Методы аппроксимации функций кратко

Обновлено: 16.05.2024

При обработке экспериментальных данных часто возникает необходимость аппроксимировать их линейной функцией.

Аппроксимацией (приближением) функции f(x) называется нахождение такой функции ( аппроксимирующей функции ) g(x) , которая была бы близка заданной. Критерии близости функций могут быть различные.

В случае если приближение строится на дискретном наборе точек, аппроксимацию называют точечной или дискретной .

В случае если аппроксимация проводится на непрерывном множестве точек (отрезке), аппроксимация называется непрерывной или интегральной . Примером такой аппроксимации может служить разложение функции в ряд Тейлора, то есть замена некоторой функции степенным многочленом.

Наиболее часто встречающим видом точечной аппроксимации является интерполяция – нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений.

Пусть задан дискретный набор точек, называемых узлами интерполяции , а также значения функции в этих точках. Требуется построить функцию g(x) , проходящую наиболее близко ко всем заданным узлам. Таким образом, критерием близости функции является g(xi)=yi .

В качестве функции g(x) обычно выбирается полином, который называют интерполяционным полиномом .

В случае если полином един для всей области интерполяции, говорят, что интерполяция глобальная .

В случае если между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции.

Найдя интерполяционный полином, мы можем вычислить значения функции между узлами, а также определить значение функции даже за пределами заданного интервала (провести экстраполяцию ).

Аппроксимация линейной функцией

Уравнение прямой

Любая линейная функция может быть записана уравнением

Аппроксимация заключается в отыскании коэффициентов a и b уравнения таких, чтобы все экспериментальные точки лежали наиболее близко к аппроксимирующей прямой.

С этой целью чаще всего используется метод наименьших квадратов (МНК), суть которого заключается в следующем: сумма квадратов отклонений значения точки от аппроксимирующей точки принимает минимальное значение:

Решение поставленной задачи сводится к нахождению экстремума указанной функции двух переменных. С этой целью находим частные производные функции функции по коэффициентам a и b и приравниваем их к нулю.

Решаем полученную систему уравнений

Определяем значения коэффициентов

Для вычисления коэффициентов необходимо найти следующие составляющие:

Тогда значения коэффициентов будут определены как

Пример реализации

Для примера реализации воспользуемся набором значений, полученных в соответствии с уравнением прямой

y = 8 · x — 3

Рассчитаем указанные коэффициенты по методу наименьших квадратов.
Результат сохраняем в форме двумерного массива, состоящего из 2 столбцов.
При следующем запуске программы добавим случайную составляющую к указанному набору значений и снова рассчитаем коэффициенты.

Реализация на Си


Результат выполнения
Запуск без случайной составляющей

Запуск со случайной составляющей

Построение графика функции

Для наглядности построим график функции, полученный аппроксимацией по методу наименьших квадратов. Подробнее о построении графика функции описано здесь.


Реализация на Си

Реализация линейной аппроксимации по МНК (график)


Результат выполнения

Аппроксимация с фиксированной точкой пересечения с осью y

Понятие аппроксимации как приближенного выражение математических объектов через более простые. Аппроксимация функций с помощью алгебраических интерполяционных полиномов. Метод наименьших квадратов с помощью ортогональных полиномов и формула Форсайта.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 13.01.2015
Размер файла 287,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аппроксимация (от латинского "approximate" -"приближаться")- приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом. При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы. Поэтому при выполнении любой научно-исследовательской работы возникает проблема выявления подлинного характера зависимости изучаемых показателей, этой или иной степени замаскированных неучтенностью вариабельности значений. Для этого и применяется аппроксимация - приближенное описание корреляционной зависимости переменных подходящим уравнением функциональной зависимости, передающим основную тенденцию зависимости (или ее "тренд").

При выборе аппроксимации следует исходить из конкретной задачи исследования. Обычно, чем более простое уравнение используется для аппроксимации, тем более приблизительно получаемое описание зависимости. аппроксимация алгебраический интерполяционный полином

Поэтому важно считывать, насколько существенны и чем обусловлены отклонения конкретных значений от получаемого тренда. При описании зависимости эмпирически определенных значений можно добиться и гораздо большей точности, используя какое-либо более сложное, много параметрическое уравнение. Однако нет никакого смысла стремиться с максимальной точностью передать случайные отклонения величин в конкретных рядах эмпирических данных. Гораздо важнее уловить общую закономерность, которая в данном случае наиболее логично и с приемлемой точностью выражается именно двухпараметрическим уравнением степенной функции. Таким образом, выбирая метод аппроксимации, исследователь всегда идет на компромисс: решает, в какой степени в данном случае целесообразно и уместно "пожертвовать" деталями и, соответственно, насколько обобщенно следует выразить зависимость сопоставляемых переменных. Наряду с выявлением закономерностей, замаскированных случайными отклонениями эмпирических данных от общей закономерности, аппроксимация позволяет также решать много других важных задач: формализовать найденную зависимость; найти неизвестные значения зависимой переменной путем интерполяции или, если это допустимо, экстраполяции.

1. Теоретическое описание задачи

Получить аналитическое описание графически заданных зависимостей концентрации дырок р-типа от температуры в образцах кремния с примесью бора (график 1 и 2) методами Лагранжа, Ньютона, Форсайта и сравнить точности каждого из методов при решении данной задачи.

Дегтярева А., Вежневец В. Методы аппроксимации функции. Краткое пособие

Бородич Л.И., Герасимович А.И., Кеда Н.П., Мелешко И.Н. Справочное пособие по приближенным методам решения задач высшей математики

  • формат djvu
  • размер 2.48 МБ
  • добавлен 25 августа 2011 г.

Минск: Высш. шк., 1986. - 192 с. Пособие состоит из 6 глав, в которых рассматриваются методы решения уравнений и систем уравнений, аппроксимации функций, численного интегрирования, а также численные методы решения дифференциальных уравнений, методы .статистической обработки результатов эксперимента. Содержание каждого параграфа соответствует отдельной лабораторной работе по общему курсу высшей математики технических вузов. В пособии приводятся з.

Буслов В.А., Яковлев С.Л. Введение в численный анализ

  • формат pdf
  • размер 684.14 КБ
  • добавлен 05 сентября 2010 г.

СПб: 1999. 99 с. От авторов. Введение. Пространства с метрикой. Аппроксимации функций. Интерполяция. Аппроксимации Паде. Численное дифференцирование. Дифференцирование интерполяционного полинома. Конечные разности. Численное интегрирование. Наводящие соображения. Квадратурные формулы Ньютона-Котеса. Формулы Гаусса-Кристофеля. Примеры квадратурных формул. Составные квадратурные формулы. Другие формулы. Системы уравнений. Решение нелинейных уравне.

Варапаев В.Н. Численные методы

  • формат pdf
  • размер 1.69 МБ
  • добавлен 23 октября 2009 г.

В книге изложены принципы математического моделирования, основные понятия и методы численного решения систем линейных и нелинейных уравнений, к которым, как правило, сводятся математические модели. Основные принципы аппроксимации и интерполяции функций, численного интегрирования и дифференцирования, основные понятия и методы решения разностных и интегральных уравнений, основные понятия и методы численного решения систем дифференциальных уравнений.

Корнейчук Н.П. Сплайны в теории приближения

  • формат djvu
  • размер 4.85 МБ
  • добавлен 07 июля 2010 г.

В монографии излагаются вопросы приближения функций полиномиальными сплайнами с точки зрения традиционных аспектов современной теории аппроксимации. Основное внимание уделено выяснению аппроксимативных свойств сплайнов относительно тех или иных классов функции, причем рассматриваются ситуации, в которых получено точное (или асимптотически точное) решение экстремальной задачи. На задачах о поперечниках и об оптимальном восстановлении выясняется ме.

Лаевский Ю.М. О некоторых итогах развития современной вычислительной математики

  • формат pdf
  • размер 182.25 КБ
  • добавлен 10 апреля 2011 г.

Статья. Опубликована в журнале "Вычислительные технологии", том 7, №2, 2002, с. 74-83. Работа посвящена обсуждению некоторых аспектов численных методов решения больших задач математической физики. Конспективно излагается современный взгляд на проблемы аппроксимации, итерационных методов, построения эффективных переобусловливателей, решения нестационарных задач. Дискретизация и сопутствующие постановки задач. Методы решения СЛАУ. Проблемы переобус.

Мостовской А.П. Численные методы и система wxMaxima

  • формат pdf
  • размер 1.53 МБ
  • добавлен 05 февраля 2011 г.

Мурманск: 2009. -255 с. В пособии приведены примеры численного решения задач в системе wxMaxima по всем основным разделам линейной алгебры, аппроксимации и интерполяции функций, численного интегрирования, численного решения дифференциальных уравнений и некоторых задач численной оптимизации. Объем рассмотренного материала соответствует курсу Численные методы для студентов специальностей прикладная математика и информатика, математические методы в.

Мышенков В.И., Мышенков Е.В. Численные методы. Часть 1

  • формат pdf
  • размер 1.16 МБ
  • добавлен 18 марта 2011 г.

Учебное пособие для студентов специальности 0101.07. – М.: МГУЛ,2001. – 120 с.: ил. Учебное пособие содержит изложение основных понятий и методов теории погрешностей, аппроксимации, численного дифференцирования, вычисления определенных интегралов, решения нелинейных уравнений, систем линейных и нелинейных уравнений, методов решения задач на собственные значения.

Мышенков В.И., Мышенков Е.В. Численные методы. Численное решение обыкновенных дифференциальных уравнений

  • формат pdf
  • размер 1.15 МБ
  • добавлен 12 января 2010 г.

Московский государственный университет леса, М. : 2005, 109 с., библ. 37 назв. Учебное пособие содержит изложение основных понятий и методов решения обыкновенных дифференциальных уравнений (ОДУ) для задачи Коши и краевой задачи: постановки задач, понятия аппроксимации, устойчивости разностных методов, сходимости численных решений; одношаговые методы типа Рунге–Кутта, многошаговые методы типа Адамса, Милна и др., методы решения жестких систем ОДУ.

Носач В.В. Решение задач аппроксимации с помощью персональных компьютеров

  • формат djvu
  • размер 9 МБ
  • добавлен 10 сентября 2009 г.

М.: Микап, 1994. - 382 с. В книге содержится изложение основных современных методов аппроксимации функций, заданных экспериментальными данными. Для различных классов аппроксимирующих функций рассматричваются главные теоретические положения, а также проанализированы возможные подходы к решению задач аппроксимации. Для научных работников, инженеров и студентов, которые сталкиваются с необходимостью обработки данных. Размер: 9,4 Mb

Формалёв В.Ф., Ревизников Д.Л. Численные методы

  • формат djvu
  • размер 6.5 МБ
  • добавлен 17 ноября 2010 г.

В учебнике представлены основные численные методы решения задач алгебры и анализа, теории приближений и оптимизации, задач для обыкновенных дифференциальных уравнений и уравнений математической физики. Систематически изложены методы конечных разностей, конечных и граничных элементов, методы исследования аппроксимации, устойчивости, сходимости, оценок погрешности. Каждый метод иллюстрируется подробно разобранным примером, даны упражнения для самос.

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции), которая была бы близка заданной. Критерии близости функций и могут быть различные.

Основная задача аппроксимации построение приближенной (аппроксимирующей) функции, в целом наиболее близко проходящей около данных точек или около данной непрерывной функции. Такая задача возникает при наличии погрешности в исходных данных (в этом случае нецелесообразно проводить функцию точно через все точки, как в интерполяций) или при желании получить упрощенное математическое описание сложной или неизвестной зависимости.

Рис. 3.6 Метод Лагранжа

Концепция аппроксимации

Близость исходной и аппроксимирующей функций определяется числовой мерой

критерием аппроксимации (близости). Наибольшее распространение получил квадратичный критерий, равный сумме квадратов отклонений расчетных значений от "экспериментальных" (т.е. заданных), — критерий близости в заданных точках:

Здесь уi — заданные табличные значения функции; уi расч — расчетные значения по аппроксимирующей функции; bi — весовые коэффициенты, учитывающие относительную важность i-и точки (увеличение b,. приводит при стремлении уменьшить R к уменьшению, прежде всего отклонения в i-й точке, так как это отклонение искусственно увеличено за счет относительно большого значения весового коэффициента).

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

Другим распространенным критерием близости является следующий:

Этот критерий менее распространен в связи с аналитическими и вычислительными трудностями, связанными с отсутствием гладкости функции и ее дифференцируемости.

Выделяют две основные задачи:

1) получение аппроксимирующей функции, описывающей имеющиеся данные, с погрешностью не хуже заданной;

2) получение аппроксимирующей функции заданной структуры с наилучшей возможной погрешностью.

Чаще всего первая задача сводится ко второй перебором различных аппроксимирующих функций и последующим выбором наилучшей.

Метод наименьших квадратов

Метод базируется на применении в качестве критерия близости суммы квадратов отклонений заданных и расчетных значений. При заданной структуре аппроксимирующей функции уi расч (х) необходимо таким образом подобрать параметры этой функции, чтобы получить наименьшее значение критерия близости, т.е. наилучшую аппроксимацию. Рассмотрим путь нахождения этих параметров на примере полиномиальной функции одной переменной:

Запишем выражение критерия аппроксимации при bi =1 (i=1, 2,…, n) для полиномиального уi расч (х):

Искомые переменные аj можно найти из необходимого условия минимума R по этим переменным, т.е. dR / dар = 0 (для р =0, 1,2,…,k). Продифференцируем по ар (р — текущий индекс):

После очевидных преобразований (сокращение на два, раскрытие скобок, изменение порядка суммирования) получим

Перепишем последние равенства

Получилась система n+1 уравнений с таким же количеством неизвестных аj, причем линейная относительно этих переменных. Эта система называется системой нормальных уравнений. Из ее решения находятся параметры аj аппроксимирующей функции, обеспечивающие minR, т.е. наилучшее возможное квадратичное приближение. Зная коэффициенты, можно (если нужно) вычислить и величину R (например, для сравнения различных аппроксимирующих функций). Следует помнить, что при изменении даже одного значения исходных данных (или пары значений хi, уi, или одного из них) все коэффициенты изменят в общем случае свои значения, так как они полностью определяются исходными данными. Поэтому при повторении аппроксимации с несколько изменившимися данными (например, вследствие погрешностей измерения, помех, влияния неучтенных факторов и т.п.) получится другая аппроксимирующая функция, отличающаяся коэффициентами. Обратим внимание на то, что коэффициенты аj полинома находятся из решения системы уравнений, т.е. они связаны между собой. Это приводит к тому, что если какой-то коэффициент вследствие его малости захочется отбросить, придется пересчитывать заново оставшиеся. Можно рассчитать количественные оценки тесноты связи коэффициентов. Существует специальная теория планирования экспериментов, которая

позволяет обосновать и рассчитать значения хi, используемые для аппроксимации, чтобы получить заданные свойства коэффициентов (несвязанность, минимальная дисперсия коэффициентов и т.д.) или аппроксимирующей функции (равная точность описания реальной зависимости в различных направлениях, минимальная дисперсия предсказания значения функции и т.д.).

Рис. 3.7 Влияние степени аппроксимирующего полинома М на точность аппроксимации

В случае постановки другой задачи — найти аппроксимирующую функцию, обеспечивающую погрешность не хуже заданной, — необходимо подбирать и структуру этой функции. Эта задача значительно сложнее предыдущей (найти параметры аппроксимирующей функции заданной структуры, обеспечивающей наилучшую возможную погрешность) и решается в основном путем перебора различных функций и сравнения получающихся мер близости. Для примера на рис. 3.7 приведены для визуального сравнения исходная и аппроксимирующие функции с различной степенью полинома, т.е. функции с различной структурой. Не следует забывать, что с повышением точности аппроксимации растет и сложность функции (при полиномиальных аппроксимирующих функциях), что делает ее менее удобной при использовании.

Рассмотрим решение задачи аппроксимации и интерполяции с шумом в

программе MathCAD (рисунок 3.8).

Пример 3.1. В ходе проведения эксперимента были получены данные, представленные в таблице 3.1. Необходимо способом наименьших квадратов подобрать для заданных значений x и y квадратичную функцию . Построить на одной координатной плоскости экспериментальные данные и аппроксимирующую функцию.

Читайте также: