Моделирование в биологии 5 класс определение кратко

Обновлено: 03.07.2024

Сравнение - это исследование объектов с помощью определения их общих и отличительных черт. Сравнение предполагает соотнесение 2-х объектов для определения их схожих и различных черт. Сравнение помогает определить качественные и количественные признаки изучаемых объектов.

Моделирование - образование образцов биологических систем с присущими им свойствами. В качестве объекта моделирования берется любая биологическая система. Это нужно для воссоздания строений живых организмов их функционирования и исследования.

На протяжении длительного периода времени биология была описательной наукой, мало приспособленной для прогнозирования наблюдаемых явлений. С развитием компьютерных технологий ситуация изменилась. Сначала наиболее используемыми в биологии были методы математической статистики, которые позволяли выполнять корректную обработку данных экспериментов и оценивать определенную значимость для принятия определенных решений и получения выводов. Со временем, когда методы химии и физики вошли в биологию, начали использовать сложные математические модели, которые позволяли обрабатывать данные реальных экспериментов и предсказывать протекание биологических процессов в ходе виртуальных экспериментов.

Модели в биологии

Моделирование биологических систем представляет собой процесс создания моделей биологических систем с характерными для них свойствами. Объектом моделирования может быть любая из биологических систем.

В биологии применяется моделирование биологических структур, функций и процессов на молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом уровнях организации живых организмов. Применяется моделирование также к разным биологическим феноменам, условиям жизнедеятельности отдельных особей, популяций, экосистем.

Биологические системы – это очень сложные структурно-функциональные единицы.

Используется компьютерное и наглядное моделирование биологических компонентов. Примеров таких биологических моделей огромное количество. Приведем некоторые примеры биологических моделей:

Готовые работы на аналогичную тему

Модели в биологии. Автор24 — интернет-биржа студенческих работ

Основные виды моделей в биологии

Биологические модели на лабораторных животных воспроизводят определенные состояния или заболевания, которые встречаются у животных или человека. Их использование позволяет изучать при проведении экспериментов механизмы возникновения данного состояния или заболевания, его протекание и исход, воздействовать на его протекание. Примерами биологических моделей являются искусственно вызванные генетические нарушения, инфекционный процесс, интоксикация, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункция или гипофункция некоторых органов, неврозы и эмоциональные состояния.

Для создания биологических моделей воздействуют на генетический аппарат, применяется заражение микробами, вводят токсины, удаляют отдельные органы и т.д. Физико-химические модели воспроизводят с помощью химических или физических средств биологические структуры, функции или процессы и, обычно, они представляют собой далекое подобие биологического явления, которое моделируется.

Значительные успехи были достигнуты в создании моделей физико-химических условий существования живых организмов, их органов и клеток. Например, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), которые имитируют внутреннюю среду организма и поддерживают существование изолированных органов или культивируемых клеток внутри организма.

Моделирование биологических мембран позволяет выполнять исследование физико-химических основ процессов транспортировки ионов и влияния на него разных факторов. С помощью химических реакций, которые протекают в растворах в автоколебательном режиме, моделируются характерные для многих биологических феноменов колебательные процессы.

Математические модели (описание структуры, связей и закономерностей функционирования живых систем) построены на основе данных эксперимента или представляют собой формализованное описание гипотезы, теории или открытой закономерности какого-либо биологического феномена и для них необходима дальнейшая опытная проверка. Разные варианты таких экспериментов определяют границы использования математических моделей и представляют материал для ее дальнейшего корректирования. Испытание математической модели биологического явления на персональном компьютере дает возможность предвидеть характер изменения исследуемого биологического процесса в условиях, которые трудно воспроизвести с помощью эксперимента.

Математические модели дают возможность предсказать в отдельных случаях некоторые явления, которые были ранее неизвестны исследователю. Например, модель сердечной деятельности, которую предложили голландские ученые ван дер Пол и ван дер Марк, основанная на теории релаксационных колебаний, показала возможность особого нарушения сердечного ритма, которое впоследствии обнаружили у человека. Математической моделью физиологических явлений является также модель возбуждения нервного волокна, которая была разработана английскими учеными А. Ходжкином и А. Хаксли. Существуют логико-математические модели взаимодействия нейронов, построенные на основе теории нервных сетей, которые были разработаны американскими учеными У. Мак-Каллоком и У. Питсом.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Моделирование на уроках биологии

Федеральный государственный образовательный стандарт определил приоритетные направления развития образования. Одно из них – метапредметный подход, как средство достижения метапредметного результата.

Модель – это некий упрощенный объект, который отражает существенные особенности реального объекта, процесса или явления.
Модели в биологии применяются для моделирования:

1. биологических структур,

2. функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом.

Возникает вопрос:
Может лучше исследовать сам оригинал и не строить его модель.

С моделью удобнее:

1.Сохранить и передать информацию о наблюдаемом объекте.
2. Показать, как будет выглядеть объект, которого еще нет
3. В реальном времени оригинал может уже не существовать или его нет в действительности (теория вымирания динозавров …)
4. Оригинал либо очень велик, либо очень мал (клетка, ДНК…)
5. Процесс протекает очень быстро или очень медленно (эволюция растений, животных, смена биоценозов…)

Какие же модели, и с какой целью я применяю их при изучении предмета БИОЛОГИЯ? Приведу конкретные примеры…

Все модели можно разбить на два больших класса: модели предметные (материальные) и модели информационные.

Предметные модели

Предметные модели воспроизводят геометрические, физические и другие свойства объектов в материальной форме (анатомические муляжи, модели кристаллических решеток, макеты зданий и сооружений и др.).

Возможностей для такого действенного овладения предметным моделированием в школьном курсе биологии немало.

Аналогично можно смоделировать клетки простейших, простые и сложные вещества, тычиночные и пестичные цветки и т.д. Многие учащиеся с удовольствием создают модели, используя аппликацию из цветной бумаги. Подобные задания можно применять преимущественно в 5 и 6 классах, что объясняется психолого-физиологическими особенностями учащихся этого возраста. Модели выставлены в кабинете биологии, их можно использовать на уроках.

В ходе моделирования обучающиеся проходят несколько этапов деятельности.

Первый – тщательное изучение опыта, связанного с интересующим явлением или объектом, анализ и обобщение этого опыта, и создание гипотезы, лежащей в основе будущей модели.

Второй – составление программы деятельности, её организация в соответствии с разработанной программой, внесение в неё коррективов, подсказанных практикой или различными источниками, уточнение первоначальной гипотезы исследования, взятой в основу модели.

Третий – создание окончательного варианта модели. Если на втором этапе исследователь как бы предлагает различные варианты конструируемого объекта, то на третьем этапе он на основе этих вариантов создает окончательный образец того или иного проекта, который собирается воплотить.

Примером предметной модели может послужить собственная модель принципа построения молекулы ДНК при помощи конструктора - пазлы. Этот приём наглядно демонстрирует учащимся последовательность и закономерность расположения нуклеотидов в двуцепочечной ДНК.

Информационные модели

Информационные модели представляют объекты и процессы в образной или знаковой форме. Образная модель - это модель в мысленной или разговорной форме. Знаковая модель - это модель, выраженная средствами формального языка (графики, таблицы, тексты и т.д.). Образные и знаковые модели, как правило, взаимосвязаны. Мысленный образ, родившийся в голове человека, может быть облечен в знаковую форму.

Я использую информационные модели как опору для изложения соответствующего учебного материала в виде граф-логических моделей (ГЛМ). Проектируя ГЛМ совместно с учащимися, действуем по следующему плану:

В итоге получится структура, которая графически отображает размышления

При проектировании каждой темы в её состав включают следующие аспекты:

этимологический (происхождение понятия);

генетический (зарождение знания, его развитие, современное состояние);

внутрипредметные и межпредметные связи знаний;

прикладное значение знаний для человека, общества, природы;

отражение знаний в культуре, искусстве и т.д.

Использование ГЛМ на уроках биологии дает следующие возможности:

получить целостное представление об изучаемом объекте;

осуществить связь между предшествующими и последующими темами курса;

делить общие понятия на частные, выясняя при этом связи между ними и закономерности;

компактно и системно обучать структурированию знаний и логике;

организовать самостоятельную работу учащегося над конкретной темой при выполнении им творческого, исследовательского задания;

избавлять учащихся от механического запоминания, снимать стресс перед восприятием большого объёма учебного материала;

сформировать новый взгляд на учебный предмет, на предметный курс, на жизнь в целом;

технологизировать деятельность учителя и учащегося для значительного облегчения их совместной работы.

Очень эффективно использовать информационные модели при изучении семейств растений Класса Однодольные и Двудольные растения (6 класс), где в опорном конспекте по учебному материалу в виде значков, символов кодируется большой объем информации, но легко расшифровываются учениками, собенно когда эти символы выбирают и предлагают сами дети.

Игровое моделирование.

По договорённости с учителем один из учащихся запускает самолётик перед началом изучения новой темы. Дети мгновенно реагируют на это раздражитель. Затем ведётся беседа о том, что такое раздражимость и рефлекс.

Знаковое моделирование.

Активно используется при изучении семейств двудольных и однодольных растений. Благодаря знакам, буквам и цифрам учащиеся небольшой текст преобразуют в формулу цветка, запись получается краткой, но ёмкой. Возможен обратный процесс, когда учащиеся на основании формулы дают словесное описание.

Преобразование текста в таблицы. Таблицы, которые дети заполняют в течение одного урока, я называю краткосрочными, таблицы, заполняемые в течение нескольких уроков, долгосрочными. Используя таблицы, слабые ученики могут составить рассказ, найти черты сходства и различия.

Модель-алгоритм.

При изучении следующих тем: моно-, ди-, полигибридное скрещивания, промежуточное наследование признака, анализирующее скрещивание, взаимодействие неаллельных генов, генетика пола и сцепленное с полом наследование я использую модель решения генетических задач, которая легко усваивается школьниками.

Определение по условиям задачи доминантных и рецессивных признаков

Запись фенотипов и генотипов родителей

Запись возможных гамет, образуемых при мейозе

Определение генотипов и фенотипов полученного от скрещивания потомства

Формулировка и запись ответа.

метод моделирования для учителя:

Способствует формированию положительной мотивации у учащихся.

Активизирует познавательные способности учащихся.

Способствует росту качества знаний.

Вдохновляет преподавателя на поиск новых подходов к обучению, стимулирует профессиональный рост.

Делает занятия интересными, повышает мотивацию.

Предоставляет больше возможностей для участия в коллективной, групповой работе, развития личных и социальных навыков.

Развивает творческие способности.

Способствует повышению навыков научного труда.

Способствует развитию рефлексивных качеств личности.

Созданные модели используются на разных этапах урока: при определении темы урока, постановке учебной задачи, на этапе изучения или закрепления знаний и умений, как домашнее, творческое задание, как средство повышения мотивации к изучению предмета.

Таким образом, моделирование превращается в один из универсальных методов познания, применяемых во всех современных науках, как естественных, так и общественных, как теоретических, так и экспериментальных, технических. При решении любой задачи моделирования основную роль играют эксперимент и модель, а также анализ полученных результатов. Для исследователя эти элементы неотделимы друг от друга.

Некоторые предметные и информационные модели представлены в приложении.

Преобразование текста в формулу цветка. 6, 7 классы

Цветок вишни обоеполый, имеет пять несросшихся чашелистиков зелёного цвета, пять свободных лепестков бледно-розового цвета, много тычинок и один пестик. На основании информации составьте формулу цветка. Определите, какая информация лишняя и не отражается в формуле цветка?

Формула цветка: Ч5Л5ТП1

Преобразование текста в таблицу.

Заполняется в течение 5 уроков. Текст параграфа 20, 5 класс

Ответить на вопросы:

Черты сходства и различия

Почему возникли черты сходства и различия?

Моделирование экологической ситуации.

В советское время для борьбы с комарами и мошками (кровососущими насекомыми) поверхность водоемов весной поливали керосином или

дизельным топливом. Делали это для того, чтобы создать маслянистую пленку на поверхности водоема. Зачем? Что достигалось этим действием?

имело такое мероприятие для водоема?

Ответ 1

Маслянистая пленка на поверхности водоема препятствовала поступлению кислорода в водную среду,что, в свою очередь, уничтожало личинки кровососущих насекомых (комаров, мошек). Это вело к уменьшению численности кровососущих насекомых и способствовало улучшению качества жизни человека и повышению продуктивности сельскохозяйственных животных, т. к. эти насекомые активны в дневное и ночное время и не позволяют животным кормиться у водоема сочной растительностью.

Ответ 2

Решив проблему с уменьшением численности кровососущих насекомых и создав комфортные условия для человека и сельскохозяйственных животных, люди незаметно для себя создали другую проблему: т. к. в воде обитает большое количество иных живых организмов, составляющих пищевую цепь в экосистеме водоема, возникла глобальная проблема уменьшения рыбных запасов и исчезновения видов рыб, питавшихся личинками комаров и мошек.

Модели (в биологии) Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.

В биологии применяются в основном три вида М.: биологические, физико-химические и математические (логико-математические). Биологические М. воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких М. — искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической М. применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические М. широко используются в генетике, физиологии, фармакологии.

Позднее более сложные М., основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе . Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса , процессы центрального торможения и пр.). Этим М. обычно придают форму мыши, черепахи, собаки (см. рис. 1—3 ). Такие М. также слишком упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики , чем для биологии.

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток (см. Культуры тканей ).

М. биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, — дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Читайте также: