Образование цветного изображения кратко

Обновлено: 30.06.2024

Современное цветное телевидение базируется на теории трехкомпонентного цветового зрения , из которой следует, что смешением трех основных спектральных цветов, взятых в определенных пропорциях, можно получить все возможные цвета. При этом основные цвета должны быть линейно-независимыми, т.е. ни один из них не может быть получен путем смешения двух других. В качестве основных обычно берутся следующие цвета монохроматического излучения: красный (R) с длиной волны λ =700,1 нм, зеленый (G)λ=546,1 нм, синий (B) λ=435,8 нм. Например, равноэнергетический белый цвет можно получить смешением в равной пропорции основных цветов R, G, B .

Для передачи по телевидению многоцветное изображение объекта на передающей стороне должно быть разделено на три одноцветных изображения (в красном, зеленом и синем цветах). Далее видеосигналы ЕR, ЕG, ЕB данных одноцветных изображений следует передать по каналу связи по аналогии с черно-белым ТВ . На приемной стороне для получения цветного изображения объекта необходимо воспроизвести три одноцветных изображения и осуществить их совмещение.

Важнейшим требованием, предъявляемым к системам цветного ТВ , является совместимость , означающая:

1) возможность приема цветных передач в черно-белом виде на существующие черно-белые телевизоры (прямая совместимость);

2) прием сигналов черно-белого ТВ на цветные телевизоры (обратная совместимость) ;

3) передачу сигналов цветного и черно-белого ТВ по одному и тому же каналу связи (в полосе частот черно-белого ТВ) .

Для обеспечения совместимости в цветном ТВ необходимо иметь сигнал, который создавал бы нормальное черно-белое изображение с правильным воспроизведением градаций яркости цветного объекта. Поэтому в совместимых системах цветного ТВ из полученных на передающем конце видеосигналов основных цветов ЕR, ЕG, ЕB формируется яркостный сигнал ЕY

в котором численные значения коэффициентов, определяющих долю напряжений видеосигналов основных цветов, выбраны с учетом характеристик принятого опорного белого цвета D65 (источника с цветовой температурой 6500К, соответствующего излучению дневного облачного неба) и координат цветности люминофоров современных цветных кинескопов. Яркостный сигнал ЕY в соответствии с выражением (8.1) формируется с помощью кодирующей матрицы , которая представляет собой резистивные делители напряжения с общей нагрузкой.

Кроме яркостного сигнала , в совместимой системе цветного ТВ необходимо передавать информацию о цветности . Практически достаточно передавать на приемную сторону только два цветных сигнала, например, ER и ЕB . Третий цветовой сигнал ЕG может быть легко получен на приемном конце матрицированием на основании уравнения (8.1). Однако непосредственная передача сигналов ЕR и ЕB нецелесообразна, поскольку данные сигналы, кроме информации о цвете, содержат избыточную информацию о яркости, которая уже имеется в сигнале ЕY . Поэтому во всех совместимых системах цветного ТВ передаются цветоразностные сигналы , которые формируются вычитанием из ЕR и ЕB яркостного сигнала ЕY .

Особенность цветоразностных сигналов заключается в том, что они не содержат информации о яркости. Например, их амплитуда равняется нулю при передаче белых или серых участков изображения, когда ER = EG = ЕB = ЕY , и мала на слабо насыщенных цветах. Так как такие цвета обычно преобладают, то средняя амплитуда цветоразностных сигналов гораздо меньше максимальной и много меньше той средней амплитуды, которая была бы при передаче сигналов ЕR, ЕG, ЕB . Это намного улучшает помехоустойчивость и совместимость систем цветного ТВ . Причем цветоразностные сигналы достаточно передавать в сокращенной полосе до 1,5 МГц. Это объясняется особенностями зрительного восприятия цветных изображений. Экспериментальные исследования показали, что цветными зрительный аппарат человека воспринимает только крупные и средние детали изображения. Мелкие детали, которым соответствуют частоты цветоразностных сигналов более 1,5 МГц, достаточно воспроизводить черно-белыми, при этом общая оценка качества цветного изображения практически не ухудшится.

В совместимых системах цветного ТВ яркостный и цветоразностный сигналы должны передаваться в стандартной полосе частот черно-белого ТВ . Для этого используется уплотнение спектра яркостного сигнала сигналами цветности .

Практически в спектр яркостного сигнала вводятся одна или две поднесущие частоты , промодулированные двумя цветоразностными сигналами . Способ передачи и приема цветоразностных сигналов и различает между собой современные вещательные системы цветного ТВ . В настоящее время в различных странах мира эксплуатируются три вещательные системы цветного телевидения. Например, в США разработана цветная система с квадратурной модуляцией поднесущей частоты NTSC (National Television System Committee, т.е. система, предложенная национальным комитетом ТВ систем) . Система NTSC используется в 54 странах мира с населением 870 млн. человек. В ФРГ разработана система с квадратурной модуляцией и строчно-переменной фазой PAL (Phase Alternation Line ). Система PAL эксплуатируется в 81 стране мира с общим населением 3,5 млрд. человек. В нашей стране и еще в 60 странах мира с населением 760 млн. человек используется система цветного телевидения с последовательной передачей цветоразностных сигналов и частотной модуляцией поднесущихSЕСАМ-III .

Немного картинок из другого источника "Журнал телеспутник"

Автор: Песков С.Н., зам. директора по науке компании "Контур-М", к.т.н.

Принцип формирования цветного изображения наиболее просто поясняется на рис.12 и 13 . Если экран подсвечивать тремя независимыми проекторами с красным, синим и зеленым фильтрами, на выходе которых установлены диафрагмы, регулирующие яркость света каждого из проектора, то возможна реализация любого цвета (рис.12) . Аналогичная картина формирования цветовых полос во временной области представлена на рис.13 .

С 1884 до наших дней: история цветного телевидения

Наверняка вы слышали или сами рассказывали кому-то о том, что телевизоры не всегда были плоскими и цветными. Мы разобрались, с какого изобретения началось развитие телевидения и как эти устройства стали частью нашей жизни.


Кажется, что телевизоры существуют целую вечность. Когда появились первые цветные ТВ-устройства, передовые стандарты передачи сигнала и цветное вещание — вы узнаете обо всем из нашей статьи.

Долгий путь: сколько лет цветному телевизору?

История развития телевидения началась в XIX веке и в ней пока рано ставить точку.

В 1938 году Вернер Флехзиг запатентовал принцип работы цветного кинескопа, а метод передачи цветного изображения был разработан Гильермо Гонсалесом Камареной в 1940 году.

Только в 1962 году был запатентован европейский стандарт PAL, который стали использовать с 1967 года. В нем применяется модель передачи цветов YUV, где Y ­ — это яркость, которую могут воспроизводить в том числе черно-белые телевизоры, а UV ­ — сигналы цвета.

В 1956 году началось развитие французского стандарта SECAM, который дебютировал в начале 1960-х годов.

Разработка многих стандартов не была результатом отсутствия научных связей между государствами, а стала частью политики: Франция хотела защитить себя от импорта во всех сферах и развивать свой собственный культурный ландшафт. А в Советском Союзе была введена альтернативная система SECAM, лишь условно совместимая с французской, чтобы свести к минимуму политическое и техническое влияние со стороны Запада.

Когда цветные телевизоры появились в наших домах?

Пик продаж цветных телевизоров в Европе пришелся на Олимпийские Игры 1972 года и Чемпионат мира по футболу 1974 года. К этому времени около 90% всех телевизионных передач были в цвете, а примерно у пятидесяти процентов европейских семей был дома цветной телевизор.

Введение цветного телевещания было субсидировано GEZ (Центральная служба по взысканию сбора за пользование теле- и радиоканалами).

История развития цветного телевидения вовсе не закончилась, ведь в природе существует больше цветов, чем может показать современный телевизор. Некоторые устройства и форматы расширяют отображаемое цветовое пространство. Самые актуальные тенденции развития на рынке телевизионной техники: передача картинки с более высоким разрешением (4K и 8K) и звука с эффектом полного присутствия (Auro-3D, Dolby Atmos, Higher-Order Ambisonics, или NHK 22.2).

Кажется, что телевизоры существуют целую вечность. Когда появились первые цветные ТВ-устройства, передовые стандарты передачи сигнала и цветное вещание — вы узнаете обо всем из нашей статьи.

Долгий путь: сколько лет цветному телевизору?

В 1938 году Вернер Флехзиг запатентовал принцип работы цветного кинескопа, а метод передачи цветного изображения был разработан Гильермо Гонсалесом Камареной в 1940 году.

Только в 1962 году был запатентован европейский стандарт PAL, который стали использовать с 1967 года. В нем применяется модель передачи цветов YUV, где Y ­ — это яркость, которую могут воспроизводить в том числе черно-белые телевизоры, а UV ­ — сигналы цвета.

В 1956 году началось развитие французского стандарта SECAM, который дебютировал в начале 1960-х годов.

Разработка многих стандартов не была результатом отсутствия научных связей между государствами, а стала частью политики: Франция хотела защитить себя от импорта во всех сферах и развивать свой собственный культурный ландшафт. А в Советском Союзе была введена альтернативная система SECAM, лишь условно совместимая с французской, чтобы свести к минимуму политическое и техническое влияние со стороны Запада.

Пик продаж цветных телевизоров в Европе пришелся на Олимпийские Игры 1972 года и Чемпионат мира по футболу 1974 года. К этому времени около 90% всех телевизионных передач были в цвете, а примерно у пятидесяти процентов европейских семей был дома цветной телевизор.

Введение цветного телевещания было субсидировано GEZ (Центральная служба по взысканию сбора за пользование теле- и радиоканалами).

История развития цветного телевидения вовсе не закончилась, ведь в природе существует больше цветов, чем может показать современный телевизор. Некоторые устройства и форматы расширяют отображаемое цветовое пространство. Самые актуальные тенденции развития на рынке телевизионной техники: передача картинки с более высоким разрешением (4K и 8K) и звука с эффектом полного присутствия (Auro-3D, Dolby Atmos, Higher-Order Ambisonics, или NHK 22.2).

Рис.9Упрощенная схема цветной телевизионной системы:I— дихроичные зеркала,II— линии связи,III — экран цветного изображения

Рис.9 Упрощенная схема цветной телевизионной системы: I — дихроичные зеркала, II — линии связи, III — экран цветного изображения.

Сильно упрощенная схема цветной телевизионной передачи представлена на рисунке. Передаваемое цветное изображение разбивается на три цветовых сигнала: красный R, зеленый G, синий В с помощью дихроичных зеркал, которые обладают способностью отражать один из основных цветов и пропускать остальные. Разделенные цветные сигналы передаются самостоятельно в эфир в виде электромагнитных волн и сводятся в одно общее изображение в телевизоре, точнее в кинескопе цветного изображения.

Для современных цветных телевизоров разработаны специальные трехцветные кинескопы с теневой маской, позволяющие получать на экране всю гамму цветов от красного до фиолетового через оранжевый, желтый, зеленый, голубой и синий.

Кинескоп цветного изображения имеет три электронных прожектора, расположенных симметрично под углом 120° один к другому. Каждый прожектор модулируется (управляется) определенным цветовым сигналом (R, G, В). Люминесцирующий экран состоит из трех групп люминофоров, расположенных триадами: красного (фосфат цинка Zn3(PC4)2, зеленого (виллемит Zn2SiО4Mn) и синего (сульфид цинка ZnSAg). Общее количество люминесцирующих зерен (R, G, В) составляет более миллиона. Прожекторы, теневая маска и цветовые зерна люминофоров (триады) расположены так, что красный сигнал попадает только на красносветящиеся зерна, зеленый — на зеленосветящиеся, синий — на синесветящиеся.

Так как зерна триад очень малы, на экране происходит пространственное смешение цветов и получается светящееся пятно, цвет которого зависит от соотношения токов электронных прожекторов, т. е. от величины принимаемых красного, зеленого и синего сигналов.

Читайте также: