Какова роль микроорганизмов содержащихся в почве кратко

Обновлено: 05.07.2024

Микроорганизмы и микробиологические процессы играют важную роль в плодородии почвы и питании растений.

Почва создает условия для развития микрофлоры, которая, в свою очередь, оказывает специфическое влияние на почву. В каждом виде почв, обладающем конкретными физико-химическими свойствами, развиваются определенное количество и группы микроорганизмов и устанавливается биологическое равновесие, характерное для данных условий и сезона.

Изменение водного, воздушного и питательного режимов почвы сказывается существенным образом на микрофлоре: меняются количество отдельных групп микроорганизмов, т. е. соотношение между ними, а также динамика и интенсивность микробиологических процессов. Поэтому изучение биологии почвы является непременным условием при применении различных агротехнических мероприятий. Для поддержания и повышения почвенного плодородия и эффективного использования вносимых удобрений необходимо также исследование различных аспектов течения микробиологических процессов.

В условиях интенсивного земледелия в почву вносится значительное количество минеральных удобрений, которые довольно существенно влияют на соотношение питательных веществ в почвенном растворе и в естественных условиях являются причиной нарушения установленного биологического равновесия. В результате этих изменений усиливаются процессы минерализации и в почву поступает больше доступных питательных веществ, которые могут быть биологическим путем переведены в усвояемые формы. Кроме того, возрастают газообразные потери азота. Все это сказывается на почвенном плодородии и условиях питания растений.

Почва — сложный субстрат и точно определить факторы, которые регулируют микробиологические процессы в ней, довольно, трудно. Количественные и качественные изменения микрофлоры связаны с питательным режимом почвы и с условиями питания растений. Определение микробиологических процессов, оказывающих существенное влияние на содержание отдельных питательных элементов в почве, является важной задачей, решение которой обусловливает повышение почвенного плодородия и эффективности удобрения. Органические остатки (в агроэкосистемах это, в основном, пожнивные остатки) служат субстратом и главным источником энергии для почвенной микрофлоры. От их количества и химического состава зависит характер и интенсивность микробиологических процессов в почве.

Большую роль играют микроорганизмы в трансформации азота в почве. Аммонифицирующие бактерии, многие актиномицеты, микроскопические грибы и другие микроорганизмы обусловливают минерализацию органического вещества в почве и высвобождение доступного растениям аммонийного азота. Нитрифицирующие бактерии превращают аммонийный азот в нитриты и нитраты. Значительна по составу и количеству микрофлора, использующая минеральный азот и превращающая его в органические формы (процесс иммобилизации). Денитрифицирующие бактерии предопределяют невозвратимые потери газообразного азота. Такие виды, как Azotobacter (az. chroococcum) или Clostridium (Q. pasteurianum) , биологически фиксируют поступающий в почву азот атмосферы. Следовательно, трансформация азота самым тесным образом связана с почвенной микрофлорой, от деятельности которой зависит азотный режим почвы, т. е. количество и качество почвенного азота.

Микроорганизмы осуществляют круговорот веществ в почве, влияя на минерализацию органических остатков и превращая нерастворимые формы в доступные для растений соединения. При этих процессах происходит активное выделение метаболитов — продуктов, участвующих в синтезе гумуса. Микроорганизмы содействуют накоплению и разложению гумуса. Количество и качество питательных веществ в почве зависит от интенсивности микробиологических процессов аммонификации и нитрификации, от целлюлозоразлагающей и ферментативной активности и т. д.

Эффективность азотных удобрений бывает невелика: в почве используется до 50% внесенного с удобрениями азота. Большую роль здесь играет также микробиологическая деятельность. При внесении удобрений количество усвояемого азота в почве в большой степени определяется интенсивностью денитрификации, размером и продолжительностью биологической иммобилизации, интенсивностью процессов аммонификации и нитрификации и др. Так, при интенсивном использовании минеральных азотных удобрений резко возрастают денитрификация и биологическая иммобилизация азота. В результате этого снижается коэффициент использования минеральных азотных удобрений, что может привести к загрязнению атмосферы.

Большое влияние на азотный режим почв оказывают азотфиксирующие бактерии. Свободноживующие азотфиксаторы, которые в почвах довольно широко распространены, вместе с симбиотическими клубеньковыми бактериями усваивают атмосферный азот и играют важную роль в поддержании азотного режима почв. Клубеньковые бактерии в значительной мере обеспечивают азотное питание бобовых культур.

Минерализация органических фосфорных соединений, превращения фосфатов алюминия, железа, трикальциевых фосфатов в почве осуществляются микроорганизмами. В трансформации серы, железа и других элементов также принимают участие микроорганизмы.

Интенсивное возделывание культур связано с внесением высоких доз минеральных удобрений. Изменения, происходящие при этом в почве, отражаются в значительной степени на микрофлоре. Обработка гербицидами — веществами, чужеродными для почвы, — влияет на количество и состав микрофлоры. В то же время микрофлора участвует в детоксикации пестицидов в почве и в ее очистке от загрязнения некоторыми химикатами.

В почве практически нет процесса, в котором микрофлора не принимала бы активного участия. Антропогенное влияние на почву особенно возрастает в интенсивном земледелии, когда изменяются питательный, воздушный и водный режимы. Необходимость изучения этих изменений связана с вопросами сохранения и повышения почвенного плодородия. Микрофлору можно использовать в качестве показателя для определения направлений течения различных процессов в почве.

Микроорганизмы – древнейшие представители живых существ, появились на Земле, как считают специалисты, более трех миллиардов лет назад.

Большинство микроорганизмов – это невидимые невооруженным глазом одноклеточные (бактерии, актиномицеты, микоплазмы, риккетсии, спирохеты, простейшие) и многоклеточные (зеленые и сине – зеленые водоросли, несовершенные грибы), а также неклеточные (вирусы, фаги) формы.

В природе микроорганизмы распространены чрезвычайно широко.

Они обнаруживаются в большом количестве в почве, воде, в растительных и животных организмах. Токами воздуха заносятся в стратосферу на высоту более 20 км. Их находят в горячих гейзерах, нефтяных водах, на глубине более 10 км в морях и океанах.

Даже самые твердые скальные массивы населены различными организмами. Верхний слой скальных массивов, так называемая кора выветривания, насыщена бактериями и водорослями, микроскопическими грибами и актиномицетами, простейшими организмами, фагами, вирусами и пр.

В верхнем слое базальтовых пород насчитывается от нескольких десятков тысяч до нескольких миллионов на грамм субстрата. В условиях суровой Арктики на островах Северного Ледовитого Океана (Новая Земля, Северная Земля и др.) скальные породы содержат значительное число микроорганизмов.

О существовании на Земле невидимого мира чрезвычайно малых существ человечество существующей ныне цивилизации узнали немногим более трехсот лет тому.

Антонио Левенгук (1632 – 1723), будучи очень любознательным человеком, в свободное от основной работы время любил изготавливать и шлифовать стеклянные линзы. Рассматривая каплю дождевой воды при помощи сконструированного им микроскопа, обнаружил в ней массу маленьких живых существ, одни из которых были неподвижны, а другие активно двигались. Левенгук сделал зарисовки увиденного им при помощи микроскопа, а затем листы с рисунками и пояснительными записями предоставил в Королевское научное общество.

Вскоре и другими исследователями были обнаружены микроскопически малые живые существа были обнаружены в различных субстратах – в настое сенного отвара, в гниющем мясе, в крови больных животных и людей, а затем и в других материалах.

Почти двести лет с момента обнаружения микроорганизмов, микробиология оставалась лишь описательной наукой. Ученые открывали все новые и новые микроорганизмы, тщательно их описывали, зарисовывали их форму, но не могли объяснить какую роль они играют в природе, в жизни растительных и животных организмов, в том числе и в жизни человека.

Только во второй половине Х1Х века Луи Пастер (1822 – 1895), занимаясь проблемой скисания знаменитых марок французских вин, впервые доказал, что микробы принимают активное участие во многих процессах, происходящих в природе, в том числе в процессах брожения, круговорота веществ, являются возбудителями заразных заболеваний животных и человека.

Со времен Пастера микробиология начала усиленно развиваться и к настоящему времени изучены строение и свойства многих микроорганизмов, выяснена их роль в круговороте и превращении различных веществ в природе.

Основоположник биогеохимии В.И.Вернадский убедительно доказал, что биосфера сформировалась и развивалась в результате взаимодействия микроорганизмов, растений и животных, которые обеспечивали и обеспечивают непрерывный поток элементов в биогенном обмене веществ на нашей планете, включая элемент жизни – кислород.

Сам Луи Пастер говорил, что микробы – это бесконечно малые существа, играющие в природе бесконечно большую роль, и если бы они исчезли с лица планеты, то поверхность Земли была бы загромождена мертвыми органическими веществами.

Такие биологические особенности микроорганизмов, как малый вес, небольшие размеры и быстрое размножение способствуют переносу их токами воздуха на большие расстояния и накоплению их в большом количестве в различных субстратах.

Для них присущи высокая устойчивость к различным факторам окружающей среды, разнообразие физиологических свойств и большая приспосабливаемость к самым различным условиям обитания. Некоторые виды микроорганизмов обитают и размножаются в горячих источниках, температура воды в которых достигает более 800С, а другие – в холодных водах при минусовой температуре. Одни микроорганизмы живут и размножаются в соленых водах, другие – в щелочной среде. Микроорганизмы живут и размножаются там, где другие живые существа обитать не могут.

Со времен Левенгука и до наших дней постоянно идет процесс накопления данных о новых видах микроорганизмов, населяющих почву и недра, воздух и воду земли, обитающих в животных и растительных организмах.

Можно предположить, что первоначальной средой, в которой возникли, размножались и развивались микроорганизмы, была вода. Но когда на поверхности земной коры образовалась почва, постоянно обогащаемая органическими веществами, увлажняемая атмосферными осадками и обогреваемая солнечными лучами, она стала для микробов наиболее благоприятной средой обитания и их развития.

Микробное население почвы очень богато и разнообразно. Кроме бактерий в почве обитают в огромном количестве микроскопические грибы, актиномицеты, водоросли, фаги, вирусы, простейшие, микоплазмы, насекомые, черви и другие живые существа. Количество микробов в одном грамме почвы измеряется сотнями миллионов особей. Наиболее богата микроорганизмами окультуренная, возделываемая почва. Живая масса бактерий, грибов, актиномицетов и водорослей составляет свыше десяти тонн в пахотном слое одного гектара плодородных, хорошо окультуренных почв. Подсчитано, что общая масса микробных клеток на нашей планете примерно в 25 раз больше массы всех животных.

Наиболее бедной микроорганизмами является почва пустынь, где мало влаги и органических веществ. При этом, как по численности особей, так и по численности видов, преобладают бактерии, относящиеся по своим морфологическим, культуральным и биохимическим свойствам к различным физиологическим группам. Среди них имеются нитрифицирующие, азотфиксирующие, денитрифицирующие, целлюлозоразлагающие, железобактерии, серобактерии и др.

Микроорганизмы почвы играют очень важную роль в переработке значительного количества различных веществ – минеральных и органических. Они разрушают растительные и животные остатки, участвуют в процессах превращения продуктов их распада. При помощи микроорганизмов изменяется структура и химический состав почвы. Микроорганизмы, как биологические катализаторы, определяют основное свойство почвы – плодородие. Они синтезируют и выделяют разнообразные продукты метаболизма, которые входят в состав почвы, обуславливая ее плодородие. В процессе жизнедеятельности все население почвы производит биохимическую работу космического значения. Перерабатывая огромные массы органических и минеральных соединений, микроорганизмы непрерывно синтезируют новые органические и неорганические вещества.

Химическая деятельность микроорганизмов проявляется в непрерывном круговороте азота, фосфора, серы, углерода и других веществ. Микробиологические процессы круговорота азота имеют огромное значение как факторы оздоровления и плодородия почвы. Основные биохимические процессы круговорота азота состоят из нескольких этапов и участие в них принимают различные виды микробов.

В поверхностных слоях почвы находятся аэробные амонифицирующие бактерии родов Bacillus, Proteus, Escherichia, Pseudomonas, Serratia, нитрифицирующие, денитрифицирующие, азотфиксирующие, возбудители брожения клетчатки, пектина и др. В более глубоких слоях почвы располагаются микроорганизмы, вызывающие процессы брожения и гниения в анаэробных условиях.

В первом этапе разложения сложных органических соединений животного и растительного происхождения – гниении белков, сопровождающемся образованием зловонных, летучих соединений (индола, скатола, аммиака, сероводорода и пр.) принимают участие Proteus sp., Bac.subtilis, Bac.mesentericus, Bac.megatherium, Bac.sporogenes . На втором этапе – в разложении мочевины участвуют Sarcina urea, Urobacter pasteuri и др. В прцессах нитрификации и денитрификации участвуют Nitrosomonas europea, Bact.pyocyaneum, Bact.denitricans и др. Фиксация атмосферного азота осуществляется Bact.rodicicola, Azotobacter agifa, Azotobacter chroococcum и др.

Углерод, подобно азоту, имеет свой круговорот, при этом процессы распада безазотистых органических веществ обусловлены жизнедеятельостью микроорганизмов, а процессы созидательные – фотосинтезом зеленых растений. Круговорот углерода имеет отношение к разнообразным типам брожений, в которых участвуют различные микроорганизмы: в спиртовом – истинные дрожжи, мукоровые плесени; уксуснокислом – дрожжеподобные грибы Micoderma vini, Bact. Pasterianum; молочнокислом – Streptococcus lactis, Bact. Bulgaricum, E.coli, Bact.lactic и др; маслянокислом – Clostridium pasterianum; в брожении целлюлозы и пектиновых веществ – Granulobacter pectinovorum, Bac.cellulosa.

Сера составляет часть белка, участвует в круговороте веществ. Сероводород, образующийся при процессах гниения, ядовит для высших растений и непригоден для утилизации. Серобактерии рода Beggiatoa окисляют этот сероводород до серной кислоты и тем самым способствуют образованию солей серной кислоты (сульфатов), которые могут использоваться высшими растениями как питательный материал. Серобактерии играют важную роль в биологическом очищении сточных вод и являются показателями загрязнения воды и почвы.

Фосфор, входящий в состав животных и растительных организмов, в результате разложения микроорганизмами выделений, отмирающих частей и трупного материала, освобождается в виде фосфорной кислоты. Соли фосфорной кислоты. Соли фосфорной кислоты не пригодны для питания высших растений. Обитающий в почве Bac. mucoides, участвует в процессе преобразования нерастворимого фосфата в растворимую соль.

Железобактерии обеспечивают круговорот железа. К ним относятся представители родов Leptothrix, Crenothrix, Chlamidotrix, Cladotrix, Spirophyllum, Thiobacillus.

Железобактерии превращают находящееся в почве нерастворимое железо (Fe3) в растворимое (Fe2), доступное для усвоения растениями.

При нехватке железа нарушается состав гемоглобина у человека и животных, возникает анемия, у растений теряется способность образовывать хлорофилл, они теряют зеленую окраску и в результате у растений развивается заболевание – хлороз.

Все железобактерии являются постоянными обитателями почвы, водоемов, ключей, луж, болот, водопроводных труб. Среди них есть представители, обитающие в симбиозе с зелеными и сине – зелеными водорослями, с представителями простейших – жгутиковыми. В результате своей жизнедеятельности железобактерии переводят закисные формы железа в окисные, получая в результате этого энергию, которую используют для восстановления СО2. Эффект жизнедеятельности железобактерий чрезвычайно велик. Болдотная железная руда является продуктом жизнедеятельности железобактерий. Криворожское месторождение железной руды также является продуктом их жизнедеятельности.

Многие группы микроорганизмов, относящиеся к хемолитотрофам, фотоавтотрофам, гетеротрофам, участвуют в превращениях металлов с переменной валентностью.

В почве обнаруживаются различные активные вещества (ферменты, витамины, ауксины, антибиотики, токсины и многие другие соединения), являющиеся метаболитами микробов. Все эти вещества вместе с другими организмами придают почве свойства, отличающие ее от минеральной породы. Интенсивность жизненных процессов микробного населения определяет степень плодородия почвы. Интенсивность проявления биологических процессов зависит от климатических, географических условий, а также от времени года и многих других факторов.

Следует помнить и о том, что в почве обитают многие виды микроорганизмов, которые могут вызвать опасные инфекционные заболевания у растительных и животных организмов, в том числе и у людей. Среди них возбудители таких опасных заболеваний как сибирская язва, столбняк, газовая раневая инфекция, поверхностные и глубокие микозы, актиномикозы и другие.

Без учета деятельности микробного населения почвы невозможно решать многие проблемы связанные с почвоведением, медициной, земледелием, ветеринарией, животноводством, растениеводством.

Бактерии считаются важным звеном круговорота веществ в природе. Благодаря их жизнедеятельности, отмершие частицы растений и животных перерабатываются в перегной. Вышеперечисленные компоненты представители флоры снова способны использовать для своего роста и развития.

Значение

Грунты в современном виде являются результатом упорных стараний многих сообществ бактерий. Одноклеточные на протяжении длительного времени смешивали горные породы, перерабатывали отмершую органику, соединяя ее с элементами от своей жизнедеятельности. Шаг за шагом микроорганизмы превращали дикие пустыни и скалы в земли с плодородным верхним слоем.

Бактерии – это самые древние организмы, которые могут быть как жизненно важными, так и вредоносными для растений и животных. Микроорганизмы – основные двигатели жизни на нашей планете. В состав микрофлоры грунта входят бактерии, грибы, плесень. Их роль в росте и развитии растительности переоценить довольно сложно. Почвенные бактерии регулярно осуществляют переработку животной органики и преобразуют ее в полезные минеральные компоненты.

В результате субстрат состоит из большого количества полезной органики, а также кальция, железа, азота и фосфора.

Микрофлора грунта не только обогащает ее состав, но и делает структуру лучше. Она довольно разнообразна и богата, таким образом, в 1 грамме почвы может находиться около 1 млрд бактерий. Для учета их количества используют специальные методы, а также приспособления, включая оптический микроскоп, метод посева и другие. Со временем видовой состав почвенных микроорганизмов меняется. Разновидности популяций бактерий в субстрате зависят от следующих факторов:

  • типа почвы;
  • состава субстрата;
  • глубины исследуемого участка земли.

Почвенные бактерии имеют вид мелких одноклеточных микроорганизмов. Они проживают в тонкой водной пленке грунта, около корней растительности. Небольшие размеры этих существ способствуют их возможности расти, функционировать и адаптироваться даже к тем условиям среды, которые быстро меняются.

Зачастую такие микроорганизмы имеют шарообразную форму тела, иногда палочковидную или изогнутую.

В грунтах также находится большое количество болезнетворных одноклеточных. Согласно исследованиям ученых, основные пути инфицирования патогенной группой простейших – это зараженные остатки живых существ. Такие микроорганизмы часто являются причиной инфицирования людей и животных такими опасными недугами, как сибирская язва, гангрена и всевозможные кишечные инфекции.

Несмотря на то что в природе встречаются патогенные бактерии, способные нанести вред человеку, эти одноклеточные приносят огромную пользу.

  1. Участвуют в химических реакциях и процессах, повышают биологическую активность грунта.
  2. Принимают участие в гумусообразовании, то есть создании органических веществ.
  3. Оздоравливают почву, стимулируя ее самоочищение от патогенных организмов.
  4. Приводят в норму сбалансированное питание растительности.
  5. Защищают представителей флоры и стимулируют их рост на ранних стадиях.
  6. Способствуют образованию и развитию корневой системы.
  7. Укрепляют защитные реакции растительных организмов, а также их сопротивляемость различным инфекциям.

Обзор видов

Живущие в почве нашей планеты микроорганизмы делятся на несколько видов согласно способу питания, функциональным особенностям, среде обитания и другим особенностям. Организмы, обитающие в почве, представлены бактериями гниения, паразитами и симбионтами. При этом взаимоотношения между различными видами сапрофитов могут быть самыми разными.

Микроорганизмы, которые относятся к группе одноклеточных, образующих споры, бывают 12-ти типов. Они выделяются на основе предпочтений бактерий к среде обитания.

Например, термофилы могут существовать только в теплой среде. Под влиянием данных одноклеточных многие элементы, в частности, мочевина превращается в вещества, типичные для роста и развития растительности.

Патогенная микрофлора грунта является результатом ее загрязнения фекалиями. Такие микробы попадают в субстрат из кишечника животных или растений и тем самым способствуют процедуре гниения. Главными представителями патогенной микрофлоры считают колиформных прокариотов. После попадания в грунт эти одноклеточные существуют в ней длительное время при условии хорошего прогревания почвы и отсутствия доступа прямого солнечного света.

Колиформных бактерий относят к наиболее опасным, так как они попадают в почву из кишечника животного.

Также опасными для людей и других живых организмов считаются бактерии, что вырабатывают ферменты высокотоксичной природы.

По форме клеточных стенок

Классификация почвенных бактерий по форме клеточных стенок была основана на методах геномных исследований. По данному принципу ученые выделяют 3 типа одноклеточных:

  • бациллы, у которых клетка имеет стержневидную форму;
  • кокки имеют клетку в форме сферы;
  • спириллы – это спиралевидные организмы.

Также были выявлены почвенные микроорганизмы сложного типа. К таковым относят разветвленных актиномицет.

По отношению к кислороду

Согласно использованию кислорода в процессе своей жизнедеятельности, почвенные одноклеточные бывают следующих видов:

  • аэробные, для их существования необходим кислород;
  • анаэробные бактерии погибают при наличии кислорода в определенном слое грунта.

По способности окрашиваться методом Грама

Суть метода Грама – в наличии внешней оболочки, которая выполняет защитную функцию, она может пропускать или препятствовать проникновению антибиотика и красителя внутрь бактерии. Грамположительными считаются крупные виды почвенных микроорганизмов, у которых толстая оболочка, выдерживающая водный стресс.

Грамотрицательными называются мелкие бактерии, которые не проявляют устойчивости к водному стрессу.

Чаще всего в почвах встречаются следующие грамотрицательные бактерии:

  • псевдомонады, имеющие вид одиночных мелких организмов, что не образуют спор;
  • азотобактерии – большие подвижные свободноживущие палочки;
  • клубеньковые одноклеточные;
  • энтеробактерии могут быть подвижными и неподвижными, они представлены в виде кишечной флоры млекопитающих организмов, патогенных бактерий для растительности, а также жители грунта и воды;
  • почкующиеся организмы – нитрифицирующие бактерии;
  • цитофаги и миксобактерии – микроорганизмы, образующие слизь и плотные тяжи.

Грамположительные организмы представлены в грунте следующими видами:

  • спорообразующими;
  • бациллами – это палочковидные бактерии, проживающие подвижными колониями;
  • анаэробными крупными организмами, участвующими в гниении, сбраживании углеводов, крахмала, пектина;
  • коринеподобными бактериями, обитающими в почве, подстилке, мертвом и живом растительном субстрате.

По типу питания

Согласно типу питания, бактерии, живущие в почве, делят на автотрофных и гетеротрофных. Первые получают органику для своей жизнедеятельности своими силами. Гетеротрофные организмы пользуются готовой органикой.

По функциям

Микроорганизмы, находящиеся в грунте, необходимы для деструкции органики. В процессе своей деятельности одноклеточные обогащают важными соединениями почвы. Функцию фиксации азота в прикорневой системе выполняют клубеньковые бактерии.

Нитрифицирующие виды микроорганизмов используют для того, чтобы повысить плодородие грунта.

Помимо этого, согласно функциональным особенностям, выделяют следующие группы одноклеточных.

  • Деструкторы. Они потребляют углеводы и всевозможные органические соединения, которые представлены в виде свежей либо отмершей органики.
  • Мутуалисты. Эти бактерии способны сожительствовать на взаимовыгодных друг для друга условиях. Примером таких микроорганизмов являются клубеньковые бактерии.
  • Хемоавтотрофы способны получить энергию из неорганического вещества, в котором нет углерода.
  • Патогены, паразиты растительности.

Все вышеперечисленные группы почвенных бактерий играют основную роль в питании представителей флоры. Эти одноклеточные преобразуют почвенную органику, нейтрализуют пестициды, накапливают в грунте азот, предотвращают заболевание растений, а также образовывают почвенные микроагрегаты, увеличивающие влагоемкость субстрата.

Чем питаются?

Существует несколько способов получения энергии почвенными бактериями.

Среди них встречаются автотрофы – существа, которые вырабатывают вещества для своего питания собственными силами.

Некоторые представители данной группы используют в пищу соединения органической природы. Последние называются гетеротрофами и делятся на 3 группы.

  • Паразиты. Бактерии данного вида представляют собой микроорганизмы патогенной природы, живущие за счет иных организмов.
  • Симбионты. Клубеньковыми азотфиксаторами называют бактерии, которые поселяются в прикорневой системе, образуя узлы шарообразной формы. У этих бактерий продолговатая овальная или палочкообразная форма. Зачастую эти организмы взаимодействуют с горохом, чечевицей, люцерной и другими бобовыми.
  • Сапрофиты – это бактерии гниения. Проживают они в верхних слоях почвы и находятся в ней в огромном количестве. Результат жизнедеятельности сапрофитов – это утилизация мертвых тканей и высокая скорость разложения веществ. Бактерии проявляют особую требовательность к органике грунта. Они не могут существовать без азотсодержащих соединений, нуклеотидов, витаминов, белков и углеводов.

Бактерии проживают во всех уголках нашей планеты. В земле эти одноклеточные взаимодействуют с другими представителями микрофлоры и играют роль их хранителей, а также распространителей. Почвенные бактерии способны довольно быстро разложить неживую органику и превратить ее в качественный гумус в разных слоях почвы. Это очень важные одноклеточные, без которых круговорот веществ был бы практически невозможным.

Что такое почвенные бактерии, смотрите далее.

Основную биомассу микромира почвы составляют грибы, актиномицеты и бактерии . Также всегда есть какое-то количество архей, вирусов, бактериофагов, водорослей, простейших.

Последние выводы ученых - общая биомасса подземных обитателей, по крайней мере, не меньше, чем биомасса всех наземных организмов .

Микробиота находится в постоянной активности – идет борьба за еду, создаются симбиотические сообщества, ведутся войны, создается оружие (в основном, химическое).

Микромир разных почв, даже разных участков одного огорода, может существенно различаться. Картина микромира зависит от времени года и даже дня, температуры и влажности, рН почвы, освещенности и множества других факторов. Это существенно затрудняет практическую работу ученых и логическую достоверность их выводов.

Наука о почвенном микромире – одна из самых новых, хотя первые исследования были сделаны еще в 19 веке. Очень интересно знакомиться с современными научными работами.

Вот ряд выводов, к которым приходят исследователи. Их стоит взять на заметку каждому огороднику:

- Микробиота кислых почв, в основном, представлена грибами. В торфах на долю грибов приходится до 90% от массы всей почвенной биоты.

- Чем более плодородна почва, тем больше в ней аэробных бактерий и актиномицетов. Скорее всего, достоверно и обратное.

- Именно бактерии отвечают за круговорот азота. Одни фиксируют азот воздуха (азотфиксирующие), другие расщепляют белки растительного и животного опада, навоза, выделяя в почву аммиак (аммонифицирующие). Следующие бактерии окисляют аммиак до нитрозо- и нитросоединений (нитрофицирующие). В форме нитратов азот попадает и в растения. Остатки нитратов в почве денитрофицирующие бактерии восстанавливают до молекулярного азота. И круговорот этого элемента повторяется.

- Когда человек вносит в почву минеральные удобрения, он кормит не только (а может быть, не столько) растения, но и микроорганизмы. Есть многократно подтвержденные данные исследователей, показывающие, что количество микробиоты после внесения удобрений вырастает в разы.

- Для жизнедеятельности бактерий, отвечающих за оборот азота в почве, требуется нейтральная кислотность. В кислой среде они не работают.

- Органические кислоты (гуматы), которые составляют основу органических удобрений (навоза, перегноя, вермикомпоста) не могут усваиваться растениями. Они должны сначала переработаться микроорганизмами (минерализоваться), и в таком виде уже становятся доступны растениям. Это значит, что органикой мы подкармливаем не растения, а микробиоту. Но зато микроорганизмы, получив легко усваиваемую пищу, активно размножаются, синтезируют ферменты, гормоны, витамины, антибиотики, которые нужны растениям не меньше, чем минеральные компоненты.

Принято говорить, что микробиота формирует пищевые цепочки. Что они в себя включают?

- Часть микроорганизмов существует за счет живых биологических субстанций и растения (микробы-паразиты или гетеротрофы).

- Часть микроорганизмов перерабатывает неживую органику (их называют сапрофиты), переводя ее в гумусовые соединения. Здесь первыми в пищевой цепочке являются грибы. И далее, проходя через организмы ряда бактерий, гумус постепенно перерабатывается в минеральные компоненты.

- В почвенной среде много дружественных симбиозов, помогающих его членам выживать. Всем известны симбиозы грибов и водорослей – лишайники.

Для нас важно, что корни растений (ризота) дружат с грибами и бактериями, создавая микоризу.

Без дружественных (или временно прикидывающихся друзьями) микроорганизмов растения обречены на голод и не защищены от врагов и болезней.

Вспомним про питание растений. Мы знаем, что оно бывает воздушное и корневое.

Воздушное питание обеспечивают зеленые листья. Они способны улавливать из воздуха углекислый газ и трасформировать его в углеводы (этот процесс называется фотосинтезом и протекает с использованием хлорофилла). Углеводы – ценный, энергоемкий вид питания.

Углеводы транспортируются к корням, где их поджидают всевозможные микрообитатели почвы. Некоторые из них – например, отдельные виды грибов, азотфиксирующие бактерии проникают непосредственно в ткани корней, другие образуют колонии вокруг корневых волосков. Корни выделяют углеводы, и всасывают почвенные растворы, в которых есть минеральные компоненты, а также продукты жизнедеятельности микроорганизмов - ферменты, гормоны, другие биологически активные вещества. Это корневое питание растений.

- Грибы, проросшие в корни растений, могут эффективно поставлять растениям воду, так как их отростки (гифы) могут расти существенно быстрее корней, и их длина может измеряться километрами. Грибы могут глубже корней проникать в почву в поисках воды, так как им не опасны анаэробные (лишенные кислорода) среды.

Более конкретно о почвенном микромире, о том, как использовать микроорганизмы на практике, будет рассказано в следующих статьях.

Поэтому подписывайтесь на наш канал!

Попробуем разобраться в хитросплетениях мифов и реальностей.

Вас ждут неожиданные факты, полезные для практики результаты научных исследований.

Читайте также: