Образование электронно дырочного перехода кратко

Обновлено: 04.07.2024

Подавляющее большинство современных полупроводниковых приборов функционируют благодаря тем явлениям, которые происходят на самих границах материалов, имеющих различные типы электропроводности.

Полупроводники бывают двух типов – n и p. Отличительной особенностью полупроводниковых материалов n-типа является то, в них в качестве носителей электрического заряда выступают отрицательно заряженные электроны . В полупроводниковых материалах p-типа эту же роль играют так называемые дырки , которые заряжены положительно. Они появляются после того, как от атома отрывается электрон , и именно поэтому и образуются положительный заряд.

Для изготовления полупроводниковых материалов n-типа и p-типа используются монокристаллы кремния. Их отличительной особенностью является чрезвычайно высокая степень химической чистоты. Существенно изменить электрофизические свойства этого материала можно, внося в него совсем незначительные, на первый взгляд, примеси.

Число свободных электронов и число дырок в чистом кристалле полупроводника совершенно одинаково. Поэтому когда полупроводниковый прибор находится в равновесном состоянии, то электрически нейтральной является каждая из его областей.

В месте контакта полупроводников различных типов дырки из области p-типа частично следуют в область n-типа, а электроны, соответственно, – в обратном направлении. Поэтому полупроводник p-типа заряжается отрицательно, а n-типа – положительно. Эта диффузия, однако, длится только до тех пор, пока возникающее в зоне перехода электрическое поле не начинает ей препятствовать, в результате чего перемещение и электронов, и дырок прекращается.

В выпускаемых промышленностью полупроводниковых приборах для использования p-n перехода к нему необходимо приложить внешнее напряжение. В зависимости от того, какими будет его полярность и величина, зависит поведение перехода и проходящий непосредственно через него электрической ток. Если к p-области подключается положительный полюс источника тока, а к n-области – полюс отрицательный, то имеет место прямое включение p-n перехода . Если же полярность изменить, то возникнет ситуация, называемая обратным включением p-n перехода .

Прямое включение

Когда осуществляется прямое включение p-n перехода, то под воздействием внешнего напряжения в нем создается поле. Его направление по отношению к направлению внутреннего диффузионного электрического поля противоположно. В результате этого происходит падение напряженности результирующего поля, а запирающий слой сужается.

Вследствие такого процесса в соседнюю область переходит немалое количество основных носителей заряда. Это означает, что из области p в область n результирующий электрический ток будет протекать дырками, а в обратном направлении – электронами.

Обратное включение

Когда осуществляется обратное включение p-n перехода, то в образовавшейся цепи сила тока оказывается существенно ниже, чем при прямом включении. Дело в том, что дырки из области n будут следовать в область p, а электроны – из области p в область n. Невысокая сила тока обуславливается тем обстоятельством, что в области p мало электронов, а в области n, соответственно, – дырок.

Таким образом, при обратном включении полупроводникового прибора в цепь, переход через контакт двух областей осуществляется с помощью неосновных носителей заряда, количество которых совсем невелико. Поэтому электрическое сопротивление оказывается достаточно большим, а проводимость – незначительной. Это означает, что возникает запирающий слой.

электронно дырочный переход это

Электронно дырочный переход — это контакт двух примесных полупроводников с различными типами (другое название — p-n-переход). Он создается путем введения в одну часть полупроводникового кристалла донорной примеси, а в другую — акцепторной (легирование).

Донорные примеси приводят к увеличению концентрации свободных электронов в кристалле. Акцепторные примеси приводят к увеличению концентрации дырок. В полупроводнике n типа электроны являются основными носителями заряда, а дырки — неосновными. В полупроводнике p типа дырки являются основными носителями заряда, а электро­ны — неосновными.

Прежде чем раскрывать вопрос электронно дырочного перехода, важно ознакомится с общими сведениями о полупроводниках.

Полупроводники — основы

Полупроводники — это вещества, удельная проводимость которых имеет промежуточное значение между удельными проводимостями металлов и диэлектриков.

Типичным полупроводником является кремний (Si), в состав атома которого входят 14 электронов. 4 электрона из 14 находятся в незаполненной внешней оболочке и являются слабо связанными (валентные электроны).

Атомы кремния могут объединять валентные электроны с другими атомами кремния с помощью ковалентных связей:

1) Атомы кремния в структуре кристалла структура кристалла кремния
2) Ковалентные связи. Ковалентная связь — самый распространенный тип химической связи, осуществляемой при взаимодействии атомов элементов с одинаковыми или близкими значениями электроотрицательности.

При нулевой температуре в кристалле кремния свободные носители заряда отсутствуют. При повышении температуры происходит разрыв некоторых валентных связей, и электроны, участвующие ранее в создании валентных связей, отщепляются и становятся электронами проводимости. А при наличии электрического поля они перемещаются против поля и образуют электрический ток.

При освобождении электрона в кристаллической решетке образуется незаполненная межатомная связь — дырка. Данный процесс создает дополнительную возможность для переноса заряда — дырка может быть заполнена электроном, перешедшим под действием тепловых колебаний от соседнего атома. В результате в месте, где будет заполнена дырка будет восстановлена нормальная связь, а в другом месте появится другая дырка. Последовательное заполнение свободной связи электронами одновременно сопровождается движением дырки в противоположном движении электронов направлении.

Исходя из вышеописанного можно отметить, что в полупроводнике имеются два типа носителей заряда — электроны и дырки. Общая проводимость полупроводника равна сумме электронной проводимости n-типа и дырочной проводимости p-типа.

Легирование полупроводников

Легирование — добавление примесей для увеличения проводимости чистых полупроводников. При этом применяются два типа примесей:

Пятивалентные примеси Трехвалентные примеси
легирование полупроводника пятивалентной примесью
легирование полупроводника трехвалентной примесью
1) Атомы кремния. 2) Пятивалентный примесный атом (донор). 3) Ковалентные связи. 4) Свободный электрон. При легировании полупроводника пятивалентным атом фосфора (P) вводит четыре своих валентных электрона в ковалентные связи с соседними атомами. Его пятый электрон слабо связан с ядром и легко может стать свободным. В данном случае атом фосфора называется донором, так как он отдает свой лишний электрон. Электроны в таком полупроводнике n-типа являются основными носителями (имеют отрицательный заряд), а дырки — неосновными. 1) Атомы кремния. 2) Ковалентные связи. 3) Трехвалентный примесный атом (акцептор). 4) Дырка. При легировании полупроводника трехвалентным атомом индия (In) три валентных электрона разместятся среди трех соседних атомов. Это создает в ковалентной связи дырку. Наличие дырок позволяет электронам дрейфовать от одной ковалентной связи к другой. В данном случае In — акцептор, так как дырки принимают электроны. Дырки в таком полупроводнике p-типа являются основными носителями (имеют положительный заряд), а электроны — неосновными.

Полупроводники p и n типов имеют более высокую проводимость, чем чистые полупроводники. Проводимость может быть уменьшена или увеличена путем изменения количества примесей.

Свойства электронно дырочного перехода

Электронно дырочный переход (p-n) создается в пластине полупроводника путем образования в ней области с различными типами проводимости. В области данного перехода имеется значительный перепад концентрации носителей зарядов, когда электронов в n-области больше, чем в p-области. В результате чего происходит:

  • Диффузия электронов из n-области в p-область. При этом в n-области остаются неподвижные положительно заряженные ионы доноров.
  • Одновременно происходит диффузия дырок из p-области в n-область. За счет отрицательно заряженных ионов акцепторов приграничная p-область приобретает отрицательный заряд.
  • Две данных прилегающих области образуют слой объемного заряда, в котором возникает контактное электрическое поле Ek (Epn), препятствующее дальнейшему переходу электронов и дырок.

p–n-переход

Контактное поле поддерживает равновесное состояние при определенных условиях. При повышении температуры небольшая часть электронов и дырок преодолевает контактное поле и создает ток диффузии. Одновременно за счет неосновных носителей заряда создается ток проводимости. В состоянии равновесия эти токи взаимно компенсируются.

Рассмотрим более подробно p-n-переход в отсутствие внешнего поля. Вблизи границы перехода образуется двойной заряженный слой. Электрическое поле, созданное этим слоем, направлено по нормали к границе от n к p области. Это поле препятствует процессу диффузии основных носителей и, таким образом, создает для них потенциальный барьер:

потенциальный барьер на границе p-n-перехода
На энергетической диаграмме энергия электронов и дырок отсчитывается от их состояния соответственно в n и p областях.

Поэтому из n в p область могут перейти только те электроны, энергия которых превышает высоту потенциального барьера Фpn. Концентрация электронов, обладающих энергией, достаточной для преодоления барьера, определяется распределением Больцмана:

n = n0 exp (-Фpn ⁄ kT), где: n0 — концентрация электронов в n-области.

Прошедшие за барьер электроны создают электронную компоненту диффузионного тока In. Точно так же дырки, преодолевшие барьер, образуют дырочную компоненту диффузионного тока Ip. Ip и In направлены от p к n области, и суммарный ток основных носителей равен:

I0 = In + Ip ∼ exp (-Фpn ⁄ kT)

В состоянии равновесия устанавливается такая высота потенциального барьера, при которой полный ток равен нулю I = I0 — Is = 0.

Приложение напряжения к диоду с p-n переходом

Полупроводниковый диод — это пластина полупроводника (кремний или германий), одна сторона которой с электропроводностью р-типа, а другая с проводимость n-типа. На внешние поверхности пластины диода нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов.

При прямом смещении (а) поле от внешнего источника направлено навстречу полю, создаваемому объемным зарядом. Следовательно, напряжение U вычитается из барьерной разности потенциалов Upn = Фpn ⁄ e, существовавшей до приложения внешнего смещения. В результате разность потенциалов на барьере становится равной (Upn — U), а высота энергетического барьера:

e(Upn — U) = Фpn — eU.

Уменьшение высоты энергетического барьера приводит к увеличению концентрации основных носителей, преодолевающих барьер. Концентрация электронов за барьером теперь равна: n1 = n0 exp[-(-Фpn — eU ⁄ kT)] и увеличилась в n1 ⁄ n = exp(eU ⁄ kT) раз. Во столько же раз увеличится и создаваемый ими электронный диффузионный ток:

In1 = exp(eU ⁄ kT).

На ток неосновных носителей (ток насыщения) прямое смещение (так же как и обратное) влияния не оказывает. Ток электронов из p-области в n-область по-прежнему равен Ins и течет навстречу диффузионному току.

Таким образом, электронная компонента прямого тока In будет равна:

In = In1 — Ins = Ins[exp(eU ⁄ kT) — 1].

Дырочная компонента прямого тока:

Ip = Ip1 — Ips[exp(eU ⁄ kT) — 1].

Полный ток через p-n переход равен сумме электронной и дырочной компонент:

I = In — Ip = (Ins + Ips)[exp(eU ⁄ kT) — 1] = Is[exp(eU ⁄ kT) — 1].

При обратном смещении (б) происходит увеличение высоты потенциального барьера. Так как при этом принято предложенное напряжение U считать отрицательным, то соотношение e(Upn — U) = Фpn — eU остается в силе, так же как и последующие рассуждения. Поэтому формула I = Is[exp(eU ⁄ kT) — 1]
описывает не только прямую, но и обратную ветви вольт амперную-характеристику диода (ВАХ).

Вольт-амперная характеристика полупроводникового диода:

Штрихпунктирной линией показана кривая,
соответствующая теоретической зависимости I = Is[exp(eU ⁄ kT) — 1], сплошной линией — экспериментальная ВАХ.

Продолжение линейного участка ВАХ до пересечения с осью U дает значение напряжения отсечки Uотс, которое можно принять за оценку барьерной разности потенциалов Upn ≈ Uотс. Значение Upn совпадает с числовым значением высоты потенциального барьера Фpn, выраженном в электрон-вольтах.

Обратная ветвь ВАХ также отличается от теоретической Iобр = Is для IUI >> kT. В этой области сопротивление электронно дырочного перехода быстро увеличивается и даже превышает сопротивление изоляции диода. Поэтому возникает ток утечки, который течет не через p-n переход, а через постоянное сопротивление изоляции. Этой ситуации соответствует линейный участок обратной ветви, пересечение которого с осью тока I дает оценку тока насыщения Is.

Для оценки ширины электронно дырочного перехода можно использовать формулу: d ≈ √((2εε0Uотс) ⁄ end), где nd — концентрация атомов донорной примеси в полупроводнике n-типа, ε — диэлектрическая проницаемость материала полупроводника.

В большинстве полупроводниковых приборов исполь­зуются кристаллы комбинированного полупроводника с двумя и более слоями (зонами), образованными примесными полупроводниками с различным типом проводимости, т. е. полупроводниками р и n - типа.

Область комбинированного полупроводника, расположенная вблизи ме­таллургической границы, разделяющей полупровод­ник на две части с разнотипной проводимостью ( p и n - зоны), называется электронно - дырочным переходом или р – п - переходом.

Электронно-дырочный переход (рис. 7) обычно получают вплавлением или диффузией соответствую­щих примесей в пластинку монокристалла чистого полупроводника. Электронно-дырочный переход представляет собой очень тонкий (не более де­сятых долей микрометра) слой, разделяющий р и n – полупроводники (р и n – зоны) и в отличие от примесных или чистых полупроводников обладающий свойством односторонней проводимости, на использовании которой основана работа полупроводниковых приборов.

Образование электронно-дырочного перехода обусловлено различием концентраций подвижных носителей заряда в электронной и дырочной областях (зонах) комбинированного р - n – полупроводника. В отсутствие внешнего электрического поля в зоне контакта полупроводников р и n – типа из-за разности концентраций подвижных носителей заряда в р и n - зонах происходит процесс диффузии основных носителей электрических заряда из зоны с повышенной концентрацией носителей в зону с по­ниженной концентрацией носителей заряда (диффузионный ток I ДИФ), т. е. дырки, концентрация которых повышена в полупроводнике р – типа, диффундируют в n - зону, а электроны, концентрация которых повышена в полупроводнике n – типа - диффундиру­ют в р – зону. При встречном движении положительных (дырок) и отрицательных (электронов) носителей зарядов они взаимно нейтрализуются (рекомбинируют) и вблизи границы раздела полупроводников р и n – типа возникает область, обеднённая подвижными основными носителями заряда и обладающая высоким электрическим сопротивлением (запирающий слой).


Рис. 7. Структура электронно-дырочного перехода

Если бы электроны и дырки были нейтральными, то в процессе диффузии произошло бы в конечном итоге полное выравниванию их концентраций по всему объ­ему кристалла. Однако в действительности этого не происходит, поскольку диффузионный ток через р и n - пере­ход приводит к нарушению баланса положительных и отрица­тельных зарядов и возникновению в запирающем слое электрического поля, препятствующего диффузии носителей зарядов. Уход электронов из n - зоны полупроводника приводит к тому, что их концентрация вблизи р и n - пере­хода уменьшается и здесь возникает не скомпенсированный положительный заряд неподвижных ионов донорной примеси. В другой части полупроводника - в р – зоне - вследствие ухода дырок их концентрация вблизи р и n - пере­хода снижается и здесь возникает не скомпенсированный отрицательный заряд неподвижных ионов кристаллической решётки.

Таким образом, в результате диффузии носителей заряда в запираю­щем слое нарушается баланс положительных и отрица­тельных зарядов и на границе раздела полупроводников р и n – типа возникают два слоя противоположных по знаку зарядов, образованных неподвижными ионами кристаллической решётки: отрицательными в р - зоне, в положительными в n – зоне, т. е. возникает так называемый двойной электрический слой.

Этот двойной электрический слой (контактная разность потенциалов), образованный пространственными зарядами ионов кристаллической решётки, создает внутри запирающего слоя электри­ческое поле напряженностью E ПЕР ( поле перехода или потенциальный барьер), направленное от n - зоны полупроводника к р – зоне, т. е. направленное навстречу диффузионному току. Под действием поля перехода возникает встречное движение неосновных носителей заряда через р – п - переход – дырок из n – зоны и электронов – из р – зоны, т. е. возникает так называемый дрейфовый ток I ДР , направленный навстречу диф­фузионному току.

Разделение носителей заряда на диффундирующие и дрейфующие довольно условно, т.к. в действительности каждый носитель заряда в запирающем слое находится в движении под одновременным действием сил диффузии и внутреннего электрического поля перехода. Через некоторое время дрейфовый ток полностью компенсирует диффузионный и в области р – п - перехода наступает динамическое равновесие, когда результирующий ток через переход равен нулю

I = I ДИФ - I ДР = 0.

Такой режим соответствует равновесному со­стоянию р – п - перехода при отсутствии внешнего электри­ческого поля.

Принцип действия полупроводниковых приборов объясняется свойствами так называемого электронно-дырочного перехода (p-n - перехода) - зоной раздела областей полупроводника с разным механизмами проводимости.

Электронно-дырочный переход - это область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). Поскольку в р-области электронно-дырочного перехода концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область.

Для создания в исходном полупроводнике (обычно 4-валентном германии или кремнии) проводимости n- или p-типа в него добавляют атомы 5-валентной или 3-валентной примесей соответственно (фосфор, мышьяк или алюминий, индий и др.)

Атомы 5-валентной примеси (доноры) легко отдают один электрон в зону проводимости, создавая избыток электронов в полупроводнике, не занятых в образовании ковалентных связей; проводник приобретает проводимость n-типа. Введение же 3-валентной примеси (акцепторов) приводит к тому, что последняя, отбирая по одному электрону от атомов полупроводника для создания недостающей ковалентной связи, сообщает ему проводимость p-типа, так как образующиеся при этом дырки (вакантные энергетические уровни в валентной зоне) ведут себя в электрическом или магнитном полях как носители положительных зарядов. Дырки в полупроводнике р-типа и электроны в полупроводнике n-типа называются основными носителями в отличие от неосновных (электроны в полупроводнике р-типа и дырки в полупроводнике n-типа), которые генерируются из-за тепловых колебаний атомов кристаллической решетки.

Если полупроводники с разными типами проводимости привести в соприкосновение (контакт создается технологическим путем, но не механическим), то электроны в полупроводнике n-типа получают возможность занять свободные уровни в валентной зоне полупроводника р-типа. Произойдет рекомбинация электронов с дырками вблизи границы разнотипных полупроводников.

Этот процесс подобен диффузии свободных электронов из полупроводника n-типа в полупроводник р-типа и диффузии дырок в противоположном направлении. В результате ухода основных носителей заряда на границе разнотипных полупроводников создается обедненный подвижными носителями слой, в котором в n-области будут находиться положительные ионы донорных атомов; а в p- области - отрицательные ионы акцепторных атомов. Этот обедненный подвижными носителями слой протяженностью в доли микрона и является электронно-дырочным переходом.

Потенциальный барьер в p-n переходе.


Если к полупроводнику приложить электрическое напряжение, то в зависимости от полярности этого напряжения р-n-переход проявляет совершенно различные свойства.

Свойства p-n перехода при прямом включении.


Свойства p-n перехода при обратном включении.


Итак, с определенной долей приближения можно считать, что электрический ток через р-n-переход протекает, если полярность напряжения источника питания прямая, и, напротив, тока нет, когда полярность обратная.

Однако, кроме зависимости возникшего тока от внешней энергии, например, источника питания или фотонов света, которая используется в ряде полупроводниковых приборов, существует термогенерация. При этом концентрация собственных носителей заряда резко уменьшается, следовательно, и IОБР тоже.Таким образом, если переход подвергнуть воздействию внешней энергии, то появляется пара свободных зарядов: электрон – дырка. Любой носитель заряда, рожденный в области объемного заряда pn перехода, будет подхвачен электрическим полем EВН и выброшен: электрон – в n–область, дырка – в p– область. Возникает электрический ток, который пропорционален ширине области объемного заряда. Это вызвано тем, что чем больше EВН , тем шире область, где существует электрическое поле, в котором происходит рождение и разделение носителей зарядов. Как было сказано выше, скорость генерации носителей зарядов в полупроводнике зависит от концентрации и энергетического положения глубоких примесей, существующих в материале.

По этой же причине выше предельная рабочая температура полупроводника. Для германия она составляет 80º С, кремний: 150º С, арсенид галлия: 250º С (DE = 1,4 эВ). При большей температуре количество носителей заряда возрастает, сопротивление кристалла уменьшается, и полупроводник термически разрушается.

Вольт-амперная характеристика p-n перехода.

Вольт-амперная характеристика (ВАХ) являет­ся графической зависимостью протекающего через р-n переход тока от приложенного к нему внешнего напря­жения I=f(U). Вольт-амперная характе­ристика р-n перехода при пря­мом и обратном включе­нии приведена ниже.


Она состоит из прямой (0-А) и обратной (0-В-С) ветвей; на вертикальной оси отложены значения прямого и обратного тока, а на оси абсцисс — значения прямого и обратного напряжения.

Напряжение от внешнего источника, подведенное к кристаллу с р-п переходом, практически полностью со­средотачивается на обедненном носителями переходе. В зависимости от полярности возможны два варианта включения постоянного напряжения — прямое и обрат­ное.

При прямом включении (рис. справа - верх) внешнее элект­рическое поле направлено навстречу внутреннему и частично или полиостью ос­лабляет его, снижает высо­ту потенциального барьера (Rпр). При обратном включении (рис. справа - низ) элект­рическое поле совпадает по направлению с полем р-п перехода и приводит к росту потенциального барьера (Rобр).

ВАХ p-n перехода описывает­ся аналитической функцией:


Uприложенное к переходу внешнее напряжение соответствующего знака;

Iо = Iтобратный (тепловой) ток р-п перехода;

температурный потенциал, где k - постоянная Больцмана, q - элементарный заряд (при T = 300К, 0,26 В).

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или –-переход) – это область контакта двух полупроводников с разными типами проводимости.

В полупроводнике -типа основными носителями свободного заряда являются электроны; их концентрация значительно превышает концентрацию дырок (). В полупроводнике -типа основными носитялеми являются дырки (). При контакте двух полупроводников - и -типов начинается процесс диффузии: дырки из -области переходят в -область, а электроны, наоборот, из -области в -область. В результате в -области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В -области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 1.14.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой ) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между - и -областями запирающее напряжение з, приблизительно равное 0,35В для германиевых –-переходов и 0,6В для кремниевых.

–-переход обладает удивительным свойством односторонней проводимости.

Если полупроводник с –-переходом подключен к источнику тока так, что положительный полюс источника соединен с -областью, а отрицательный – с -областью, то напряженность поля в запирающем слое возрастает. Дырки в -области и электроны в -области будут смещаться от –-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через –-переход практически не идет. Напряжение, поданное на –-переход в этом случае называют обратным . Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в -области и дырок в -области.

Если –-переход соединить с источником так, чтобы положительный полюс источника был соединен с -областью, а отрицательный с -областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из -области и электроны из -области, двигаясь навстречу друг другу, будут пересекать –-переход, создавая ток в прямом направлении. Сила тока через –-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность –-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами . Полупроводниковые диоды изготавливают из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

Полупроводниковые диоды используются в выпрямителях для преобразования переменного тока в постоянный. Типичная вольт-амперная характеристика кремниевого диода приведена на рис. 1.14.2.

Вольт-амперная характеристика кремниевого диода. На графике использованы различные шкалы для положительных и отрицательных напряжений

Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными – малыми размерами, длительными сроками службы, механической прочностью. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры. Кремниевые диоды, например, могут удовлетворительно работать только в диапозоне температур от –70 °C до 80 °C. У германиевых диодов диапазон рабочих температур несколько шире.

Полупроводниковые приборы не с одним, а с двумя –-переходами называются транзисторами . Название происходит от сочетания английских слов: transfer – переносить и resistor – сопротивление. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: ––-транзисторы и ––-транзисторы. Например, германиевый транзистор ––-типа представляет собой небольшую пластинку из германия с донорной примесью, т. е. из полупроводника -типа. В этой пластинке создаются две области с акцепторной примесью, т. е. области с дырочной проводимостью (рис. 1.14.3). В транзисторе ––-типа основная германиевая пластинка обладает проводимостью -типа, а созданные на ней две области – проводимостью -типа (рис. 1.14.4).

Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э). Обычно объем коллектора превышает объем эмиттера. В условных обозначениях на схемах стрелка эмиттера показывает направление тока через транзистор.

Пока цепь эмиттера разомкнута, ток в цепи коллектора очень мал, так как для основных носителей свободного заряда – электронов в базе и дырок в коллекторе – переход заперт.

При замыкании цепи эмиттера дырки – основные носители заряда в эмиттере – переходят из него в базу, создавая в этой цепи ток э. Но для дырок, попавших в базу из эмиттера, –-переход в цепи коллектора открыт. Большая часть дырок захватывается полем этого перехода и проникает в коллектор, создавая ток к. Для того, чтобы ток коллектора был практически равен току эмиттера, базу транзистора делают в виде очень тонкого слоя. При изменении тока в цепи эмиттера изменяется сила тока и в цепи коллектора.

Если в цепь эмиттера включен источник переменного напряжения (рис. 1.14.5), то на резисторе , включенном в цепь коллектора, также возникает переменное напряжение, амплитуда которого может во много раз превышать амплитуду входного сигнала. Следовательно, транзистор выполняет роль усилителя переменного напряжения.

Однако такая схема усилителя на транзисторе является неэффективной, так как в ней отсутствует усиление сигнала по току, и через источники входного сигнала протекает весь ток эмиттера э. В реальных схемах усилителей на транзисторах источник переменного напряжения включают так, чтобы через него протекал только небольшой ток базы б = эк. Малые изменения тока базы вызывают значительные изменения тока коллектора. Усиление по току в таких схемах может составлять несколько сотен.

В настоящее время полупроводниковые приборы находят исключительно широкое применение в радиоэлектронике. Современная технология позволяет производить полупроводниковые приборы – диоды, транзисторы, полупроводниковые фотоприемники и т. д. – размером в несколько микрометров. Качественно новым этапом электронной техники явилось развитие микроэлектроники , которая занимается разработкой интегральных микросхем и принципов их применения.

Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в может содержать несколько сотен тысяч микроэлементов.

Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в электронной вычислительной технике. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры.

Читайте также: