Конъюнкция и дизъюнкция высказываний и высказывательных форм кратко

Обновлено: 14.05.2024

Правило отрицания высказываний с кванторами: $$ \mathrm< \overline<(\forall x)A(x)>=(\exists x)\overline,\ \ \overline<(\exists x)A(x)>=(\forall x)\overline > $$

п.2. Конъюнкция

Конъюнкция двух высказываний – это высказывание, которое будет истинным, если истинны оба исходных высказывания; а во всех остальных случаях – будет ложным.
Конъюнкция является логическим умножением.

С точки зрения операций над множествами, конъюнкция аналогична пересечению двух множеств (см. §10 справочника для 8 класса).

С точки зрения записи условий, конъюнкция аналогична системе с фигурной скобкой.

п.3. Дизъюнкция

Дизъюнкция двух высказываний – это высказывание, которое будет ложным, если ложны оба исходных высказывания; а во всех остальных случаях – будет истинным.
Дизъюнкция является логическим сложением.

С точки зрения операций над множествами, дизъюнкция аналогична объединению двух множеств (см. §10 справочника для 8 класса).

С точки зрения записи условий, дизъюнкция аналогична совокупности с квадратной скобкой. Например, запись \(\mathrm<(x^2-1\geq 0)\vee \left(x\gt \frac12\right)>\) аналогична совокупности $$ \left[ \begin < l >\mathrm & \\ \mathrm & \end\right. \Leftrightarrow x\leq -1 \cup x\gt\frac12 $$

п.4. Импликация

Импликация двух высказываний – это высказывание, которое будет ложным, если первое высказывание истинно, а второе ложно; а во всех остальных случаях – будет истинным.

п.5. Эквиваленция

Эквиваленция двух высказываний – это высказывание, которое будет истинным только при совпадении истинности обоих высказываний; а при несовпадении – будет ложным.

п.6. Законы де Моргана

Докажем эквивалентность с помощью таблиц истинности:

Мы видим, что итоговые столбцы слева и справа полностью совпадают.
Значит, высказывания эквивалентны.

Докажем эквивалентность с помощью таблиц истинности:

Высказывания слева и справа эквивалентны.

Высказывания называются эквивалентными (равносильными) , если соответствующие значения каждого из них совпадают в таблице истинности.

п.7. Алгоритм доказательства эквивалентности высказываний с помощью таблиц истинности

Например:
Докажем следующее свойство:

Отрицание импликации эквивалентно конъюнкции посылки и отрицания заключения: $$ \mathrm< \overline=A \wedge\overline > $$

Изучая реальные процессы, математика описывает их, используя как естественный словесный язык, так и свой символический. Описание строится при помощи предложений. Но чтобы математические знания правильно отражали окружающую нас реальность, эти предложения должны быть истинными.

Каждое математическое предложение характеризуется содержанием и логической формой (структурой), причем содержание неразрывно связано с формой, и нельзя осмыслить первое, не понимая второго.

  1. Высказывания и высказывательные формы

Относительно понятий и отношений между ними можно высказывать различные суждения. Языковой формой суждений являются повествовательные предложения. Например, в начальном курсе математики можно встретить такие предложения:

1) число 12 – четное;

4) В числе 15 один десяток и 5 единиц;

5) От перестановки множителей произведение не изменяется;

6) Некоторые числа делятся на 3.

Видим, что предложения, используя в математике, могут быть записаны как на естественном (русском) языке, так и на математическом, с использованием символов. Далее, о предложениях 1, 4, 5 и 6 можно сказать, что они несут верную информацию, а предложение 2 – ложную. Относительно предложения х + 5 = 8 вообще нельзя сказать: истинное оно или ложное. Взгляд на предложение с позиции – истину или ложь оно нам сообщает – привел к понятию высказывания.

Определение. Высказыванием в математике называют предложение, относительно которого имеет смысл вопрос: истинно оно или ложно.

Например, предложения 1, 2, 4, 5 и 6 – высказывания, причем предложения 1, 4, 5 и 6 – истинные, а 2 – ложное.

Предложение х + 5 = 8 не является высказыванием, так как о нем нельзя сказать: истинно оно или ложно. Однако при подстановке конкретных значений переменной х оно обращается в высказывание: истинное или ложное. Предложение х + 5 = 8 называется высказывательной формой. Оно порождает множество высказываний одной и той же формы.

Определение. Одноместной высказывательной формой, заданной на множестве Х, называется предложение с переменной, которое обращается в высказывание при подстановке в него значений переменной из множества Х.

Множество Х – множество, из которого выбираются значения переменной.

Среди всех возможных значений переменной нас в первую очередь интересуют те, которые обращают высказывательную форму в истинное высказывание. Множество таких значений переменных называют множеством истинности высказывательной формы. Например, множеством истинности высказывательной формы х > 5, заданной на множестве действительных чисел, будет промежуток (5; ∞). Множество истинности высказывательной формы х + 5 = 8, заданной на множестве целых неотрицательных чисел, состоит из одного числа 3.

Условимся обозначать множество истинности высказывательной формы буквой Т. Тогда, согласно определению, всегда Т⊂Х.

Чтобы ответить на эти вопросы, необходимо познакомиться с некоторыми логическими понятиями.

Приведем примеры составных предложений.

1) Число 28 четное и делится на 7.

2) Число х меньше или равно 8.

3) Число 14 не делится на 4.

Эти предложения, являясь с логической точки зрения составными, по своей грамматической структуре – простые.

Для этого нужно установить:

1) из каких элементарных предложений образовано данное составное предложение;

2) с помощью каких логических связок оно образовано.

  1. Конъюнкция и дизъюнкция высказываний

Определение.Конъюнкцией высказываний А и В называется высказывание А∧В, которое истинно, когда оба высказывания истинны, и ложно, когда хотя бы одно из высказываний ложно.

Определение конъюнкции можно записать с помощью таблицы, называемой таблицей истинности.

А В А∧В
и и и
и л л
л и л
л л л

Определение. Дизъюнкцией высказываний А и В называется высказывание А∨В, которое истинно, когда истинно хотя бы одно из этих высказываний, и ложно, когда оба высказывания ложны.

Образование составного высказывания с помощью логической связки называется логической операцией.

Определения конъюнкции и дизъюнкции можно обобщить на t составляющих их высказываний.

Конъюнкцией t высказываний называется предложение вида А₁ ∧ А₂ ∧…∧ Аt, которое истинно тогда и только тогда, когда истинны все составляющие его высказывания

Дизъюнкцией t высказываний называется предложение вида А₁ ∨ А₂ ∨…∨ Аt, которое ложно тогда и только тогда, когда ложны все составляющие его высказывания

  1. Конъюнкция и дизъюнкция высказывательных форм

В математике рассматривают не только конъюнкцию и дизъюнкцию высказываний, но и выполняют соответствующие операции над высказывательными формами.

Конъюнкциюодноместных высказывательных форм А(х) и В(х), заданных на множестве Х, обозначают А(х) ∧ В(х). С появлением этого предложения возникает вопрос, как найти его множество истинности, зная множества истинности высказывательных форм А(х) и В(х). Другими словами, при каких значениях х из области определения Х высказывательная форма А(х) ∧ В(х) обращается в истинное высказывание? Очевидно, что это возможно при тех и только тех значениях х, при которых обращаются в истинное высказывание обе высказывательные формы А(х) и В(х). Если обозначить ТА – множество истинности предложения А(х), ТВ – множество истинности предложения В(х), а множество истинности их конъюнкции Т А∧В, то, по всей видимости, Т А∧В = ТА ∩ ТВ.

Докажем это равенство.

1. Пусть а – произвольный элемент множества Х и известно, что а ∈ Т А∧В. По определению множества истинности это означает, что высказывательная форма А(х) ∧ В(х) обращается в истинное высказывание при х = а, т.е. высказывание А(а) ∧ В(а) истинно. Так как данное высказывание конъюнкция, то получаем, что каждое из высказываний А(а) и В(а) также истинно. Это означает, что а ∈ Т А и а ∈ ТВ. Следовательно, по определению пересечения множеств, а ∈ ТА ∩ ТВ. Таким образом, мы показали, что Т А∧В ⊂ ТА ∩ ТВ.

2. Докажем обратное утверждение. Пусть а – произвольный элемент множества Х и известно, что а ∈ ТА ∩ ТВ. По определению пересечения множества это означает, что а ∈ Т А и а ∈ ТВ, откуда получаем, что А(а) и В(а) – истинные высказывания, поэтому конъюнкция высказываний А(а) ∧ В(а) также будет истинна. А это означает, что элемент а принадлежит множеству истинности высказывательной формы А(х) ∧ В(х), т.е.

а ∈ Т А∧В. Таким образом, мы доказали, что ТА ∩ ТВ ⊂ Т А∧В.

Из 1 и 2 в силу определения равных множеств вытекает справедливость равенства

Т А∧В = ТА ∩ ТВ, что и требовалось доказать.

Заметим, что полученное правило справедливо и для высказывательных форм, содержащих более одной переменной.

Дизъюнкцию одноместных высказывательных форм А(х) и В(х), заданных на множестве Х, обозначают А(х) ∨ В(х), Это предложение будет обращаться в истинное высказывание при тех и только тех значениях х из области определения Х, при которых обращается в истинное высказывание хотя бы одна из высказывательных форм, т.е.

Т А∨В = ТА ∪ ТВ. Доказательство этого равенства аналогично рассмотренному выше.

Приведем пример. Решим уравнение (х – 2) • (х + 5) = 0. Известно, что произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Это означает, что данное уравнение равносильно дизъюнкции: х – 2 = 0 ∨ х + 5 = 0 и поэтому множество его решений может быть найдено как объединение множеств решения первого и второго уравнений, т.е ∪ =.

Заметим, что дизъюнкцию уравнений (неравенств) называют также совокупностью.

Рассматривая конъюнкцию и дизъюнкцию высказывательных форм, мы установили их тесную связь с пересечением и объединением множеств.

А∩В = , А∪В = , причем каждое свойство представляет собой высказывательную форму.

  1. Решение задач на распознавание объектов

С введением понятия конъюнкции и дизъюнкции высказывательных форм появились условия для рассмотрения вопросов, связанных с решением определенного вида задач, так называемых задач на распознавание объектов.

В задачах на распознавание объектов требуется ответить на вопрос: принадлежит тот или иной объект объему данного понятия или не принадлежит.

Решают такие задачи, используя определение соответствующего понятия. При этом важно понимать, что если понятие а определено через родовое понятие с и видовое отличие Р, то его объем А можно представить в таком виде: А = Эта запись показывает, что характеристическое свойство элементов, принадлежащих объему понятия а, представляет собой конъюнкцию двух свойств:

1) принадлежности объекта х объему С родового понятия (х ∈С);

Луч ВD на рисунке а) не является биссектрисой угла АВС, поскольку он не делит данный угол пополам. Луч ВD на рисунке б) является биссектрисой угла АВС, поскольку он делит данный угол пополам и выходит из вершины угла.

Если видовое отличие представляет собой конъюнкцию свойств, т.е. Р = Р₁∧Р₂∧…∧Рn, то распознавание проводится по следующему правилу: проверяют поочередно наличие у объекта каждого из свойств Р₁, Р₂, …, Рn; если окажется, что он не обладает каким-либо из этих свойств, то проверку прекращают и делают вывод о том, что объект не обладает свойством Р; если же окажется, что все свойства Р₁, Р₂, …, Рn присущи данному объекту, то заключают, что объект обладает свойством Р.

Если видовое отличие представляет собой дизъюнкцию свойств, т.е. Р = Р₁∨Р₂∨…∨Рn, то распознавание проводится по следующему правилу: проверка проводится до тех пор, пока не будет установлено, что хотя бы одно из свойств присуще данному объекту, на основании чего заключают, что объект обладает свойством Р. Если окажется, что он не обладает ни одним из свойств Р₁, Р₂, …, Рn, то проверку прекращают и делают вывод о том, что объект не обладает свойством Р.

В математике рассматривают не только конъюнкцию и дизъюнкцию высказываний, но и выполняют соответствующие операции над высказывательными формами (предикатами).

Пусть на множестве Х заданы две высказывательные формы А(х) и В(х).

Конъюнкцией высказывательных форм А(х) и В(х), заданных на множестве Х, называется высказывательная форма А(х) В(х), заданная на том же множестве Х, истинная при тех значениях х Х, при которых обе формы А(х) и В(х) истинны одновременно.

Например, конъюнкцией высказывательных форм А(х): «х>2 и В(х): «х 2 и х а и х


Таким образом, нестрогое неравенство вида х≥а (х≤а) является дизъюнкцией неравенства х>а (х

Если ТА - множество истинности высказывательной формы А(х), хÎХ, а ТВ - множество истинности высказывательной формы В(х), хÎХ, то множеством истинности ТА В высказывательной формы А(х) В(х), хÎХ, является объединение множеств истинности данных высказывательных форм А(х) и В(х), т.е. ТА В = ТА ТВ.

Выясним, как строить отрицание конъюнкции и дизъюнкции высказывательных форм А(х) и В(х), заданных на множестве Х. Используя законы де Моргана, рассмотренные и доказанные в пункте 2.3 настоящего пособия, а именно: =`А `B, =`А `B,сформулируем правило построения отрицания конъюнкции А(х) ÙВ(х) и дизъюнкции А(х) В(х) высказывательных форм, заданных на множестве Х.

Рассмотрим примеры образования отрицаний конъюнкции и дизъюнкции высказывательных форм.

т.е. дополнение множества истинности конъюнкции высказывательных форм А(х) и В(х) равно объединению дополнений к множествам истинности каждой высказывательной формы.

т.е. дополнение множества истинности конъюнкции высказывательных форм А(х) и В(х) равно объединению дополнений к множествам истинности каждой высказывательной формы.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Лекция 8. Конъюнкция и дизъюнкция высказываний.

Для задания таких связок удобно записывать таблицы истинности:

Согласно определению, конъюнкция двух элементарных высказываний истинна только в том случае, когда истинны оба высказывания, ее образующие (строка 1), и ложна в любом другом случае (строка2,3,4).

КОНЪЮНКЦИЯ А = истинна только тогда, когда Петя любит физику, а математику не любит. В остальных трех случаях, т.е. когда Петя:

не любит математику и не любит физику,

любит математику и физику,

любит математику, но не любит физику

высказывание А В ложно.

Таблица истинности для дизъюнкции имеет вид:

Дизъюнкция А VВ = будет истинной, если на первом уроке будет литература (вторая строка таблицы истинности) или математика (третья строка таблицы истинности), и ложной, если на первом уроке будет любой другой предмет или если урока вообще не будет (четвертая строка таблицы истинности).

Согласно Единой спортивной квалификации и высказывание А, и высказывание В истинны, следовательно, и дизъюнкция их истинна (1-я строка таблицы истинности).

Задания для самостоятельной работы по теме:

Определите значение истинности следующих высказываний:

2. Составьте 2-4 сложных высказывания на конъюнкцию, определите их истинность.

3. Определите значение истинности высказываний А,В, если:

4. Сформулируйте и запишите в виде конъюнкции условие истинности каждого предложения

(а, в ϵ R ): а) а×в≠0; б) а÷в=0; в) а 2 + в 2 = 0;

Определите значение истинности следующих высказываний:

5. Составьте 2-4 сложных высказывания на дизъюнкцию, определите их истинность.

6. Определите значение истинности высказываний С и D, если:

7. Сформулируйте и запишите в виде дизъюнкции условие истинности каждого предложения (а, в ϵ R ):а) а × в = 0, б) >2.

Математическая логика — это раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики.

Алгебра высказываний

Логические операции

Операции над высказываниями задают в виде таблиц, называемых таблицами истинности.

Отрицание высказывания

Математическая логика

Конъюнкция высказываний

Математическая логика

Дизъюнкция высказываний

Математическая логика

В этом случае высказывание А истинно, если истинно хотя бы одно из высказываний, входящих в связку.

Импликация высказываний

Математическая логика

Эквивалентность высказываний

Математическая логика

Математическая логика

Математическая логика

Если в выражении присутствуют арифметические операции, операции сравнения и логические операции, то порядок старшинства операций следующий:

  • • сначала выполняются арифметические операции (порядок старшинства арифметических операций: первыми выполняются все операции умножения и деления, потом операции сложения и вычитания);
  • • затем — операции и операции сравнения (в том порядке, в каком они встречаются в выражении):
  • • наконец, логические операции, причем первой везде выполняется операция отрицания, затем конъюнкции, потом дизъюнкции и т. д.

Использование различных операций позволяет в удобной аналитической форме задавать различные множества.

Например, множество точек А, заштрихованное на рис. 1.16, может быть задано следующей формулой:

Математическая логика

Математическая логика

Система операций называется полной, если всякая формула эквивалентна некоторой формуле, в которую входят только операции из системы . Система введенных пяти операций (отрицания, конъюнкции, дизъюнкции, импликации и эквивалентности) полная, хотя вообще говоря, избыточна, так как одни логические операции могут быть выражены через другие. Например, импликация и эквивалентность можно выразить через отрицание, конъюнкцию и дизъюнкцию следующим образом:

Математическая логика

Булевы функции

Математическая логика

выражает функцию от переменных А, В и С.

Наиболее важные тождественно истинные формулы получили название Основные законы математической логики.

Основные законы математической логики

1.Коммутативность

Математическая логика

2.Ассоциативность

Математическая логика

3.Дистрибутивность

Математическая логика

4.Законы де Моргана

Математическая логика

5.Закон поглощения

Математическая логика

6.Закон идемпотентности

Математическая логика
Математическая логика

8.Закон противоречия

Математическая логика

9.Закон исключения третьего

Математическая логика

10.Закон двойного отрицания

Математическая логика

Пример:

Упростить выражение, используя тождественны преобразования

Математическая логика

Существует бесконечное множество тавтологий. Некоторы из них легли в основу методов доказательства.

Основные методы доказательств

При построении любой теории выделяется некоторый набор высказываний, так называемых аксиом, истинность которых постулируется. Из аксиом чисто логическим путем может был установлена истинность некоторых других высказываний называемых теоремами. Последовательность высказываний рассматриваемой теории, каждое из которых либо является аксиомой, либо выводится из одного или более предыдущих высказываний этой последовательности по логическим правилам вывода, называется доказательством. Высказывание, которое можно доказать, называется теоремой.

Математическая логика

Формально каждая теорема может быть выражена в форме импликации где посылка А называется условием теоремы, а следствие В — заключением. Теорема верна, если выражающая ее импликация тождественно истинна, т. е. является тавтологией. Тавтологии рассматривают как некоторые логически истинные схемы рассуждений. В этой связи тавтологии играют роль законов, определяющих построение правильных умозаключений. Существует бесконечное множество тавтологий. Некоторые из них легли в основу методов доказательства. Основные методы доказательств.

Метод цепочек импликаций

Математическая логика

Метод цепочек импликаций состоит в том, что из посылки А страивается цепочка из -импликаций, последним высказыванием в которой является заключение теоремы В, т. е.

Математическая логика

Математическая логика

В основе этого метода лежит закон цепного высказывания или закон силлогизма

Метод от противного

Математическая логика

Метод необходимого и достаточного

а) доказывается, что если имеет место А, то справедливо В (В необходимо для А);

б) если имеет место В, то имеет место и А (В достаточно для А).

Доказательство таким методом базируется на законе тавтологии:

Математическая логика

Алгебра предикатов

Предикатом заданным на множествах

Рассмотрим примеры, одноместный предикат на множестве комплексных чисел, при этом, например, если истинное высказывание, а

Логические операции над предикатами

Отрицание предиката

Пусть предикат задан на множествах Предикат называется отрицанием предиката тогда и только тогда, если при одних и тех же кортежах высказывание истинно, когда ложно и наоборот. Обозначение

Математическая логика

Конъюнкция предикатов

Пусть на множествах заданы два — местных предиката и . Конъюнкцией этих предикатов называется предикат

Математическая логика

который истинен для одних и тех же кортежей только тогда, когда оба предиката — и и истинны.

Дизъюнкция предикатов

Импликация предикатов

Математическая логика

Эквивалентность предикатов

Квантор существования

Квантор существования есть операция, которая предикат превращает в высказывание: «существует хотя бы один

Кванторы обладают свойствами, являющимися аналогами законов де Моргана:

Математическая логика

Переход от или называется квантификацией или связыванием переменной . Связанная переменная фактически не является переменной, т. е. переход от или от не меняет истинности выражений. Навешивание переменной на многоместный предикат уменьшает в нем число свободных переменных и превращает его в предикат от меньшего числа переменных

Связывая обе переменные данного предиката, получим высказывания:

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: