Методика изучения площадей в школьном курсе планиметрии

Обновлено: 04.07.2024

простая фигура – площадь фигуры как величина – площадь прямоугольника – площадь параллелограмма – площадь трапеции – площадь подобных фигур.

Геометрическую фигуру будем называть простой, если ее можно разбить на конечное число плоских треугольников. Примером простой фигуры может служить плоский выпуклый многоугольник, который разбивается на плоские треугольники диагоналями, выходящими из одной вершины.

«Площадь простой фигуры – это положительная величина, численное значение которой обладает следующими свойствами:

1) равные фигуры имеют равные площади;

2) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей ее частей;

3) площадь квадрата со стороной, равной единице измерения, равна единице;

С формулами площадей некоторых фигур учащиеся познакомились в курсе арифметики. Измеряя площади при помощи памятки, школьники познакомились с оценкой ее по недостатку и по избытку. И таким образом они уже подготовлены к восприятию вывода формулы площади прямоугольника.

Первоначально доказываем следующее свойство: площади двух прямоугольников с равными основаниями относятся как их высоты.

а) Прямоугольники ABCD и AB1C1D имеют равное основание AD. Пусть S и S1 – их площади. Разобьем сторону АВ на n равных частей, длина одной части равна . Пусть m – число точек деления, лежащих на стороне АВ1. Тогда: ≤

Разделив это неравенство почленно на АВ, получим:


б) Проводим через точки деления прямые, параллельные АD. Получим n равных треугольников со сторонами АD и , площади которых (по св-ву 1) равны и принимают значение . Поэтому, площадь АВСD выражается неравенством:


.

Разделив почленно на S, получаем:


в) Отношение и удовлетворяют одним и тем же неравенствам, причем числа и отличаются на величину .При сколь угодно больших n значение становится очень малым, а это возможно только тогда, когда числа равны. Итак:

Для вывода формулы площади прямоугольника воспользуемся только что доказанным свойством по отношению к квадрату, со стороной 1 и прямоугольником со сторонами 1 и а и а и в. Получаем:

= ; => S1=а, S=S1 в.

Площади подобных фигур.

Площади подобных фигур относятся как квадраты их соответствующих линейных размеров.

При доказательстве этого утверждения используют понятие простой фигуры, определение подобных фигур. Если фигура разбивается на простые треугольники, площади которых обозначим через , а фигура - на треугольники, площади которых и фигуры и подобны с коэффициентом , то линейные размеры треугольников в раз изменены, по отношению к размерам треугольников , то: и т. д., поэтому:



Круг – плоская фигура, но ее нельзя разбить на простые треугольники. Поэтому, такая фигура имеет площадь S, если существуют содержащие её простые фигуры и содержащиеся в ней простые фигуры с площадями, как угодно мало отличающимися от S.

В методике работы над площадью фигуры имеется много общего с работой над длиной отрезка.

Прежде всего, площадь выделяется как свойство плоских предметов среди других их свойств. Уже дошкольники сравнивают предметы по площади и правильно устанавливают отношения "больше", "меньше", "равно", если сравниваемые предметы резко отличаются друг от друга или совершенно одинаковые. При этом дети пользуются наложением предметов или сравнивают их на глаз, сопоставляя предметы по занимаемому месту на столе, на земле, на листе бумаги и т.п. однако, сравнивая предметы, у которых форма различна, а различие площадей не очень четко выражено, дети испытывают затруднения. В этом случае они заменяют сравнение по площади сравнением по длине или по ширине предметов, т.е. переходят на линейную протяженность, особенно в тех случаях, когда по одному из измерений предметы сильно отличаются друг от друга.

В процессе изучения геометрического материала в I – II классах у детей уточняются представления о площади как о свойстве плоских геометрических фигур. Более четким становится понимание того, что фигуры могут быть различными и одинаковыми по площади. Этому способствуют упражнения на вырезание фигур из бумаги, черчение и раскрашивание их в тетрадях и т.п. В процессе решения задач с геометрическим содержанием учащиеся знакомятся с некоторыми свойствами площади. Они убеждаются, что площадь не изменяется при изменении положения фигуры на плоскости (фигура не становится ни больше, ни меньше). Дети многократно наблюдают соотношение между всей фигурой и ее частями (часть меньше целого), упражняются в составлении различных по форме фигур из одних и тех же заданных частей (т.е. построение равносоставленных фигур). Учащиеся постепенно накапливают представления о делении фигур на неравные равные части, сравнивая наложением полученные части, сравнивая наложением полученные части. Все эти знания и умения дети приобретают практическим путем попутно с изучением самих фигур.

Ознакомление с площадью можно провести так:

"Посмотрите на фигуры, прикрепленные к доске, и скажите, какая из них занимает больше всего места на доске (квадрат AMKD занимает места больше всех фигур). В этом случае говорят, что площадь квадрата больше, чем площадь каждого треугольника и квадрата CDMB. Сравните площадь треугольника АВС и квадрата AMKD (площадь треугольника меньше, чем площадь квадрата).


Эти фигуры сравниваются наложением – треугольник занимает только часть квадрата, значит, действительно площадь его меньше площади квадрата. Сравните на глаз площадь треугольника ФВС и площадь треугольника DOE (у них площади одинаковые, они занимают одинаковое место на доске, хотя расположены по-разному). Проверьте наложением.

Аналогично сравниваются по площади другие фигуры, а также предметы окружающей обстановки.

Однако не всегда так легко установить, какая из двух фигур имеет большую (меньшую) площадь или они одинаковы по площади. Чтобы показать это учащимся, можно предложить им сравнить вырезанные из бумаги прямоугольник и квадрат, незначительно отличающиеся по площади, например: размеры квадрата 4х4 дм, а прямоугольника 5х3 дм, при этом фигуры с обратной стороны разбиты на квадратные дециметры. Сначала учащиеся пытаются сравнить эти фигуры на глаз, а также путем наложения. Однако оба способа не помогают детям решить вопрос убедительно. Выслушав различные предположения, учитель поворачивает фигуры той стороной, на которой сделана разбивка на квадраты, и предлагает сосчитать, сколько одинаковых квадратов содержит каждая фигура. На этой основе дети устанавливают, площадь какой фигуры больше, а какой меньше. Аналогичные упражнения на сравнивание площади фигур, составленных из одинаковых квадратов, выполняются по учебнику, а также по чертежам, данным на доске. Дети убеждаются в том, что если фигуры состоят из одинаковых квадратов, то площадь той фигуры больше (меньше), которая содержит больше (меньше) квадратов. Полезно на этом же уроке рассмотреть такой случай, когда разные по форме фигуры имеют одинаковую площадь, так как содержат одинаковое число квадратов. На последующих уроках включаются упражнения на подсчет квадратов, содержащихся в заданных фигурах, предлагается начертить в тетрадях фигуры, которые состоят из заданного числа квадратов (клеточек тетради). В процессе таких упражнений начинает формироваться понятие о площади как о числе квадратных единиц, содержащихся в геометрической фигуре.

На следующем этапе учащихся знакомят с первой единицей площади – квадратным сантиметром (Приложение № 1). Учащиеся чертят в тетрадях, вырезают из бумаги в клеточку квадраты со стороной 1см. учитель сообщает: "это единица площади – квадратный сантиметр". Используя бумажные модели квадратного сантиметра, дети составляют из них различные геометрические фигуры и находят подсчетом их площадь. Сравнивая площади составленных фигур, дети еще раз убеждаются, что площадь той фигуры больше (меньше), которая содержит больше (меньше) квадратных сантиметров. Площади фигур содержащих одинаковое число квадратных сантиметров, равны, хотя фигуры могут не совмещаться наложением. Эффективен на этом этапе прием сопоставления знакомых детям величин – длины отрезка и площади фигуры, который помогает предупредить смещение этих величин. Выполняя конкретные упражнения, обнаруживают некоторое сходство и существенное различие этих величин: сантиметр – единица длины; квадратный сантиметр – единица площади; длина отрезка – число сантиметров, которые содержаться в данном отрезке; площадь фигуры – число квадратных сантиметров, содержащихся в этой фигуре.


В дальнейшем наглядное представление о квадратном сантиметре и понятие о площади фигур закрепляются. Включаются упражнение на площади фигур, разбитых на квадратные сантиметры. Предлагается при подсчете квадратных сантиметров группировать их по рядам или столбцам, чтобы ускорить нахождение их общего числа. Рассматриваются и такие фигуры, которые на ряду с целыми квадратными сантиметрами содержат и нецелые – половины, а также доли больше или меньше, чем половина квадратного сантиметра. Следует также ознакомить учащихся с нахождением приближенной площади фигуры таким способом: сосчитать все нецелые квадратные сантиметры и общее число их разделить на два, затем полученное число сложить с числом целых квадратных сантиметров, которые содержатся в данной фигуре. Для нахождения площади геометрических фигур, не разделенных на квадратные сантиметры, используют палетку. Палетка – это прозрачная пластинка, разбитая на равные квадраты. Сетка может быть нанесена на кальку или состоять из нитей, натянутых на рамку. На данном этапе используют палетку, каждое деление которой равно квадратному сантиметру.


Наложив палетку на геометрическую фигуру, подсчитывают число целых и нецелых квадратных сантиметров, которые в ней содержатся. Для нахождения площади фигур, начерченных в тетрадях, в качестве палетки используют разлиновку тетрадей. Каждый раз подчеркивают, что найденная площадь равна приблизительно такому – то числу (около 20 см 2 ).

В это же время приступают к сопоставлению площади и периметра многоугольников с тем, чтобы дети не смешивали эти понятия, а дальнейшем четко различали способы нахождения площади и периметра прямоугольника. Выполняя практические упражнения с геометрическими фигурами, дети подсчитывают число квадратных сантиметров и тут же измеряют периметр многоугольника в сантиметрах.

На следующем этапе учащиеся знакомятся с приемом вычисления площади прямоугольника (квадрата) (Приложение №2). Сначала рассматривают прямоугольники, которые уже разделены на квадратные сантиметры. Их площадь находят путем подсчета квадратных сантиметров в одном ряду, а затем полученном число умножают на число рядов. Очень важно при этом установить соответствие между длиной прямоугольника и числом квадратных сантиметров, прилегающих к длине; шириной прямоугольника и числом рядов.

Затем дети чертят прямоугольник по заданным длинам сторон, разбивают его на ряды, а один ряд на квадраты и снова убеждаются в соответствии: если длина 4 см, то в одном ряду, прилегающем к этой стороне, содержится 4 кв.см, если ширина 3 см, то таких радов оказывается 3. число квадратных сантиметров равно произведению чисел 4 и 3. делается вывод: чтобы вычислить площадь прямоугольника, нужно знать его длину и ширину (в одинаковых единицах) и найти произведение этих чисел (Приложение № 1, 2).

В процессе решения задач на вычисление площади и периметра прямоугольников следует показать, что фигуры, имеющие одинаковую площадь, могут иметь неодинаковый периметры, и что фигуры, имеющие одинаковые периметры, могут иметь неодинаковые площади. Например, это легко наблюдать при заполнении таблицы вида:

Далее учащиеся знакомятся с дм 2 . Как и при введении см 2 , прежде всего формируется наглядный образ новой единицы: дети чертят на клетчатой бумаге квадрат со стороной 1 дм и затем вырезают его, составляют фигуры из нескольких квадратных дециметров, называя их площадь и периметр. Устанавливается соотношение между квадратным дециметром и квадратным сантиметром: 1 дм 2 = 100 см 2 . для этого просто вычисляется площадь квадрата со стороной 1 дм = 10 см (10*10 = 100). Учащиеся сами вычисляют площадь квадрата со стороной 1 дм в квадратных сантиметрах и записывают: 1 дм 2 = 100 см 2 затем дети учатся заменять мелкие единицы крупными и наоборот. Для достижения возможности решать задачи с данными, полученными путем непосредственных измерений при выполнении практических работ, необходимо выполнить ряд упражнений: "Выразить в см 2 : 2 дм 2 ; 1 дм 2 74 см 2 и т.п. Выразить в дм 2 и см 2 : 570 см 2 ; 1250 см 2 ".

На следующем этапе аналогично рассматривается квадратный метр. Обращается особое внимание на решение практических задач (Приложение № 3). Должна быть составлена и усвоена таблица всех изученных единиц площади и их отношений.


Наряду с решением задач на нахождение площади прямоугольника по данным длине и ширине решают обратные задачи на нахождение одной из сторон по известной площади и другой стороне прямоугольника.

Важнейшей задачей математического образования является вооружение учащихся общими приемами мышления, пространственного воображения, развитие способности понимать смысл поставленной задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления. Каждому важно научиться анализировать, отличать гипотезу от факта, отчетливо выражать свои мысли, а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения). Именно математика предоставляет благоприятные возможности для воспитания воли, трудолюбия, настойчивости в преодолении трудностей, упорства в достижении целей.

Сегодня математика как живая наука с многосторонними связями, оказывающая существенное влияние на развитие других наук и практики, является базой научно-технического прогресса и важной компонентой развития личности.

Одной из основных целей изучения математики является формирование и развитие мышления человека, прежде всего, абстрактного мышления, способности к абстрагированию и умения "работать" с абстрактными, "неосязаемыми" объектами.

В качестве одного из основополагающих принципов новой концепции в "математике для всех" на первый план выдвинута идея приоритета развивающей функции обучения математике. В соответствии с этим принципом центром методической системы обучения математике становится не изучение основ математической науки как таковой, а познание окружающего человека мира средствами математики и, как следствие, к динамичной адаптации человека к этому миру, к социализации личности.

Основной целью математического образования должно быть развитие умения математически осознанно исследовать явления реального мира.

1. Бантова М.А. Методика преподавания математики в начальных классах: Учебное пособие для учащихся школ.отд-ний пед.училищ по спец. №2001/Под ред. М.А. Бантовой, М.А. Бельтюкова – 3-е изд., испр.-М.:Просвещение, 1984.

2. Берлянд И.Е. Загадки и числа: воображаемые уроки в 1-м классе: пособие для учителя. – М.: Академия, 1996.

3. Вернье Ж. Ребенок, математика и реальность: проблемы преподавания математики в начальной школе. – М.: Ин-т психологии РАН, 1998.

4. Волкова С.И. Математика и конструирование в 1 классе: кн.для учителя. – М.: Просвещение, 1993.

5. Волкова С.И. Развитие познавательных способностей детей на уроках математики в 1 классе: пособие для учителя четырехлетн.нач.шк. – М.: Просвещение, 1994.

6. Волкова С.И. Развитие познавательных способностей детей на уроках математики во 2 классе: пособие для учителя четырехлетн.нач.шк. – М.: Просвещение, 1995.

7. Груденов Я.И. Психолого – дидактические основы методики обучения математики. – М.: Педагогика, 1987.

8. Епишева О.Б. Учить школьников учиться математике: формирование приемов учебной деятельности: книга для учителя. – М.: Просвещение, 1990.

9. Зильберг Н.И. Урок математики в 1-м классе./Осин.пед.училище. – Оса: Россиани, 1993.

10. Истомина Н.Б. Активизация учащихся на уроках математики в начальных классах: пособие для учителя. – М.: Просвещение, 1985.

11. Истомина Н.Б. Методика преподавания математики в начальной школе. Вопросы частной методики. – М.: Просвещение, 1986.

12. Карп А.П. Даю уроки математики…: кн.для учителя: из опыта работы. - М.: Просвещение, 1992.

13. Костицын В.Н. Моделирование на уроках геометрии: теория и методические рекомендации. – М.: Владос, 2000.

14. Лейкина Т.Н. Научиться продумывать!: метод.приемы, материалы для уроч. и внеуроч.работы, содействующие развитию творческих способностей школьников в процессе обучения математике. – Санкт-Петербург.гос.ун-т пед.мастерства, 1994.

15. Методика преподавания математики в начальных классах. Вопросы частной методики: учеб.пособие. – М.: Просвещение, 1986.

16. Моро М.И. Математика в 1-м классе: пособие для учителя трехлетн.нач.шк. – М.: Просвещение, 1986.

17. Моро М.И. Математика во 2-м классе: пособие для учителя трехлетн.нач.шк. – М.: Просвещение, 1990.

18. Моро М.И. Средства обучения математике в начальных классах: пособие для учителя. – М.: Просвещение, 1981.

19. Пчелко А.С. Математика в 3 классе: пособие для учителя трехлетней нач.шк. - М.: Просвещение, 1988.

20. Пчелко А.С. Основы методики начального обучения математики. М.: Просвещение, 1965.

21. Практикум по методике преподавания математики в средней школе. Под ред. Мишина В.И. – М.: Просвещение, 1993.

22. Рыжик В.И. 25000 уроков математики: книга для учителя. – М.: Просвещение, 1993.

23. Уткина Н.Г. Изучение трудных тем по математике в 1 – 3 классах: из опыта работы учителей г. Москвы: сборник. – М.: Просвещение, 1982.

24. Тесленко И.Ф. Методика преподавания планиметрии: метод.пособие – Киев,: Рад.шк., 1986.

25. Чилингирова Л.К. Играя, учимся математике: пособие для учителя. – М.: Просвещение,1993.

Урок математики по теме: "Квадратный сантиметр"

ТЕМА: Площадь фигуры; квадратный сантиметр.

ЦЕЛИ: Ознакомить уч-ся с квадратным сантиметром как единицей, и научить пользоваться этой единицей измерения.

ОБОРУДОВАНИЕ: геометрические фигуры, карточки с заданием, записи на доске, учебник, образец кв.см.

1. Организационный момент.

2. Индивидуальная работа.

3. Геометрический материал.

(На наборном полотне выставлены геометрические фигуры).

Круг, прямоугольник, треугольник, квадрат, многоугольник.

· Какое общее название можно дать этим фигурам?

· Чем они отличаются?

· Что знаете про стороны квадрата?

( У него все стороны равны).

Раздел: Педагогика
Количество знаков с пробелами: 52072
Количество таблиц: 1
Количество изображений: 5

Похожие работы






. снижается активность учащихся на уроке, ослабляется интерес к обучению, при её чрезмерном использовании ученики с трудом переключаются на обучение в неигровых условиях. Глава 2 Методика использования дидактических игр на уроках математики в 1 классе при изучении темы “Нумерация чисел в пределах сотни” 2.1. Исследование отношения детей и учителей к дидактическим играм на уроках математики .



. сочетаниям". И значительное место в таком построении должно принадлежать широкому применению в процессе обучения младших школьников нестандартных логических задач. Глава II. Методика использования логических задач на уроках математики в начальной школе 2.1 Интегрированное обучение и развитие мышления в простой игре Общее соображение о важности широкого внедрения в школьный урок .

. натурального ряда. В качестве графической модели используем числовой луч, на котором дети отмечают точки, соответствующие натуральным числам. Смысл действий сложения и вычитания. В курсе математики начальной школы находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, .






. и младших школьников. Анкета для студентов включала в себя два вопроса, один из которых о том, в чем, по их мнению, заключается развитие математических способностей школьников, а второй ¾ для выяснения отношения студентов к проведению внеклассной работы по математике в начальных классах. Анкета для преподавателей имела своей целью выяснить, проводят ли (а если проводят, то как часто) учителя .

простая фигура – площадь фигуры как величина – площадь прямоугольника – площадь параллелограмма – площадь трапеции – площадь подобных фигур.

Геометрическую фигуру будем называть простой, если ее можно разбить на конечное число плоских треугольников. Примером простой фигуры может служить плоский выпуклый многоугольник, который разбивается на плоские треугольники диагоналями, выходящими из одной вершины.

«Площадь простой фигуры – это положительная величина, численное значение которой обладает следующими свойствами:

1) равные фигуры имеют равные площади;

2) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей ее частей;

3) площадь квадрата со стороной, равной единице измерения, равна единице;

С формулами площадей некоторых фигур учащиеся познакомились в курсе арифметики. Измеряя площади при помощи памятки, школьники познакомились с оценкой ее по недостатку и по избытку. И таким образом они уже подготовлены к восприятию вывода формулы площади прямоугольника.

Первоначально доказываем следующее свойство: площади двух прямоугольников с равными основаниями относятся как их высоты.

а) Прямоугольники ABCD и AB1C1D имеют равное основание AD. Пусть S и S1 – их площади. Разобьем сторону АВ на n равных частей, длина одной части равна . Пусть m – число точек деления, лежащих на стороне АВ1. Тогда: ≤

Разделив это неравенство почленно на АВ, получим:


б) Проводим через точки деления прямые, параллельные АD. Получим n равных треугольников со сторонами АD и , площади которых (по св-ву 1) равны и принимают значение . Поэтому, площадь АВСD выражается неравенством:


.

Разделив почленно на S, получаем:


в) Отношение и удовлетворяют одним и тем же неравенствам, причем числа и отличаются на величину .При сколь угодно больших n значение становится очень малым, а это возможно только тогда, когда числа равны. Итак:

Для вывода формулы площади прямоугольника воспользуемся только что доказанным свойством по отношению к квадрату, со стороной 1 и прямоугольником со сторонами 1 и а и а и в. Получаем:

= ; => S1=а, S=S1 в.

Площади подобных фигур.

Площади подобных фигур относятся как квадраты их соответствующих линейных размеров.

При доказательстве этого утверждения используют понятие простой фигуры, определение подобных фигур. Если фигура разбивается на простые треугольники, площади которых обозначим через , а фигура - на треугольники, площади которых и фигуры и подобны с коэффициентом , то линейные размеры треугольников в раз изменены, по отношению к размерам треугольников , то: и т. д., поэтому:



Круг – плоская фигура, но ее нельзя разбить на простые треугольники. Поэтому, такая фигура имеет площадь S, если существуют содержащие её простые фигуры и содержащиеся в ней простые фигуры с площадями, как угодно мало отличающимися от S.

Курсовая работа по математике

Бесплатное участие. Свидетельство СМИ сразу.
До 500 000 руб. ежемесячно и 10 документов.

курсовая работа по математике для высшего учебного заведения на тему "Методика изучения геометрических величин в курсе планиметрии средней школы". курсовая работа состоит из введения, 2 глав, заключения, списка используемой литературы и 2 приложений.первая глава раскрывает проблемы изучения геометрических величин в педагогической литературе и школьной практике. вторая глава описывает методики изучения геометрических величин в школьном курсе геометрии.

Читайте также: