Какова роль хемосинтезирующих бактерий в экосистемах кратко

Обновлено: 24.04.2024

Фотосинтез и его значение. Космическая роль фотосинтеза

Фотосинтез — это процесс преобразования энергии света в энергию химического связывания органических соединений при участии хлорофилла.

Фотосинтез происходит в хлоропластах, куда поступает углекислый газ и вода. Зеленый пигмент хлорофилл обеспечивает поглощение энергии света, необходимой для химических превращений. Растения в дальнейшем используют созданные молекулы простого углевода для синтеза крахмала, жиров, и других веществ. Кислород выделяется в окружающую среду. Процессы, происходящие в хлоропластах, показаны

Вследствие фотосинтеза ежегодно образуется около 150 миллиардов тонн органического вещества и около 200 миллиардов тонн кислорода. Этот процесс обеспечивает углеродный цикл в биосфере, предотвращая накопление углекислого газа и, тем самым, предотвращая парниковый эффект и перегрев Земли. Органические вещества, образующиеся в результате фотосинтеза, частично потребляются другими организмами, большая часть которых за миллионы лет образовала залежи полезных ископаемых (уголь и бурый уголь, нефть).

Фотосинтез

Рис.1. Фотосинтез

Как доказал русский ученый К.А. Тимирязев, фотосинтез невозможен без хлорофилла. Исследователь писал, что именно в зеленых листьях совершается процесс, связывающий жизнь на Земле с Солнцем, позволяющий всем на планете пользоваться общим источником энергии.

Значение фотосинтеза и космическая роль зеленых растений:

  • Усвоение энергии света для создания органических соединений.
  • Создание органической массы (177 млрд. т ежегодно), необходимой для животных и человека.
  • Выделение кислорода в атмосферу Земли (около 450 млн. т в год).
  • Поддержание концентрации СО2 в воздухе на уровне 0,02–0,04%.
  • Накопление энергии.
  • Образование почвы.

Благодаря растениям поддерживается содержание молекул О2 в атмосфере нашей планеты на уровне 21%. Над крупными городами, промышленными центрами, транспортными узлами воздух беднее кислородом, запылен, содержит больше углекислого газа, токсичных веществ.

Суть одного из важнейших процессов на Земле отражает химическое уравнение:

Световая и темновая фазы фотосинтеза. Их взаимосвязь.

В 1905 году английский физиолог Ф. Блэкман обнаружил, что скорость фотосинтеза не может увеличиваться бесконечно, существуют ограничивающие её факторы. Исходя из этого, он предложил две фазы фотосинтеза:

При низкой освещенности скорость световых откликов увеличивается пропорционально увеличению интенсивности света, и, помимо этого, эти реакции не зависят от температуры, поскольку для их прохождения не требуются ферменты. На тилакоидных мембранах осуществляются световые реакции.

Наоборот, скорость темновых реакций увеличивается с ростом температуры; однако при достижении температурного порога 30 ° C этот рост прекращается, что указывает на ферментативный характер этих превращений, которые происходят в строме. Также важно отметить, что свет тоже оказывает некоторое влияние на темновые реакции, несмотря на их название.

Световая фаза фотосинтеза происходит на тилакоидных мембранах, несущих несколько типов белковых комплексов, главными из которых являются фотосистемы I и II, а также АТФ-синтаза. В составе фотосистем находятся пигментные комплексы, в которых, помимо хлорофилла, присутствуют также каротиноиды. Каротиноиды захватывают свет в областях спектра, где нет хлорофилла, и помимо этого, защищают хлорофилл от повреждения интенсивным светом.

Помимо пигментных комплексов, фотосистемы также включают ряд акцепторных белков, последовательно переносящих электроны от молекул хлорофилла друг к другу. Последовательность этих белковых молекул называется цепью переноса электронов хлоропластов.

Особый комплекс белков непосредственно связан с фотосистемой II, обеспечивающей выделение кислорода при таком процессе как фотосинтез. Этот комплекс выделения кислорода содержит ионы марганца и хлора.

В световой фазе световые кванты или фотоны, падающие на молекулы хлорофилла, которые расположены на мембранах тилакоидов, переводят их в состояние возбуждения, характеризующееся более высокой энергией электронов. В этом случае возбужденные электроны из хлорофилла фотосистемы I передаются через цепочку посредников к водородному носителю НАДФ, который присоединяет протоны водорода, которые постоянно находятся в водном растворе:

Темная фаза — это процесс преобразования углекислого газа в глюкозу в строме (пространстве между гранами) хлоропластов с участием энергии АТФ и НАДФ •Н.

Результат темновых реакций: превращение углекислого газа в глюкозу, а затем в крахмал. Помимо стромальных молекул глюкозы образуются аминокислоты, нуклеотиды и спирты.

Световая и темновая фазы фотосинтеза

Рис. 2. Световая и темновая фазы фотосинтеза

Хемосинтез. Роль хемосинтезирующих бактерий

Хемосинтез является самым старым типом автотрофного питания, образованным еще во время эволюции до фотосинтеза. В отличие от фотосинтеза при хемосинтезе, основным источником энергии является не солнечный свет, а химические реакции окисления веществ, обычно неорганических.

Хемосинтез наблюдается только у ряда прокариот. Многие хемосинтезирующие бактерии живут в местах, недоступных для других организмов: на больших глубинах, в бескислородных условиях.

Хемосинтетические организмы не зависят от энергии солнечного света, ни как растения, ни как животные. Исключением являются бактерии, которые окисляют аммиак, поскольку последний выделяется в результате гниения органических веществ.

Сходство хемосинтеза с фотосинтезом:

  • автотрофное питание,
  • энергия накапливается в АТФ, а затем используется для синтеза органических веществ.

Отличия в хемосинтезе:

  • источник энергии - различные окислительно-восстановительные химические реакции;
  • характерен только для ряда бактерий и архей;
  • клетки не содержат хлорофилла;
  • в качестве источника углерода для синтеза органических веществ используются не только CO2, но и окись углерода (CO), муравьиная кислота (HCOOH), метанол (CH3OH), уксусная кислота (CH3COOH) и карбонаты.

Хемосинтезирующие организмы генерируют энергию при окислении серы, сероводорода, водорода, железа, марганца, аммиака, нитритов и т.д. Как видите, используются неорганические вещества.

Хемосинтетические вещества подразделяются на группы в зависимости от окисляемого субстрата для производства энергии: железные бактерии, серные бактерии, археи, образующие метан, нитрифицирующие бактерии и т. д.

В хемосинтетических аэробных организмах кислород является акцептором электронов и водорода, т.е. он действует как окислитель.

Хемосинтезирующие организмы играют важную роль в круговороте веществ, особенно азота, и способствуют плодородию почвы.

В группу хемосинтетических организмов (хемотрофов) в основном входят бактерии: нитрифицирующие, сернистые, черные и т. д., использующие энергию окисления ионов азота, серы и железа. В этом случае донором электронов является не вода, а другие неорганические вещества.

Таким образом, нитрифицирующие бактерии окисляют аммиак, образующийся из атмосферного азота, от азотфиксирующих бактерий до нитритов и нитратов:

Серобактерии производят окисление сероводорода до серы и, в некоторых случаях, до серной кислоты:

Железобактерии производят окисление солей железа:

Водородные бактерии имеют способность окислять молекулярный водород:

Углекислый газ действует как источник углерода для синтеза органических соединений во всех автотрофных бактериях.

Хемосинтезирующие бактерии играют наиболее значительную роль в биогеохимических циклах химических элементов в биосфере, так как в течение их жизни образовались отложения многих минералов. Кроме того, они являются источниками органического вещества на планете, то есть производителями, а также делают доступными для растений и других организмов ряд неорганических веществ.

Источник изображения:
Рис. 2 — Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Дарья Дудина

😂

Ещё что-то с азотом они делают. Ахахах


София Захарова

.
.
.
.
.
Показать полностью.
.
.
.
.
Продуценты первичного органического вещества, круговорот азота, серы и железа, способны усваивать CO2

Диана Гайфуллина


Диана Гайфуллина

.
.
.
.
.
.
.1)редуценты - разлагают органику до мин.веществ.
2)создание почвы хорошей( связывают азот, например)
3)ОВР, мать ее, азазз

Биология ЕГЭ 100БАЛЛОВ

Правильный ответ
.
.
.
.
Показать полностью.
.
.
.
.
.
.
1) Бактерии хемосинтетики, не содержащие хлорофилла, создают органические вещества благодаря энергии,
выделяющейся при химических реакциях окисления различных неорганических соединений: водорода,
сероводорода, аммиака и др.
2) Азотные бактерии играют важную роль в круговороте азота.
3) Азотные бактерии осваивают энергию, которая иначе была бы потеряна для животных

DELETED

К хемосинтезирующим относятся аэробные бактерии (нитрифицирующие, серные, железобактерии, водородобактерии).
1. Нитрифицирующие участвуют в круговороте веществ( азот)
2. Серобактерии способствуют выветриванию горных пород, почвообразование. Их используют в очистке сточных вод.
3. Железобактерии участвуют в образовании болотной железной руды
4. Водородобактерии окисляют водород, образующийся в результате жизнедеятельности некоторых бактерий. Используют для получения дешевых, кормовых продуктов.

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи.До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!


-->


Задание 25 № 11055

Какова роль хемосинтезирующих бактерий в экосистемах?

1) Бактерии хемосинтетики, не содержащие хлорофилла, создают органические вещества благодаря энергии, выделяющейся при химических реакциях окисления различных неорганических соединений: водорода, сероводорода, аммиака и др.

2) Азотные бактерии играют важную роль в круговороте азота.

3) Азотные бактерии осваивают энергию, которая иначе была бы потеряна для животных.

Как устроены и осуществляют процессы жизнедеятельности бактерии, хемосинтезирующие различные вещества? Чтобы ответить на эти вопросы, необходимо разобраться с целым рядом биологических понятий.

бактерии хемосинтезирующие

Характерные черты бактерий

Сначала выясним, кто же такие бактерии. Это целое Царство живой природы. Они представляют собой одноклеточные организмы микроскопических размеров, которые лишены ядра. Но это не значит, что у бактерий вообще нет структур, отвечающих за передачу наследственной информации. Она просто имеет более примитивную организацию. Это кольцевые молекулы ДНК, которые сосредоточены в определенной части цитоплазмы, называемой нуклеоидом.

Суть автотрофного питания

Хемосинтезирующие бактерии, примеры которых будут рассмотрены в нашей статье, самостоятельно производят органические вещества. Они являются автотрофами, подобно растениям. Однако последние используют для этого энергию солнечного света. Наличие зеленых пластид хлоропластов позволяет им осуществлять процесс фотосинтеза. Его суть заключается в образовании углевода глюкозы из неорганических веществ - воды и углекислого газа. Еще одним продуктом данной химической реакции является кислород. Бактерии также являются автотрофами. Но для получения энергии им не нужен солнечный свет. Они осуществляют другой процесс - хемосинтез.

Что такое хемосинтез

Хемосинтезом называют процесс образования органических веществ за счет протекания окислительно-восстановительных реакций. Его в природе осуществляют только прокариоты. Хемосинтезирующие бактерии могут использовать для синтеза органических веществ соединения серы, азота и железа. При этом выделяется энергия, которая сначала аккумулируется в связях АТФ, после чего может использоваться клетками бактерий.

хемосинтезирующими бактериями являются

Бактерии хемосинтезирующие: среда обитания

Поскольку жизнь хемотрофов не зависит от наличия солнечного света, ареал их распространения достаточно широк. К примеру, серобактерии могут жить на больших глубинах, иногда являясь там единственными представителями живых существ. Средой обитания данных прокариот чаще всего является почва, сточные воды и субстраты, богатые определенными химическими соединениями.

Железобактерии

К хемосинтезирующим бактериям относят прокариот, изменяющих состав соединений железа. Они были открыты выдающимся русским микробиологом Сергеем Николаевичем Виноградским в 1950 году. Этот вид бактерий в ходе реакции окисления изменяет степень окисления железа, делая его трехвалентным. Они обитают в пресных, и соленых водоемах. В природе они осуществляют круговорот железа в природе, а в промышленности используются для производства чистой меди. Этот вид бактерий также относится к литоавтотрофам, способным синтезировать из улекислоты некоторые элементы своей клетки.

к хемосинтезирующим бактериям относят

Серобактериии

Бактерии, хемосинтезирующие вещества из соединений серы, могут существовать отдельно на дне водоемов или образовывать симбиоз с моллюсками и морскими беспозвоночными. В качестве источника окисления они используют сероводород, сульфиды, тионовые кислоты или молекулярную серу. Этот вид бактерий был главным объектом при открытии и изучении процесса хемосинтеза. К этой группе прокариот относят и некоторых фототрофных прокариот. К примеру, таких как пурпурные или зеленые серобактерии.

хемосинтезирущие бактерии примеры

Нитрифицирующие бактерии

На корнях бобовых растений поселяются нитрифицирущие бактерии. Хемосинтезирующие прокариоты этой группы окисляют аммиак до азотной кислоты. Эта реакция осуществляется в несколько этапов с образованием промежуточных веществ. В почве находятся также азотфиксирующие бактерии. Они поселяются на корнях бобовых растений. Внедряясь в ткани подземного органа, они образуют характерные утолщения. Внутри таких образований создается благоприятная среда для протекания хемосинтеза. Симбиоз растений с клубеньковыми бактериями является взаимовыгодным. Первые обеспечивают прокариот органикой, полученной в ходе фотосинтеза. Бактерии же способны фиксировать атмосферный азот и переводить его в форму, доступную для растений.

Почему данный процесс имеет такое важное значение? Ведь в атмосфере концентрация азота достаточна велика и составляет 78%. Но в таком виде растения не могут усваивать это вещество. А азот необходим растениям для развития корневой системы. В этой ситуации на помощь и приходят клубеньковые бактерии, которые превращают его в нитратную и аммонийную форму.

роль хемосинтезирующих бактерий

Тионовые бактерии

Хемосинтезирующими бактериями являются и тионовые прокариоты. Их источником энергии служат различные соединения серы. Этот вид бактерий восстанавливает их до серной кислоты. Эта реакция сопровождается значительным понижением водородного показателя среды. Тионовые бактерии входят в группу ацидофилов. К ним относятся организмы, способные выживать в условиях повышенной кислотности. Такие условия характерны для болот. Вместе с тиановыми эту группу составляют молочно- и уксуснокислые бактерии, жгутиконосцы и коловратки.

Водородные бактерии

Эти виды прокариотов являются почвенными обитателями. Они окисляют молекулярный водород до воды с выделением энергии. Такие бактерии также входят в группу термофилов. Это значит, что они способны сохранять жизнеспособность при высоких температурах, показатель которых можетдо стигать 50 градусов по шкале Цельсия. Эта способность водородных бактерий обусловлена тем, что они выделяют специальные ферменты, функционирующие даже в таких условиях.

хемосинтезирующие бактерии могут использовать для синтеза органических

Роль хемосинтезирующих бактерий

Хемотрофы играют главную роль в сложных процессах превращения и круговорота соответствующих химических веществ в природе. Поскольку сероводород и аммиак являются достаточно токсичными веществами, существует необходимость в их нейтрализации. Это также осуществляют хемотрофные бактерии. В ходе химических превращений образуются вещества, необходимые другим организмам, что делает возможным их нормальный рост и развитие. Крупные месторождения руд железа и марганца на дне морей и болот возникают благодаря деятельности хемотрофов. А именно - железобактерий.

Человек научился использовать уникальные свойства хемотрофов и в своей деятельности. К примеру, с помощью серобактерий очищают сточные воды от сероводорода, защищают металлические и бетонные трубы от коррозии, а почвы от закисления.

Итак, бактерии хемосинтезирующие являются особыми прокариотами, способными осуществлять соответствующие химические реакции в анаэробных условиях. Эти организмы окисляют вещества. Энергию, которая при этом выделяется, они сначала запасают в связях АТФ, а потом используют для осуществления процессов жизнедеятельности. Основными из них являются железо- , серо- и азотфиксирующие бактерии. Они обитают как в водной, так и в почвенной среде. Хемотрофы являются незаменимым звеном в круговороте веществ, обеспечивают живые организмы необходимыми веществами и широко используются человеком в его хозяйственной и промышленной деятельности.

Читайте также: