Каковы особенности пространственной организации молекул воды кратко

Обновлено: 02.07.2024

Отрицательные и положительные полюсы разных молекул воды притягиваются друг к другу, что приводит к образованию водородных связей. Наличие этих связей придаёт воде структурированность, что объясняет многие её необычные свойства: высокую температуру кипения, плавления, высокую теплоёмкость.

Сочетание высокой теплоёмкости и теплопроводности делает воду идеальной жидкостью для поддержания теплового равновесия. Тепло быстро и равномерно распределяется между всеми частями организма.

Рис. 12. Уменьшение количества воды в клетках приводит к увяданию растений

Высокая интенсивность испарения приводит к быстрой потере тепла и предохраняет от перегрева: испарение у растений и потоотделение у животных являются защитными реакциями и позволяют при минимальной потере воды существенно снизить температуру тела.

Практически полная несжимаемость воды обеспечивает поддержание формы клетки (рис. 12), а вязкость придаёт воде свойства смазки.

Высокая сила поверхностного натяжения воды обеспечивает восходящий и нисходящий транспорт веществ в растениях и движение крови в капиллярах. Многие мелкие организмы легко удерживаются и передвигаются по поверхности воды благодаря наличию плёнки поверхностного натяжения.

Полость тела круглых червей заполнена жидкостью, находящейся под давлением и образующей гидроскелет, что придаёт этим организмам постоянную форму. Свойство несжимаемости воды используется медузами, чьё тело на 95 % состоит из этого вещества.

Жидкость в подчерепном пространстве предохраняет от сотрясения головной мозг, а околоплодные воды в матке защищают и поддерживают плод у млекопитающих.

Жидкость в околосердечной сумке – перикарде – облегчает движения сердца при его сокращениях, а в плевральной полости снижает трение при дыхании.

Благодаря высокому тургорному давлению растительные ткани обладают упругостью, а стебли травянистых растений поддерживают вертикальное положение.

Соли. Важную роль в жизнедеятельности клетки играют минеральные соли, представленные в основном катионами калия (K + ), натрия (Na + ), кальция (Ca 2+ ), магния (Mg 2+ ) и анионами соляной (Сl – ), угольной (HCO3 – ), фосфорной (HPO4 2– , H2PO4 – ) и некоторых других кислот. Многие ионы неравномерно распределены между клеткой и окружающей средой, так, например, в цитоплазме концентрация ионов калия в 20–30 раз выше, чем снаружи, а концентрация ионов натрия внутри клетки, наоборот, в 10 раз ниже. Именно благодаря существованию подобных градиентов концентраций осуществляются многие важные процессы жизнедеятельности, такие как возбуждение нервных клеток, сокращение мышечных волокон. После гибели клетки концентрация катионов снаружи и внутри быстро выравнивается.

Анионы слабых кислот (HCO3 – , HPO4 2– ) участвуют в поддержании кислотно-щелочного баланса (рН) клетки. Анионы фосфорной кислоты необходимы для синтеза нуклеотидов и нуклеиновых кислот.

Минеральные соли в живых организмах находятся не только в виде ионов, но и в твёрдом состоянии. Кости нашего скелета в основном состоят из фосфатов кальция и магния. Раковины моллюсков формируются из карбоната кальция.

Вопросы для повторения и задания

1. Каковы особенности пространственной организации молекул воды, обусловливающие её биологическое значение?

2. В чём заключается биологическая роль воды?

3. Какие вещества называют гидрофильными; гидрофобными? Приведите примеры.

4. Какие вещества поддерживают pH клетки на постоянном уровне? Объясните, почему жизнедеятельность клетки возможна только при определённом значении pH.

5. Расскажите о роли минеральных солей в жизнедеятельности клетки.

Подумайте! Выполните!

1. Почему при работе в горячих цехах для утоления жажды рекомендуют пить минеральную или подсоленную воду?

2. Известно, что ионный состав внутреннего содержимого клетки имеет большое сходство с ионным составом морской воды. Какой вывод можно из этого сделать?

3. Как изменяется количество воды в теле человека с возрастом?

4. Вспомните из курса биологии растений, какие структуры покровной ткани растений обеспечивают испарение воды. Каков принцип их работы?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Растения

Поглощение корнями воды и минеральных веществ. Большая часть воды с растворёнными в ней минеральными веществами поглощается корнем с помощью корневых волосков в зоне всасывания. Всасывание воды происходит пассивно, посредством осмоса, так как концентрация осмотически активных веществ (минеральных солей и органических веществ) в клетках корня больше, чем в почвенном растворе. Интенсивность поглощения воды корневыми волосками называют сосущей силой (S). Она равна разнице между осмотическим (P) и тургорным (T) давлением: S = P – T. Когда осмотическое давление равно тургорному (P = T), то S = 0 и вода перестаёт поступать в корневой волосок. Если же концентрация веществ в почвенном растворе будет выше, чем внутри клеток корня, то вода будет выходить из клеток и растение завянет (см. рис. 12). Такое явление наблюдается при засухе или при неумеренном внесении удобрения в почву.

Животные

Первично– и вторичноводные животные. Кроме систематического деления на классы, подтип Позвоночные обычно условно подразделяют ещё на две группы, не имеющие таксономического значения: первичноводные (анамнии) и первичноназемные (амниоты). Жизнь и размножение животных, относящихся к анамниям, неразрывно связаны с водой. В качестве органов дыхания у них в течение всей жизни или на личиночной стадии функционируют жабры. При развитии оплодотворённой яйцеклетки не образуются защитные зародышевые оболочки. К этой группе относят классы Круглоротые, Хрящевые рыбы, Костные рыбы, Земноводные.

Размножение первичноназемных животных не связано с водой. Жаберного дыхания нет ни на одной из жизненных стадий. При развитии зародыша формируются зародышевые оболочки. К группе амниот относят классы Пресмыкающиеся, Птицы, Млекопитающие.

Вторичноводными называют амниот, которые вернулись к обитанию в воде. Такими животными, например, являются китообразные, которые полностью перешли к водному образу жизни. Их передние конечности превратились в ласты, задние – редуцированы.

Человек

Водный и минеральный обмены. Ткани взрослого человека содержат в среднем до 60 % воды. В сутки организм человека теряет около 2,0–2,5 л воды. В составе мочи выводится 1,2–1,5 л, с потом – около 0,5–0,7 л, с парами воздуха через лёгкие – 0,3–0,5 л, через кишечник с калом – около 0,1 л. Столько же воды в сумме организм получает с питьём (1,0 л) и пищей (1,0 л), а часть воды образуется при обмене белков, жиров, углеводов (0,3–0,4 л). Для нормальной жизнедеятельности важно, чтобы поступление воды полностью покрывало её расход. Отношение количества потреблённой воды к количеству выделенной называют водным балансом. Обезвоживание организма приводит к быстрой гибели, без воды человек может прожить не более 5–6 дней. Однако обильное избыточное питьё тоже вредно, оно повышает нагрузку на организм и нарушает работу сердца и почек.

Молекулы воды представляют собой дипо­ли — структуры, на положительном полюсе которых находятся два атома водорода, а на отрицательном полюсе — атом кислорода. По­ложительные и отрицательные полюса разных молекул воды притягиваются друг к другу. Это приводит к образованию так называемых водородных связей, что обеспечивает высо­кую теплоемкость воды, а также особенности процессов смены ее агрегатного состояния (плавление, испарение). Кроме того, Н20-ди- поли активно взаимодействуют с любыми мо­лекулами, имеющими заряженные участки. Это обуславливает важнейшее свойство воды как универсального растворителя органиче­ских и неорганических веществ.

Вопрос 2. В чем заключается биологическая роль воды?

Вода выполняет в клетке множество важ­ных функций:

служит универсальным растворителем;
является средой для большинства процес­сов, протекающих в клетке;
сама участвует во многих биохимических реакциях — гидролизе органических веществ, высвобождении энергии при распаде АТФ, фо­тосинтезе и др.;
высокая теплоёмкость и теплопровод­ность воды облегчает организмам (в том числе теплокровным) процесс поддержания теплово­го равновесия с окружающей средой;
высокая интенсивность испарения защи­щает живые существа от перегрева;
почти полная несжимаемость воды обес­печивает поддержание формы отдельных кле­ток и целых организмов;
вязкость придает воде свойства смазки;
высокая сила поверхностного натяжения облегчает транспорт веществ в сосудах расте­ний.Вопрос 3. Какие вещества называют гидро­фильными? Гидрофобными?

Гидрофильными называют вещества, ко­торые хорошо растворяются в воде. К ним от­носят соли, аминокислоты, сахара, белки, простые спирты. Как правило, в составе их молекул присутствуют заряженные участки (спиртовые группы, аминогруппы и т. п.); не­редко при растворении гидрофильных веществ образуются заряженные частицы — ионы. Гидрофобные вещества, напротив, плохо или совсем не растворяются в воде. В их число вхо­дят в первую очередь жиры и жироподобные соединения, а также полисахариды (хитин, целлюлоза).

Вопрос 4. Какие вещества поддерживают pH клетки на постоянном уровне?

Способность сохранять кислотно-щелоч­ной баланс, т. е. поддерживать постоянное значение pH, обеспечивается так называемы­ми буферными свойствами клетки. Это означа­ет, что при добавлении небольших количеств кислот или щелочей концентрация ионов во­дорода (иначе — pH) в цитоплазме практиче­ски не изменяется. Такой эффект достигается благодаря присутствию в клетке отрицательно заряженных ионов — остатков слабых кислот (в первую очередь НСО3 и НРО2|4 ). При закислении (избытке ионов Н + ) эти ионы могут пре­вращаться в Н2С03 и Н2Р04 соответственно. Напротив, при дефиците Н + (защелачивание цитоплазмы) НСО3 и НРО2|4 способны отдавать часть своих ионов водорода. Буферные свой­ства клетки очень важны, поскольку боль­шинство биологически активных веществ (в частности, белки-ферменты) могут вступать в реакции только при строго определенном уровне pH.

Вопрос 5. Расскажите о роли минеральных со­лей в жизнедеятельности клетки.

Минеральные соли и входящие в их состав элементы участвуют во многих процессах жиз­недеятельности клетки. Так, остатки слабых кислот (НСО3, НРО2|4) обеспечивают ее буфер­ные свойства. Движение ионов Na + , К + , Са 2+ , С1 через мембраны клеток лежит в основе всех электрических явлений, наблюдаемых в живых организмах (вплоть до разрядов элект­рических рыб); без этого мышечные волокна не способны сокращаться, а нервная ткань — про­водить сигналы. Остатки фосфорной кислоты нужны для синтеза нуклеотидов и фосфолипи­дов. Фосфаты кальция и магния участвуют в об­разовании костей, а карбонат кальция является основой раковины моллюсков.


Молекулярная структура воды

Каковы особенности пространственной организации молекул воды, обуславливающие ее биологическое значение?

Молекулы воды представляют собой диполи — структуры, на положительном полюсе которых находятся два атома водорода, а на отрицательном полюсе — атом кислорода. Положительные и отрицательные полюса разных молекул воды притягиваются друг к другу. Это приводит к образованию так называемых водородных связей, что обеспечивает высокую теплоемкость воды, а также особенности процессов смены ее агрегатного состояния (плавление, испарение). Кроме того, Н2O-диполи активно взаимодействуют с любыми молекулами, имеющими заряженные участки. Это обуславливает важнейшее свойство воды как универсального растворителя органических и неорганических веществ.

Каковы особенности пространственной организации молекул воды, обуславливающие ее биологическое значение?

Угол между атомами водорода равен 108 градусам, это значит молекула воды есть диполь. Полюса разных молекул воды притягиваются друг к другу, и это приводит к образованию водородных связей. Изза этого у воды высокая теплоемкость, а также особенности при смене ее агрегатного состояния, например плавление льда или такое как испарение.

Вибриссы(усы) -специализированные органы чувств, реагирующие на внешние раздражители. Они похожи на обычные волосы но длиннее и толще. Но на самом деле вибриссы -это не волосы, а видоизменившиеся рецепторы, выполняющие осязательную и тактильную функции.

Наверное, корректнее начало вопроса сформулировать как "Что использует..", а не кто.

Такой способностью обладают растения: в процессе фотосинтеза при непосредственном участии солнечной энергии синтезируются органические вещества из углекислого газа и воды. При этом в атмосферу растения выделяют кислород.

Водоросли, как любое зеленое растение, которое участвует в процессе фотосинтеза, является автотрофом и содержит некоторое количество хлорофилла. Кстати, не все водоросли способны только к автотрофному типу питания, есть среди них и такие, которые могут питаться двояким способом - например, жгутиконосцы и эвглены (они способны с помощью ресничек и жгутиков "захватывать" и поедать органику).

Но есть несколько (кроме двоякого питания у некоторых водорослей) черт, которые отличают водоросли от других групп растений:

-- Для макроводорослей - Отсутствие четкого деления на органы (то есть у них нет ни корней, ни ствола, ни органов размножения, как у остальных растений).

-- Нет у водорослей и четкой сосудистой системы (для макроводорослей).

Кстати, эти характеристики не позволяются водорослям жить нигде, кроме влажных местообитаний (поэтому они так и названы водо. росли, то есть растущие в воде)

-- для микроскопических водорослей характерно отсутствие органов полового размножения или они состоят из одной клетки

-- дифференциации тканей и органов нет (для микроскопических)

-- для зиготы не характерно многоклеточное строение (для микроскопических)

-- отсутствуют устьица (для всех видов)

Кстати, в группе выделяются как эукариоты, так и прокариоты (последние все же чаще относят к бактериям, чем к водорослям.

Читайте также: