. В противном случае он равен 0. Кроме того, OF = 1, если старший, (знаковый) бит операнда изменился в результате операции арифметического сдвига. В противном случае он равен 0. В сочетании с флагом CF флаг OF указывает длину результата умножения. Если старшая половина произведения отлична от нуля, то OF и CF равны 1; в противном случае оба эти флага равны 0. Наконец, OF = 0, если частное от деления двух чисел переполняет результирующий регистр.

32 32 Безусловный переход jmp [ ptr ] операнд. - тип перехода short (короткий) – смещение 127 байтов вперёд или 128 байтов назад, near (близкий) – смещение в пределах сегмента (64 Кбайта), far (дальний) – в любой сегмент с любым смещением. ptr – приставка, которую можно перевести как указанный в. Если тип не задан, по умолчанию принимается near.

34 34 Безусловный переход Флаги Смысл ja/jnbe jae/jnb jb/jnae jbe/jna je/jz jne/jnz jg/jnle jge/jnl jl/jnge jle/jng jp/jpe jnp/jpo jc jnc jo jno jns js CF or ZF=0 CF=0 CF=1 CF or ZF=1 ZF=1 ZF=0 (SF xor OF) or ZF=0 SF xor OF=0 (SF xor OF)=1 ((SF xor OF) or ZF)=1 PF=1 PF=0 CF=1 CF=0 OF=1 OF=0 SF=0 SF=1 выше /не ниже и не равно выше или равно/не ниже ниже/не выше и не равно ниже или равно/не выше равно/нуль не равно/не нуль больше/не меньше и не равно больше или равно/не меньше меньше/не больше и не равно меньше или равно/не больше есть паритет/паритет четный нет паритета/паритет нечетный перенос нет переноса переполнение нет переполнения знак + знак -

35 35 Циклы loop[ ] Инструкция loop использует содержимое регистра СХ как счетчик повторений цикла. Команда loop уменьшает содержимое регистра СХ на 1 и передает управление по адресу, определяемому меткой перехода, если содержимое СХ 0, в противном случае выполняется следующая за LOOP инструкция. Добавление к инструкции loop позволяет ввести дополнительные логические условия на повторение цикла: loope/loopz – повторять, пока ноль; loopne/loopnz – повторять, пока не ноль.

36 36 Пример Дан массив из десяти слов, содержащих целые числа. Требуется найти максимальное значение в массиве.

37 37 Пример data segment max dw ? mass dw 10,24,76,479,-347,281,-24,70,124,97 data ends code segment assume cs: code, ds: data start: mov ax, data mov ds, ax ; Загрузить сегментный адрес данных lea bx, mass ; Загрузить адрес смещения массива mov cx, 10 ; Установить счетчик повторений цикла mov ax, [bx] ; Первый элемент массива в Аккумулятор

38 38 Пример beg: cmp [bx], ax ; Сравнить текущий элемент jl no ; он меньше mov ax, [bx]; он больше или равен no: inc bx ; Следующий элемент inc bx; массива loop beg mov max, ax quit:mov ax,4C00h ; Код завершения 0 int 21h ; Выход в DOS code ends end start

ЭВМ представляет собой совокупность устройств, выполненных на больших интегральных схемах, каждая из которых имеет свое функ­циональное назначение. Комплект интегральных схем, из которых со­стоит ЭВМ, называется микропроцессорным комплектом. В состав микропроцессорных комплектов входят: системный таймер, микро­процессор (МП), сопроцессоры, контроллер прерываний, контроллер прямого доступа к памяти, контроллеры устройств ввода-вывода.

Все устройства ЭВМ делятся на центральные и периферийные. Центральные устройства — полностью электронные, периферийные устройства могут быть либо электронными, либо электромеханичес­кими с электронным управлением.

В центральных устройствах основным узлом, связывающим мик­ропроцессорный комплект в единое целое, является системная маги­страль. Она состоит из трех узлов, называемых шинами: шина данных (ШД), шина адреса (ША), шина управления (ШУ). В состав системной магистрали входят регистры-защелки, в которых запоми­нается передаваемая информация, шинные формирователи, шинные арбитры, определяющие очередность доступа к системной магистра­ли, и др.

Логика работы системной магистрали, количество разрядов (ли­ний) в шинах данных, адреса и управления, порядок разрешения кон­фликтных ситуаций, возникающих при одновременном обращении различных устройств ЭВМ к системной магистрали, образуют интер­фейс системной шины.

В состав центральных устройств ЭВМ входят: центральный про­цессор, основная память и ряд дополнительных узлов, выполняющих служебные функции: контроллер прерываний, таймер и контроллер прямого доступа к памяти (ПДП).

Периферийные устройства делятся на два вида: внешние ЗУ (НМД, НГМД, НМЛ) и устройства ввода-вывода (УВВ): клавиатура, дисп­лей, принтер, мышь, адаптер каналов связи (КС) и др.

Управляющая работой ЭВМ программа перед началом выполне­ния загружается в основную память (ОП). Адрес первой выполняе­мой команды передается микропроцессору и запоминается в счетчи­ке команд.

В каждом цикле, получив команду в регистр команд и выделив код операции, процессор определяет, к какому устройству она отно­сится. Если команда должна выполняться процессором, организуется ее выполнение по описанному циклу. Если же команда предназначена для выполнения в другом устройстве ЭВМ, ЦП передает ее соответ­ствующему устройству. Процесс передачи команды другому устрой­ству предусматривает следующие действия:

• ЦП выставляет на шину адреса СМ адрес интересующего его уст­ройства;

• все устройства, подключенные к системной магистрали, получив этот сигнал, читают номер устройства с шины адреса и сравнива­ют его со своим номером. Устройства, для которых эти номера не совпадают, на эту команду не реагируют. Устройство с совпав­шим номером, вырабатывает сигнал отклика по шине управле­ния;

• получив сигнал о приеме команды, ЦП переходит к выполнению очередной своей команды, выставляя на шину адреса содержимое счетчика команд.

В более сложных случаях, получив сигнал, что устройство отклик­нулось, прежде чем передавать команду, ЦП запрашивает устройство о его состоянии. Текущее состояние устройства закодировано в бай­те состояния, который откликнувшееся устройство передает процес­сору через ШД системной магистрали. Если устройство включено и готово к работе, то байт состояния — нулевой. Наличие в нем единиц свидетельствует о нештатной ситуации, которую ЦП пытается про­анализировать и в необходимых случаях извещает оператора о сло­жившейся ситуации. Взаимодействие МП с внешними устройствами предусматривает выполнение логической последовательности действий, связанных с поиском устройства, определением его технического состояния, об­меном командами и информацией. Эта логическая последовательность действий вместе с устройствами, реализующими ее, получила назва­ние интерфейс ввода-вывода.

Для различных устройств могут использоваться разные логичес­кие последовательности действий, поэтому интерфейсов ввода-выво­да может в одной и той же ЭВМ использоваться несколько. Если их удается свести к одному, универсальному, то такой интерфейс назы­вается стандартным. В IBM PC есть два стандартных интерфейса для связи ЦП с внешними устройствами: параллельный (типа Centronics) и последовательный (типа RS-232).

Если при обращении ЦП к внешнему устройству продолжение выполнения основной программы центральным процессором возмож­но только после завершения операции ввода-вывода, то ЦП, запус­тив внешнее устройство, переходит в состояние ожидания и находит­ся в нем до тех пор, пока внешнее устройство не сообщит ему об окон­чании обмена данными. Это приводит к простою большинства устройств ЭВМ, так как в каждый момент времени может работать только одно из них. Такой режим работы получил название однопрограммного в каждый момент времени все устройства находятся в состоянии ожидания, и только одно устройство выполняет основную (и единственную) программу.

Для ликвидации таких простоев и повышения эффективности ра­боты оборудования внешние устройства сделаны автономными: по­лучив от ЦП необходимую информацию, они самостоятельно орга­низуют свою работу по обмену данными. Процессор же, запустив внешнее устройство, пытается продолжить выполнение программы. При необходимости (если встретятся соответствующие команды) он может запустить в работу несколько других устройств (так как вне­шние устройства работают значительно медленнее процессора). Если же ему приходится переходить в режим ожидания, то, пользуясь тем, что в ОП может одновременно находиться не одна, а несколько про­грамм, ЦП переходит к выполнению очередной программы. При этом создается ситуация, когда в один и тот же момент времени различные устройства ЭВМ выполняют либо разные программы, либо разные части одной и той же программы. Такой режим работы ЭВМ называ­ется многопрограммным.

Читайте также: