Объяснить принцип комплементарности кратко

Обновлено: 04.07.2024

Что касается РНК, то во-первых, РНК создается по матрице ДНК, то есть без принципа комплементарности ни одной РНК в клетках бы не существовало. РНК нужны, например, для того, чтобы переносить информацию из ядерной ДНК в цитоплазму для запуска синтеза белка на рибосоме. Такие РНК это как бы небольшие пакеты информации, которые передаются из основного хранилища в терминальные узлы для выполнения определенных команд - например, запустить синтез фермента тироксин-гидроксилазы. Однако функции РНК эти не ограничиваются. Существуют каталитически активные РНК, выполняющие, как и ферменты, определенные функции. Такие РНК обладают сложной пространственной структурой. Для создания такой структуры комплементарные участки молекулы РНК спариваются между собой, образуя шпильки. По сути функциональная часть рибосомы - органеллы, на которой происходит синтез белка - является рибозимом.

Таким образом без принципа комплементарности было бы невозможно существования молекулярных машин, которые лежат в основе жизни на Земле.

  • Описание спирали
  • Свойства и катаболизм
  • Закон взаимодополнения
  • Функции и возобновление
  • Значение принципа
  • Перспективы комплементарности

Суть принципа комплементарности и его роль в биологии

Описание спирали

Воспроизведение молекулы ДНК основано на следующем — цепочку можно использовать в качестве матрицы для сборки новой молекулы. В результате деления происходит самопроизведение либо репликация. Сущность процесса заключается в получении каждой дочерней клеткой копии материнского ДНК. Главная роль соединения — передача наследственной информации.

Сама молекула состоит из следующих форм РНК:

  • информационные либо матричные;
  • транспортные;
  • рибосомные.

Они, в отличие от ДНК, обладают следующими признаками: нет азотистого основания тимина, вместо него используется урацил. Отсутствует сахар, но есть рибоза. Определение структуры односпиральных белков зависит от набора и порядка расположения аминокислот в пептидных цепочках. Подобная информация зашифрована при помощи генетического кода (ГК).

Он представлен в виде единой системы записи наследственной информации. Подобная последовательность нуклеотидов в ДНК определяет цепочку аминокислот в белке. Структурная единица ГК представлена в виде кодирующего тринуклеотида. Пара кодов должна соответствовать последовательности аминокислот белка.

Так как существует 4 разных нуклеотида, суммарное количество кодов равняется 64. Информация о некоторых аминокислотах может удерживаться только в 61 аминокислоте. Остальные 3 стоп-кода указывают на остановку трансляции полипептидной цепи.

Свойства и катаболизм

  • Кроме вирусов, у каждого нуклеотида один кодон.
  • ГК одинаков для всех организмов.
  • Триплеты в ДНК идут в последовательности, аналогичной для аминокислот в белке.

Перспективы развития исследований

Чтобы разобраться, в чем заключается принцип комплементарности, необходимо рассмотреть некоторые процессы: всасывание и переваривание нуклеиновых кислот (НК), катаболизм (энергетический обмен). Учёные доказали, что организм способен переварить до 1 гр НК в сутки. Процесс переваривания осуществляется в тонком кишечнике. Предварительно НК под воздействием ферментов превращаются в мононуклеотиды.

В тонком кишечнике от веществ отщепляется фосфорная кислота. Образуются нуклеозиды. Некоторая часть распадается на углеводы и азотистые основания. Удерживать НК — задача печени. Процесс энергетического обмена, диссимиляции либо катаболизма заключается в распаде сложных компонентов на более простые. Наблюдается окисление любого вещества. Явление сопровождается освобождением энергии в виде молекулы АТФ с теплом.

В клетках обмен РНК протекает интенсивнее, чем обмен ДНК. На последнем этапе процесса НК расщепляются на следующие компоненты:

  • углеводы;
  • азотистые основания (АС);
  • фосфорная кислота.

Пуриновые АС при катаболизме теряют аминогруппу, окисляясь, превращаясь в мочевую кислоту. Пиримидиновые АС подвергаются глубокому расщеплению до воды, углекислого газа и аммиака. Углеводы переходят в глюкозу. Фосфорная кислота не подвергается распаду. Она принимает участие в реакциях фосфорилирования и фосфолиза либо при избытке выделяется из организма с уриной.

Закон взаимодополнения

Состав и описание главных компонентов

Подобная закономерность часто отображается в виде таблицы. Соответствие А Т и Г Ц — правило комплементарности, а цепи — комплементарными. С учётом закона содержание А в ДНК всегда совпадает с количеством Т, а объём Г равен числу Ц. Две цепи ДНК могут отличаться химически, но они несут одну информацию, так как по правилу Уотсона и Крика следует, что одна цепочка задаёт другую.

Структура РНК считается менее упорядоченной, чем ДНК. Чаще это простая молекула, только некоторые вирусы состоят из двух цепей. Последняя структура считается более гибкой, чем ДНК. Определённые участки в молекуле РНК взаимно комплементарны, а при изгибании они спариваются. Таким способом образуются двухцепочечные структуры. Подобной характеристикой обладают транспортные РНК.

Функции и возобновление

Принцип комплементарности лежит в основе взаимодействия, удвоения либо репликации молекул ДНК. По нему образуется дочерняя цепочка. При последующем делении материнской клетки каждая дочерняя получает по 1 копии молекулы ДНК. Она идентична структуре матери. Процесс обеспечивает тонкую передачу генетической информации между поколениями.

От правильности репликации зависит точность соответствия комплементарных пар оснований. Другие характеристики явления:

Строение цепочки ДНК

  • матричность — однозначное определение последовательности синтезируемой цепочки;
  • полуконсервативность — структура, образованная при репликации, считается вновь синтезированной, а другая — материнской;
  • направленность — идёт от пятого конца новой цепи к третьему;
  • полунепрерывность — постоянный синтез одной молекулы и набор фрагментов второй цепи.

Репликация протекает в несколько этапов. Предварительно расплетаются молекулы с помощью фермента хеликазы. Образуются матрицы, на которых будет осуществляться синтез новых линий. На следующем этапе происходит фиксация новых нуклеотидов по принципу комплементарности. Новые клетки расходятся, скручиваясь в спираль. За одну секунду происходит репликация 750 нуклеотидов.

Главная функция молекулы заключается в хранении и передаче следующему поколению наследственной информации, записанной в ней. За счёт принципа комплементарности репликация создаёт точную копию первичной молекулы. Таким способом образуются новые клетки, идентичные материнским.

Значение принципа

 Определение репликации

Взаимодополняемость считается важным процессом при формировании белков. Без него невозможен синтез дочерних клеток. Явление играет важную роль в делении молекул, так как каждый новый организм получает по одной одинаковой копии ДНК. За счёт комплементарности обеспечивается передача генетической информации от поколения к поколению.

Изучив принцип, можно понять механизм образования мутаций, способы их предупреждения. Из закона вытекает следующее следствие: репликация дезоксирибонуклеиновой кислоты — важное событие в делении клеток и синтезе белка. На основе принципа комплементарности работает практическая медицина ДНК-технологий.

Закон позволил подробно изучить механизм развития заболеваний, которые передаются наследственным путём, проанализировав их патогенез.

Области генетики и медицины, в которых успешно применяется закон:

Принцип комплементарности в биологии и ее роль

  • Создание вакцин для борьбы с разными типами гепатита.
  • Разработка человеческого инсулина.
  • Восстановление нормальной свёртываемости крови у пациентов, страдающих от гемофилии (хроническая кровоточивость).
  • Открытие возможности ввода в человеческий организм полноценных генов, их фрагментов с целью корригирования некоторых нарушений обмена веществ.
  • Проведение терапии разных форм иммунодефицита у детей.
  • Разработка эффективных методов терапии больных муковисцидозом (системное заболевание, связанное с мутацией генов), фенилкетонурией (врождённое нарушение метаболизма), тяжёлыми наследственными патологиями.
  • Исследование генов.

Перспективы комплементарности

Перспективы комплементарности

За счёт современного развития генетики и медицины взаимодополняемость получает широкое применение в разных исследованиях. Принцип способствовал установлению и внедрению в лечебную практику теории функционирования живого организма, его саморегуляцию, взаимоотношение функциональных систем.

Комплементарность позволяет применять некоторые методики лечения, направленные на устранение внутренних патологических процессов с использованием компенсаторных возможностей. Процесс изучения нуклеотидов предоставляет шанс внедрять в главные терапевтические методы самые последние достижения генной инженерии. Подобная возможность позволяет побороть тяжёлые наследственные патологии, обеспечив пациентам полноценную жизнь.

При проведении исследований учёные выявили некоторые интересные факты. В геноме существует более трёх миллиардов нуклеотидов, но только около одного процента участвует в кодировке белков. Всего у человека найдено свыше 20 000 генов, при этом каждый из них хранится в соответствующей клетке. Около 4/5 генома переписывается на РНК. В ДНК сосредоточено несколько дополнительных участков, которые контролируют кодировку и синтез белка.


Комплемента́рность (в химии, молекулярной биологии и генетике) — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий (образование водородных связей, гидрофобных взаимодействий, электростатических взаимодействий заряженных функциональных групп и т. п.).

Взаимодействие комплементарных фрагментов или биополимеров не сопровождается образованием ковалентной химической связи между комплементарными фрагментами, однако из-за пространственного взаимного соответствия комплементарных фрагментов приводит к образованию множества относительно слабых связей (водородных и ван-дер-ваальса) с достаточно большой суммарной энергией, что приводит к образованию устойчивых молекулярных комплексов.

Вместе с тем следует отметить, что механизм каталитичекой активности ферментов определяется комплементарностью фермента и переходного состояния либо промежуточного продукта катализируемой реакции — и в этом случае может происходить обратимое образование химической связи.

Комплементарность нуклеиновых кислот

В случае нуклеиновых кислот — как олиго- так и полинуклеотидов азотистые основания нуклеотидов способны вследствие образования водородных связей формировать парные комплексы аденин—тимин (или урацил в РНК) и гуанин—цитозин при взаимодействии цепей нуклеиновых кислот. Такое взаимодействие играет ключевую роль в ряде фундаментальных процессов хранения и передачи генетической информации: репликации ДНК, обеспечивающей передачу генетической информации при делении клетки, транскрипции ДНК в РНК при синтезе белков, кодируемых ДНК гена, хранении генетической информации в двухцепочечной ДНК и процессах репарации ДНК при её повреждении.

Принцип комплементарности используется в синтезе ДНК. Это строгое соответствие соединения азотистых оснований, соединёнными водородными связями, в котором: А-Т (Аденин соединяется с Тимином) Г-Ц (Гуанин соединяется с Цитозином)

Ферментативный катализ

Комплементарное связывание фермент-субстрат является ключевым фактором в механизме ферментативной активности и, в отличие описанных выше ситуаций с образованием химически несвязанных комплексов может приводить к инициированию химической реакции — в случае связи фермента с субстратом комплементарность относительно невысока, однако при высокой комплементарности к переходному реакционному состоянию субстрата происходит стабилизация этого состояния, что приводит к эффекту каталитической активности ферментов: такая стабилизация переходного состояния эквивалентна снижению энергии активации и, соответственно, резкому увеличению скорости реакции.

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Комплементарность (биология)" в других словарях:

Комплементарность — в молекулярной биологии, взаимное соответствие, обеспечивающее связь дополняющих друг друга структур (макромолекул, молекул, радикалов) и определяемое их химическими свойствами. К. возможна, «если поверхности молекул имеют комплементарные … Большая советская энциклопедия

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь

Дезоксирибонуклеиновая кислота — Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) макромолекула(одна из трех основных, две другие РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования… … Википедия

ДНК — Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная… … Википедия

Двойная спираль — ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в… … Википедия

Модель Уотсона — Крика — Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная… … Википедия

Генетика — I Генетика (от греч. génesis происхождение) наука о законах наследственности и изменчивости организмов. Важнейшая задача Г. разработка методов управления Наследственностью и наследственной Изменчивостью для получения нужных человеку форм… … Большая советская энциклопедия

Генетика — I Генетика (от греч. génesis происхождение) наука о законах наследственности и изменчивости организмов. Важнейшая задача Г. разработка методов управления Наследственностью и наследственной Изменчивостью для получения нужных человеку форм… … Большая советская энциклопедия

Молекулярная генетика — раздел генетики (См. Генетика) и молекулярной биологии (См. Молекулярная биология), ставящий целью познание материальных основ наследственности (См. Наследственность) и изменчивости (См. Изменчивость) живых существ путём исследования… … Большая советская энциклопедия

Репликация — (позднелат. replicatio повторение, от лат. replico обращаюсь назад, повторяю) редупликация, ауторепродукция, аутосинтез, протекающий во всех живых клетках процесс самовоспроизведения (самокопирования) нуклеиновых кислот (См. Нуклеиновые… … Большая советская энциклопедия

Комплементарность - это свойство двух структур соответствовать друг другу особым образом.

принцип комплементарности

Принцип комплементарности находит применение в различных сферах деятельности человека. Так, суть комплементарности в процессе обучения касается точной характеристики становления и развития учащихся в условиях предметной структуры школьного обучения. В сфере творчества композиторов он связан с применением цитирований, а в химии данный принцип является пространственным соответствием структур двух различных молекул, между которыми могут возникать водородные связи и межмолекулярное взаимодействие.

Принцип комплементарности в биологии касается соответствия молекул биополимеров и их различных фрагментов. Он обеспечивает образование определенной связи между ними (например, гидрофобных или электростатических взаимодействий между заряженными функциональными группами).

При этом комплементарные фрагменты и биополимеры связываются не ковалентной химической связью, а пространственным соответствием друг к другу с образованием слабых связей, которые суммарно имеют большую энергию, что обуславливает образование достаточно устойчивых комплексов молекул. В данном случае каталитическая активность веществ зависит от их комплементарности с промежуточным продуктом каталитических реакций.

принцип комплементарности это

Надо сказать, что также существует понятие структурного соответствия двух соединений. Так, например, при межмолекулярном взаимодействии белков принцип комплементарности - это возможность лигандов приближаться друг к другу на близкое расстояние, что обеспечивает прочную взаимосвязь между ними.

Принцип комплементарности в генетической области касается процесса репликации (удвоения) ДНК. Каждая цепь данной структуры может служить матрицей, которая применяется при синтезе комплементарных цепей, что на завершающем этапе позволяет получать точные копии исходной дезоксирибонуклеиновой кислоты. При этом наблюдается четкое соответствие между азотистыми основаниями, когда аденин соединяется с тимином, а гуанин - только с цитозином.

комплементарность это

Олиго-и полинуклеотиды азотистых оснований формируют соответствующие парные комплексы - А-Т (А-У в РНК) или Г-Ц при взаимодействии двух цепей нуклеиновых кислот. Такой принцип комплементарности играет ключевую роль в обеспечении фундаментального процесса хранения, а также передачи генетической информации. Так, удвоение ДНК при делении клеток, процесс транскрипции ДНК в РНК, что проходит при белковом синтезе, а также процессы репарации (восстановления) молекул ДНК после их повреждения невозможны без соблюдения данного принципа.

При любых нарушениях в строго заданном соответствии между важными составными частями различных молекул в организме возникают патологии, которые клинически проявляются генетическими заболеваниями. Они могут передаваться потомкам или быть несовместимыми с жизнью.

Кроме этого, на основе принципа комплементараности базируется важный анализ - ПЦР (полимеразная цепная реакция). С помощью специфических генетических детекторов выявляют ДНК или РНК различных возбудителей инфекционных или вирусных заболеваний человека, что помогает назначать лечение согласно этиологии поражения.

При анализе содержания азотистых оснований в ДНК из различных организмов Эрвин Чаргафф обнаружил определенные закономерности, позднее названные правилами Чаргаффа.

Молярное содержание аденина всегда равно молярному содержанию тимина, а молярное содержание гуанина — молярному содержанию цитозина.

Количество пуринов равнялось количеству пиримидинов, а отношение А+Т/Г+Ц было различным у разных видов живых организмов.

Это указывало на возможные взаимодействия оснований в ДНК между собой.

На основании правил Чаргаффа и предварительных результатов рентгеноструктурного анализа Джеймс Уотсон и Френсис Крик в 1953 г. предложили двуспиральную модель структуры ДНК.

Согласно этой модели молекула ДНК состоит из двух полинуклеотидных цепей, соединенных между собой азотистыми основаниями. При этом аденин одной цепи всегда взаимодействует с тимином в другой, и наоборот. Точно так же гуанин одной цепи всегда связан с цитозином в другой (рис. 6).


Рис. 6. Образование водородных связей между азотистыми основаниями


Такие пары оснований удерживаются за счет образования между основаниями водородных связей:

  • пара А–Т образует 2 водородные связи;
  • пара Г–Ц образует 3 водородные связи.

Главной особенностью пар А–Т и Г–Ц является их одинаковая геометрия. Это позволяет построить двуспиральную молекулу с постоянным расстоянием между цепями, построенными остатками сахара и фосфорной кислоты. Образование любых других пар приводит к нарушению правильной структуры.

Такое взаимодействие оснований, при котором они дополняют друг друга до определенной структуры, одинаковой для всех пар, получило название принципа комплементарности.

Пары аденин и тимин, гуанин и цитозин называются комплементарными парами, а две цепочки нуклеиновых кислот, в которых все основания образуют комплементарные пары — комплементарными цепочками. Таким образом, каждая молекула ДНК состоит из двух комплементарных цепочек полинуклеотидов (рис. 7).


Рис. 7. Принцип комплиментарности

Важной особенностью структуры двойной спирали ДНК является то, что комплементарные цепи направлены в противоположные стороны, т. е. 5’-конец одной цепи связан комплементарными основаниями с 3’-концом другой цепи, и наоборот. Основания плотно слипаются своими плоскостями, что делает связь между цепочками еще более прочной. Такое слипание получило название стэкинг-взаимодействия. В результате в центре молекулы ДНК находится как бы стержень, построенный из азотистых оснований, а по краям он обвит двумя нитями, состоящими из чередующихся остатков дезоксирибозы и фосфорной кислоты.

Сравнение ДНК и РНК

Нуклеиновая кислота Строение Функции Особенности
ДНК азотистое основание: аденин (А) тимин (Т) гуанин (Г) цитозин (Ц) углевод: дезоксирибоза остаток фосфорной кислоты хранение и передача наследственной информации двойная спираль (по принципу комплементарности); способность к репликации (самоудвоению)
РНК азотистое основание: аденин (А) урацил (У) гуанин (Г) цитозин (Ц) углевод: рибоза остаток фосфорной кислоты биосинтез белка одинарная цепочка нуклеотидов


Рис. 8. Различия в строении ДНК и РНК

При анализе содержания азотистых оснований в ДНК из различных организмов Эрвин Чаргафф обнаружил определенные закономерности, позднее названные правилами Чаргаффа.

Молярное содержание аденина всегда равно молярному содержанию тимина, а молярное содержание гуанина — молярному содержанию цитозина.

Количество пуринов равнялось количеству пиримидинов, а отношение А+Т/Г+Ц было различным у разных видов живых организмов.

Это указывало на возможные взаимодействия оснований в ДНК между собой.

На основании правил Чаргаффа и предварительных результатов рентгеноструктурного анализа Джеймс Уотсон и Френсис Крик в 1953 г. предложили двуспиральную модель структуры ДНК.

Согласно этой модели молекула ДНК состоит из двух полинуклеотидных цепей, соединенных между собой азотистыми основаниями. При этом аденин одной цепи всегда взаимодействует с тимином в другой, и наоборот. Точно так же гуанин одной цепи всегда связан с цитозином в другой (рис. 6).





Рис. 6. Образование водородных связей между азотистыми основаниями


Такие пары оснований удерживаются за счет образования между основаниями водородных связей:

  • пара А–Т образует 2 водородные связи;
  • пара Г–Ц образует 3 водородные связи.

Главной особенностью пар А–Т и Г–Ц является их одинаковая геометрия. Это позволяет построить двуспиральную молекулу с постоянным расстоянием между цепями, построенными остатками сахара и фосфорной кислоты. Образование любых других пар приводит к нарушению правильной структуры.

Такое взаимодействие оснований, при котором они дополняют друг друга до определенной структуры, одинаковой для всех пар, получило название принципа комплементарности.

Пары аденин и тимин, гуанин и цитозин называются комплементарными парами, а две цепочки нуклеиновых кислот, в которых все основания образуют комплементарные пары — комплементарными цепочками. Таким образом, каждая молекула ДНК состоит из двух комплементарных цепочек полинуклеотидов (рис. 7).


Рис. 7. Принцип комплиментарности

Важной особенностью структуры двойной спирали ДНК является то, что комплементарные цепи направлены в противоположные стороны, т. е. 5’-конец одной цепи связан комплементарными основаниями с 3’-концом другой цепи, и наоборот. Основания плотно слипаются своими плоскостями, что делает связь между цепочками еще более прочной. Такое слипание получило название стэкинг-взаимодействия. В результате в центре молекулы ДНК находится как бы стержень, построенный из азотистых оснований, а по краям он обвит двумя нитями, состоящими из чередующихся остатков дезоксирибозы и фосфорной кислоты.

Читайте также: