Какова роль физической химии в технологических процессах кратко

Обновлено: 05.07.2024

ХИМИЯ ФИЗИЧЕСКАЯ, раздел химии, в котором изучаются химические свойства веществ на основе физических свойств составляющих их атомов и молекул. Современная физическая химия – широкая междисциплинарная область, граничащая с различными разделами физики, биофизики и молекулярной биологии. Она имеет множество точек соприкосновения и с такими разделами химической науки, как органическая и неорганическая химия.

Отличительная особенность химического подхода (в противоположность физическому и биологическому) заключается в том, что в его рамках, наряду с описанием макроскопических явлений, объясняется их природа исходя из свойств отдельных молекул и взаимодействий между ними.

Новые инструментальные и методологические разработки в области физической химии находят применение в других разделах химии и смежных науках, например фармакологии и медицине. В качестве примеров можно привести электрохимические методы, инфракрасную (ИК-) и ультрафиолетовую (УФ-) спектроскопию, лазерную и магниторезонансную технику, которые широко используются в терапии и для диагностики различных заболеваний.

Основными разделами физической химии традиционно считаются: 1) химическая термодинамика; 2) кинетическая теория и статистическая термодинамика; 3) вопросы строения молекул и спектроскопия; 4) химическая кинетика.

Химическая термодинамика.

Химическая термодинамика непосредственно связана с применением термодинамики – науки о теплоте и ее превращениях – к проблеме химического равновесия. Суть проблемы формулируется следующим образом: если имеется смесь реагентов (система) и известны физические условия, в которых она находится (температура, давление, объем), то какие самопроизвольные химические и физические процессы могут привести эту систему к равновесию? Первый закон термодинамики гласит, что теплота есть одна из форм энергии и что полная энергия системы (вместе с ее окружением) остается неизменной. Таким образом, этот закон является одной из форм закона сохранения энергии. Согласно второму закону, самопроизвольно протекающий процесс приводит к возрастанию общей энтропии системы и ее окружения. Энтропия – это мера того количества энергии, которое система не может потратить на совершение полезной работы. Второй закон указывает направление, по которому пойдет реакция без каких-либо внешних воздействий. Чтобы изменить характер реакции (например, ее направление), нужно затратить энергию в той или иной форме. Таким образом, он налагает строгие ограничения на величину работы, которая может быть совершена в результате преобразования теплоты или химической энергии, выделяющихся в обратимом процессе.

Важными достижениями в химической термодинамике мы обязаны Дж.Гиббсу, который заложил теоретический фундамент этой науки, позволившей объединить в единое целое результаты, полученные многими исследователями предыдущего поколения. В рамках разработанного Гиббсом подхода не делается никаких допущений о микроскопической структуре материи, а рассматриваются равновесные свойства систем на макроуровне. Вот почему можно думать, что первый и второй законы термодинамики носят универсальный характер и останутся справедливыми даже тогда, когда мы узнаем гораздо больше о свойствах молекул и атомов.

Несмотря на то что законы химической термодинамики уже установлены, на макроскопическом уровне термодинамика – активно развивающаяся область науки. Большой практический интерес представляет термодинамическое описание некоторых необычных химических реакций и систем, а также применение термодинамических концепций к решению таких жизненно важных проблем, как получение энергии, утилизация отходов, использование теплоты, выделяющейся в некоторых технологических процессах. По мере того как синтезируются новые химические соединения и на их основе создаются новые материалы, возникает необходимость в определении их термодинамических характеристик (см. также ТЕПЛОТА; ТЕРМОДИНАМИКА; ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА).

Кинетическая теория и статистическая термодинамика.

Каковы изменения энергии и энтропии в ходе химических реакций? Ответ на этот вопрос дают кинетическая теория и статистическая термодинамика. Согласно кинетической теории, все вещества, в каком бы состоянии они ни находились – жидком, твердом или газообразном, – состоят из атомов, находящихся в постоянном движении. В твердых телах и жидкостях атомы так или иначе связаны друг с другом, а в газах практически свободны. Термодинамические свойства систем – уравнения состояния (соотношения, связывающие давление, объем, температуру и число атомов), теплоемкость, энтропия и другие величины – выводятся из представления о том, что движение атомов подчиняется законам классической, ньютоновской механики. Статистическая термодинамика расширяет это представление, полагая, что молекулы – основные единицы материи – ведут себя в соответствии с законами квантовой механики, а не классической физики. Квантовая механика - это математическая теория, описывающая свойства микромира исходя из допущения об их вероятностном характере. Так, физики говорят не о точном положении частицы в пространстве, а о вероятности нахождения ее в определенной области пространства. Кинетическая теория и статистическая термодинамика трактуют понятие энтропии на молекулярном уровне как меру неупорядоченности системы; эта мера определяется уравнением Больцмана, где S – энтропия, k – постоянная Больцмана W – число микроскопических состояний системы (см. также ЖИДКОСТЕЙ ТЕОРИЯ; КВАНТОВАЯ МЕХАНИКА).

Статистическая термодинамика (как и квантовая механика) позволяет предсказать положение равновесия для некоторых реакций в газовой фазе. С помощью квантовомеханического подхода удается описать поведение сложных молекул ряда веществ, находящихся в жидком и твердом состоянии. Однако существуют реакции, скорость которых не может быть рассчитана ни в рамках кинетической теории, ни с помощью статистической термодинамики.

Настоящая революция в классической статистической термодинамике произошла в 70-х годах 20 в. Новые концепции, такие, как универсальность (представление о том, что члены некоторых широких классов соединений обладают одинаковыми свойствами) и принцип подобия (оценка неизвестных величин исходя из известных критериев), позволили лучше понять поведение жидкостей вблизи критической точки, когда исчезает различие между жидкостью и газом. С помощью ЭВМ были смоделированы свойства простых (жидкий аргон) и сложных (вода и спирт) жидкостей в критическом состоянии. Сравнительно недавно свойства таких жидкостей, как жидкий гелий (поведение которых прекрасно описывается в рамках квантовой механики), и свободных электронов в молекулярных жидкостях были всесторонне исследованы с применением компьютерного моделирования (см. также ГЕЛИЙ; СВЕРХПРОВОДИМОСТЬ). Это позволило лучше понять свойства обычных жидкостей. Компьютерные методы в сочетании с новейшими теоретическими разработками интенсивно используются для изучения поведения растворов, полимеров, мицелл (специфических коллоидных частиц), белков и ионных растворов. Для решения задач физической химии, в частности для описания некоторых свойств систем в критическом состоянии и исследования вопросов физики высоких энергий, все чаще применяется математический метод ренормализационной группы (см. также МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ).

Строение молекул и спектроскопия.

Химики-органики 19 в. разработали простые правила определения валентности (способности к объединению) многих химических элементов. Например, они установили, что валентность углерода равна 4 (один атом углерода может присоединить четыре атома водорода с образованием молекулы метана CH4), кислорода – 2, водорода – 1. Исходя из эмпирических представлений, основанных на опытных данных, высказывались предположения о пространственном расположении атомов в молекулах (например, молекула метана имеет тетраэдрическую структуру, при этом атом углерода находится в центре треугольной пирамиды, а водород – в четырех ее вершинах). Однако этот подход не позволял раскрыть механизм образования химических связей, а значит, оценить размеры молекул, определить точное расстояние между атомами.

С помощью спектроскопических методов, разработанных в 20 в., была определена структура молекул воды (H2O), этана (C2H6), а затем и гораздо более сложных молекул, таких, как белки. Методы СВЧ-спектроскопии (ЭПР, ЯМР) и электронной дифракции позволили установить длины связей, углы между ними (валентные углы) и взаимное расположение атомов в простых молекулах, а рентгеноструктурный анализ – аналогичные параметры для более крупных молекул, образующих молекулярные кристаллы. Составление каталогов молекулярных структур и использование простых представлений о валентности заложили основы структурной химии (пионером ее был Л.Полинг) и дали возможность использовать молекулярные модели для объяснения сложных явлений на молекулярном уровне. Если бы молекулы не имели определенной структуры или если бы параметры связей C–C и С–H в хромосомах сильно отличались от таковых в молекулах метана или этана, то с помощью простых геометрических моделей Дж.Уотсон и Ф.Крик не смогли бы построить в начале 1950-х годов свою знаменитую двойную спираль – модель дезоксирибонуклеиновой кислоты (ДНК). Исследуя методами ИК- и УФ-спектроскопии колебания атомов в молекулах, удалось установить природу сил, удерживающих атомы в составе молекул, что, в свою очередь, навело на мысль о наличии внутримолекулярного движения и позволило исследовать термодинамические свойства молекул (см. выше). Это был первый шаг к определению скоростей химических реакций. Далее, спектроскопические исследования в УФ-области помогли установить механизм образования химической связи на электронном уровне, что позволило описывать химические реакции, основываясь на представлении о переходе реагентов в возбужденное состояние (часто под действием видимого или УФ-света). Возникла даже целая научная область – фотохимия. Спектроскопия ядерного магнитного резонанса (ЯМР) дала возможность химикам исследовать отдельные стадии сложных химических процессов и идентифицировать активные центры в молекулах ферментов. Этот метод позволил также получить трехмерные изображения интактных клеток и отдельных органов. См. также МАГНИТНЫЙ РЕЗОНАНС; ФОТОХИМИЯ.

Теория валентности.

Используя эмпирические правила валентности, разработанные химиками-органиками, периодическую систему элементов и планетарную модель атома Резерфорда, Г.Льюис установил, что ключом к пониманию химической связи является электронная структура вещества. Льюис пришел к выводу, что ковалентная связь образуется в результате обобществления электронов, принадлежащих разным атомам; при этом он исходил из представления о том, что связывающие электроны находятся на строго определенных электронных оболочках. Квантовая теория позволяет предсказать структуру молекул и характер образующихся ковалентных связей в самом общем случае (см. также ХИМИЯ).

Наши представления о строении вещества, сформировавшиеся благодаря успехам квантовой физики в первой четверти 20 в., можно вкратце изложить следующим образом. Структура атома определяется балансом электрических сил отталкивания (между электронами) и притяжения (между электронами и положительно заряженным ядром). Почти вся масса атома сосредоточена в ядре, а его размер определяется объемом пространства, занятого электронами, которые вращаются вокруг ядер. Молекулы состоят из относительно стабильных ядер, удерживаемых вместе быстро движущимися электронами, так что все химические свойства веществ можно объяснить исходя из представления об электрическом взаимодействии элементарных частиц, из которых состоят атомы и молекулы. Таким образом, главные положения квантовой механики, касающиеся строения молекул и образования химических связей, создают основу для эмпирического описания электронной структуры вещества, природы химической связи и реакционной способности атомов и молекул (см. также АТОМ).

Химическая кинетика

занимается изучением механизма химических реакций и определением их скоростей. На макроскопическом уровне реакцию можно представить в виде последовательных превращений, в ходе которых из одних веществ образуются другие. Например, кажущееся простым превращение

на самом деле состоит из нескольких последовательных стадий:

и каждая из них характеризуется своей константой скорости k. С.Аррениус предположил, что абсолютная температура T и константа скорости реакции k связаны соотношением k = A exp( - Eакт)/RT, где А – предэкспоненциальный множитель (т.н. частотный фактор), Еакт – энергия активации, R – газовая постоянная. Для измерения k и Т нужны приборы, позволяющие отслеживать события, которые происходят за время порядка 10 –13 с, с одной стороны, и за десятилетия (и даже тысячелетия) – с другой (геологические процессы); необходимо также уметь измерять ничтожно малые концентрации чрезвычайно нестабильных реагентов. В задачу химической кинетики входит, кроме того, прогнозирование химических процессов, протекающих в сложных системах (речь идет о биологических, геологических, атмосферных процессах, о горении и химическом синтезе).

где CH3-группа ориентирована по-разному относительно приближающегося атома калия.

Один из вопросов, которым занимается физическая химия (а также химическая физика), – расчет констант скоростей реакции. Здесь широко применяется разработанная в 1930-х годах теория переходного состояния, в которой используются термодинамические и структурные параметры. Эта теория в сочетании с методами классической физики и квантовой механики позволяет моделировать ход реакции, как если бы она протекала в условиях эксперимента с молекулярными пучками. Проводятся опыты по лазерному возбуждению определенных химических связей, позволяющие проверить правильность статистических теорий деструкции молекул. Разрабатываются теории, обобщающие современные физические и математические концепции хаотических процессов (например, турбулентности). Мы уже не так далеки от того, чтобы до конца понять природу как внутри-, так и межмолекулярных взаимодействий, раскрыть механизм реакций, протекающих на поверхностях с заданными свойствами, установить структуру каталитических центров ферментов и комплексов переходных металлов. Что касается микроскопического уровня, можно отметить работы по изучению кинетики образования таких сложных структур, как снежинки или дендриты (кристаллы с древовидной структурой), которые стимулировали развитие компьютерного моделирования, основанного на простых моделях теории нелинейной динамики; это открывает перспективы создания новых подходов к описанию строения и процессов развития сложных систем. См. также БИОХИМИЯ; БИОФИЗИКА; ХИМИИ ИСТОРИЯ; КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ; ФИЗИКА; РАСТВОРЫ; СВЕРХТЕКУЧЕСТЬ.

Даниэлс Ф., Олберти Р. Физическая химия. М., 1978
Эткин П.М. Физическая химия. М., 1980
Фролов Ю.Г., Белик В.В. Физическая химия. М., 1993
Грязнов В.М., Гульянова С.Г. Физическая химия. М., 1994

Физическая химия — наука, которую часто называют центральной из-за ключевых позиций в современной науке и технике. Большинство явлений в биологических науках, науках о земле можно охарактеризовать с точки зрения поведения атомов и молекул, а также принципов, лежащих в основе значительного прогресса в медицине и технике. Теоретическое и практическое мышление присутствует в этой науке.

Физическая химия-это количественная химия.
Он действует на стыке физики, биологии, медицины и химии. Это одна из традиционных дисциплин химии, которая занимается применением концепций и теорий физики к анализу химических свойств и реактивного поведения вещества.

физическая химия

Кроме того физико химические системы увлекательные и часто красивые в их собственном праве.

Современные исследования в области химических наук во все большей степени направлены на изучение явлений на наноуровне в диапазоне размеров между отдельными молекулами и макроскопической материей.

Физическая химия — раздел химии, занимающийся взаимодействиями и превращениями материалов. Раздел имеет дело с принципами физики, лежащими в основе всех химических взаимодействий стремясь измерить, соотнести и объяснить количественные аспекты реакций. Химические реакции лежат в основе производства практически всего в нашем современном мире.

  • Но какова же движущая сила реакций?
  • Почему одни реакции происходят в геологических масштабах времени, а другие настолько быстры, что для их изучения нам нужны фемтосекундные импульсные лазеры?
  • В конечном счете, что же происходит на атомном уровне?

На такие фундаментальные вопросы и многое другое пытается ответить наука физическая химия.

Физическая химия объединяет химию с физикой. Физико-химики изучают взаимодействие материи и энергии. Термодинамика и квантовая механика являются двумя важными разделами физической химии.

Возможность измерить, понять и контролировать свойства материи на этих масштабах позволяет проводить концептуальные и практические связи между субмикроскопическим миром атомов и молекул, и макроскопическим миром, с которыми мы взаимодействуем.

Наука на основе физики

Физическая химия изучает то, как вещество ведет себя на молекулярном и атомном уровне и как происходят химические реакции.

На основе их анализа, физикохимики могут разрабатывать новые теории, например, как формируются сложные структуры. Имеющие эту специальность люди часто работают в тесном сотрудничестве с другими учеными для исследования и разработке потенциальных возможностей использования новых материалов.

Эта наука о законах строения и превращения веществ традиционно располагает к работе способствуя различным научным карьерам. Многие люди, обученные в качестве физических химиков, в конечном счете работают как химики-аналитики, понимая фундаментальный процесс, связанный с аналитическими методами, что позволяет им улучшать и расширить эти методы.

Что делают физикохимики

Физикохимик сосредоточен на понимании свойств атомов и молекул: как химические реакции работают и эти свойства раскрываются. Работа включает в себя анализ материалов, разработку методов тестирования и характеризует свойства материалов, разработку теории об этих свойствах и открывают для себя возможности использования материалов. Использование сложных приборов и оборудования всегда было важным аспектом этих знаний. Большинство лабораторий имеют аналитические инструменты, которые могут включать в себя лазеры, масс-спектрометры, приборы ядерного магнитного резонанса и электронные микроскопы.

Открытия физикохимиков основаны на понимании химических свойств и описания их поведения с помощью теории науки о законах природы и математических вычислений. Ученые в этой специальности рассматривают свойства и прогнозируют реакции химических веществ, а затем проверяют и уточняют процессы. При этом используется математический анализ и статистические данные об огромных массивах данных, иногда с миллионами точек данных, чтобы выявить скрытую информацию о соединениях, материалах и процессах.

физическая химия

Чтобы выявить свойства материалов ученые могут также проводить моделирование, разработку математических уравнений, которые предсказывают, как соединения будут реагировать с течением времени.

В последнее время все больше и больше ученых задействованы в новых областях материаловедения и молекулярного моделирования, где их навыки в анализе и прогнозировании поведения свойств имеют новые приложения.

Объединив математическую жесткость физической химии с практичностью новых материалов и новых приложений, область этой науки расширяет и новые интересные способы.

Рождение физической химии было чревато противоречиями и спорами. Современная физическая химия имеет тенденцию к доминированию тем в атомной и молекулярной структуре, квантовой химии и спектроскопии.

Нажмите, чтобы узнать подробности

Соединения, составы и материалы, создаваемые химией, играют важнейшую роль для повышения производительности труда, снижения энергетических затрат на производство необходимой продукции, освоения новых технологий и техники. Примеров успешного влияния химии на методы машиностроительной технологии, приемы эксплуатации машин и аппаратов, развитие электронной промышленности, космической техники и реактивной авиации и многих других направлений научно-технического прогресса множество:

В настоящее время перед химией совместно с другими науками, техникой и промышленностью стоит много актуальных и сложных задач. Синтез и практическое применение подходящих высокотемпературных и, далее, горячих сверхпроводников позволит существенно изменить способы хранения и передачи энергии. Необходимы новые материалы, среди которых выделяются материалы на основе металлов, полимеры, керамика и композиты. Так проблема создания экологически чистого двигателя, в основе которого лежит реакция сгорания водорода в кислороде, заключается в создании материалов или процессов, препятствующих проникновению водорода через стенки резервуаров-аккумуляторов водорода. Создание новых химических технологий - также важное направление научно-технического прогресса. Так, стоит задача обеспечения новыми видами жидкого и газообразного топлива, получаемого при переработке угля, сланцев, торфа, древесины. Это возможно на основе новых каталитических процессов.

Химические реакции всегда связаны с разнообразными физическими процессами: теплопередачей, поглощением или излучением электромагнитных волн, электрическими явлениями и другими. Так, смесь веществ, в которой протекает какая‑либо химическая реакция, выделяет энергию во внешнюю среду в форме теплоты или поглощает ее извне. При повышении температуры вещества увеличивается интенсивность колебательных движений внутри молекул и связь между атомами в молекулах ослабляется. После перехода известной критической границы происходит диссоциация молекулы или ее взаимодействие с другими молекулами при столкновении, то есть химические процесс. Можно привести множество аналогичных примеров. Во всех случаях имеет место тесная связь физических и химических явлений, их взаимодействие.

Взаимосвязь физических и химических явлений изучает физическая химия. Используя теоретические и экспериментальные методы физики и химии, а также свои собственные методы, физическая химия занимается многосторонними исследованиями химических реакций и соответствующих им физических процессов. Физическая химия как пограничная наука охватывает изучаемые ею явления с нескольких сторон. Она учитывает диалектический характер взаимодействия атомов и молекул и таким путем познает сложные и взаимосвязанные явления материального мира.

Физическая химия уделяет главное внимание исследованию законов протекания химических процессов во времени и законов химического равновесия. Основная задача физической химии — предсказание временного хода химического процесса и состояния равновесия в различных условиях на основании данных о строении и свойствах молекул веществ, составляющих изучаемую систему. Знание условий протекания химической реакции приводит к возможности управлять химическим процессом. Надо обеспечивать наиболее быстрое и полное протекание интересующих технологов реакций в нужном направлении и при условиях, наиболее приемлемых для заводских масштабов. Поэтому физико‑химические исследования технологических процессов имеют важное значение на любом этапе силикатных технологий, начиная с процессов подготовки шихты и заканчивая получением материалов и изделий с наперед заданными свойствами.

1.1. Основные этапы в развитии физической химии

Экспериментальное изучение теплот химических реакций было начато Лавуазье и Лапласом (1779–1784 гг.) и в дальнейшем привело к установлению основного закона термодинамики — закона постоянства сумм теплот (Г. И. Гесс, 1840 г.).

Для развития физической химии огромное значение имело открытие двух законов термодинамики в середине XIX в. (Карно, Майер, Гельмгольц, Джоуль, Клаузис, В. Томсон). Количество разнообразных исследований, лежащих в области, пограничной между физикой и химией, постоянно возрастало и во второй половине XIX века. Было развито термодинамическое учение о химическом равновесии (Гульдберг и Вааге, Гиббс). Исследования Вильгельми положили начало изучению скоростей химических реакций, изучались условия равновесия растворов с паром (Д. П. Коновалов) и развилась теория растворов (Д. И. Менделеев).

Профессор Харьковского университета Бекетов с 1865 года читал лекции по физикохимии. Признание физической химии как самостоятельной науки выразилось в учреждении в 1887 году в Лейпцигском университете (Германия) первой кафедры физической химии во главе с Оствальдом. Здесь же был основан первый научный журнал по физической химии. К концу XIX в. определились 3 основные раздела физической химии — химическая термодинамика, химическая кинетика и электрохимия.

Вся совокупность экспериментальных данных и теоретических методов физической химии используется для достижения одной цели — выяснения зависимости направления, скорости и пределов протекания химических превращений от внешних условий и от строения молекул — участников химической реакции.

1.2. Методы физической химии

Термодинамический метод рассматривает равновесие систем и направление процессов в системах, не находящихся в равновесии.

  • а) подобно геометрии, термодинамика основана на нескольких постулатах — трех законах термодинамики;
  • б) термодинамика позволяет определять направление процессов без глубокого знания строения веществ, используя только сведения о тепловых эффектах реакций и теплоемкостях реагентов.

Молекулярно-кинетический метод — по рассмотрению кинетики реакций кинетика делится на две части: формальную кинетику и молекулярную. Молекулярная кинетика привлекает к анализу и статистический расчет макроскопических свойств на основании сведений о свойствах атомов и молекул.

Квантово-механический метод лежит в основе учения о строении и свойствах отдельных молекул и атомов и взаимодействии их между собой. Сведения, относящиеся к свойствам отдельных молекул, выявляются главным образом с помощью экспериментальных оптических методов.

ХИМИЯ ФИЗИЧЕСКАЯ, раздел химии, в котором изучаются химические свойства веществ на основе физических свойств составляющих их атомов и молекул. Современная физическая химия – широкая междисциплинарная область, граничащая с различными разделами физики, биофизики и молекулярной биологии. Она имеет множество точек соприкосновения и с такими разделами химической науки, как органическая и неорганическая химия.

Отличительная особенность химического подхода (в противоположность физическому и биологическому) заключается в том, что в его рамках, наряду с описанием макроскопических явлений, объясняется их природа исходя из свойств отдельных молекул и взаимодействий между ними.

Новые инструментальные и методологические разработки в области физической химии находят применение в других разделах химии и смежных науках, например фармакологии и медицине. В качестве примеров можно привести электрохимические методы, инфракрасную (ИК-) и ультрафиолетовую (УФ-) спектроскопию, лазерную и магниторезонансную технику, которые широко используются в терапии и для диагностики различных заболеваний.

Основными разделами физической химии традиционно считаются: 1) химическая термодинамика; 2) кинетическая теория и статистическая термодинамика; 3) вопросы строения молекул и спектроскопия; 4) химическая кинетика.

Химическая термодинамика.

Химическая термодинамика непосредственно связана с применением термодинамики – науки о теплоте и ее превращениях – к проблеме химического равновесия. Суть проблемы формулируется следующим образом: если имеется смесь реагентов (система) и известны физические условия, в которых она находится (температура, давление, объем), то какие самопроизвольные химические и физические процессы могут привести эту систему к равновесию? Первый закон термодинамики гласит, что теплота есть одна из форм энергии и что полная энергия системы (вместе с ее окружением) остается неизменной. Таким образом, этот закон является одной из форм закона сохранения энергии. Согласно второму закону, самопроизвольно протекающий процесс приводит к возрастанию общей энтропии системы и ее окружения. Энтропия – это мера того количества энергии, которое система не может потратить на совершение полезной работы. Второй закон указывает направление, по которому пойдет реакция без каких-либо внешних воздействий. Чтобы изменить характер реакции (например, ее направление), нужно затратить энергию в той или иной форме. Таким образом, он налагает строгие ограничения на величину работы, которая может быть совершена в результате преобразования теплоты или химической энергии, выделяющихся в обратимом процессе.

Важными достижениями в химической термодинамике мы обязаны Дж.Гиббсу, который заложил теоретический фундамент этой науки, позволившей объединить в единое целое результаты, полученные многими исследователями предыдущего поколения. В рамках разработанного Гиббсом подхода не делается никаких допущений о микроскопической структуре материи, а рассматриваются равновесные свойства систем на макроуровне. Вот почему можно думать, что первый и второй законы термодинамики носят универсальный характер и останутся справедливыми даже тогда, когда мы узнаем гораздо больше о свойствах молекул и атомов.

Несмотря на то что законы химической термодинамики уже установлены, на макроскопическом уровне термодинамика – активно развивающаяся область науки. Большой практический интерес представляет термодинамическое описание некоторых необычных химических реакций и систем, а также применение термодинамических концепций к решению таких жизненно важных проблем, как получение энергии, утилизация отходов, использование теплоты, выделяющейся в некоторых технологических процессах. По мере того как синтезируются новые химические соединения и на их основе создаются новые материалы, возникает необходимость в определении их термодинамических характеристик (см. также ТЕПЛОТА; ТЕРМОДИНАМИКА; ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА).

Кинетическая теория и статистическая термодинамика.

Каковы изменения энергии и энтропии в ходе химических реакций? Ответ на этот вопрос дают кинетическая теория и статистическая термодинамика. Согласно кинетической теории, все вещества, в каком бы состоянии они ни находились – жидком, твердом или газообразном, – состоят из атомов, находящихся в постоянном движении. В твердых телах и жидкостях атомы так или иначе связаны друг с другом, а в газах практически свободны. Термодинамические свойства систем – уравнения состояния (соотношения, связывающие давление, объем, температуру и число атомов), теплоемкость, энтропия и другие величины – выводятся из представления о том, что движение атомов подчиняется законам классической, ньютоновской механики. Статистическая термодинамика расширяет это представление, полагая, что молекулы – основные единицы материи – ведут себя в соответствии с законами квантовой механики, а не классической физики. Квантовая механика - это математическая теория, описывающая свойства микромира исходя из допущения об их вероятностном характере. Так, физики говорят не о точном положении частицы в пространстве, а о вероятности нахождения ее в определенной области пространства. Кинетическая теория и статистическая термодинамика трактуют понятие энтропии на молекулярном уровне как меру неупорядоченности системы; эта мера определяется уравнением Больцмана, где S – энтропия, k – постоянная Больцмана W – число микроскопических состояний системы (см. также ЖИДКОСТЕЙ ТЕОРИЯ; КВАНТОВАЯ МЕХАНИКА).

Статистическая термодинамика (как и квантовая механика) позволяет предсказать положение равновесия для некоторых реакций в газовой фазе. С помощью квантовомеханического подхода удается описать поведение сложных молекул ряда веществ, находящихся в жидком и твердом состоянии. Однако существуют реакции, скорость которых не может быть рассчитана ни в рамках кинетической теории, ни с помощью статистической термодинамики.

Настоящая революция в классической статистической термодинамике произошла в 70-х годах 20 в. Новые концепции, такие, как универсальность (представление о том, что члены некоторых широких классов соединений обладают одинаковыми свойствами) и принцип подобия (оценка неизвестных величин исходя из известных критериев), позволили лучше понять поведение жидкостей вблизи критической точки, когда исчезает различие между жидкостью и газом. С помощью ЭВМ были смоделированы свойства простых (жидкий аргон) и сложных (вода и спирт) жидкостей в критическом состоянии. Сравнительно недавно свойства таких жидкостей, как жидкий гелий (поведение которых прекрасно описывается в рамках квантовой механики), и свободных электронов в молекулярных жидкостях были всесторонне исследованы с применением компьютерного моделирования (см. также ГЕЛИЙ; СВЕРХПРОВОДИМОСТЬ). Это позволило лучше понять свойства обычных жидкостей. Компьютерные методы в сочетании с новейшими теоретическими разработками интенсивно используются для изучения поведения растворов, полимеров, мицелл (специфических коллоидных частиц), белков и ионных растворов. Для решения задач физической химии, в частности для описания некоторых свойств систем в критическом состоянии и исследования вопросов физики высоких энергий, все чаще применяется математический метод ренормализационной группы (см. также МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ).

Строение молекул и спектроскопия.

Химики-органики 19 в. разработали простые правила определения валентности (способности к объединению) многих химических элементов. Например, они установили, что валентность углерода равна 4 (один атом углерода может присоединить четыре атома водорода с образованием молекулы метана CH4), кислорода – 2, водорода – 1. Исходя из эмпирических представлений, основанных на опытных данных, высказывались предположения о пространственном расположении атомов в молекулах (например, молекула метана имеет тетраэдрическую структуру, при этом атом углерода находится в центре треугольной пирамиды, а водород – в четырех ее вершинах). Однако этот подход не позволял раскрыть механизм образования химических связей, а значит, оценить размеры молекул, определить точное расстояние между атомами.

С помощью спектроскопических методов, разработанных в 20 в., была определена структура молекул воды (H2O), этана (C2H6), а затем и гораздо более сложных молекул, таких, как белки. Методы СВЧ-спектроскопии (ЭПР, ЯМР) и электронной дифракции позволили установить длины связей, углы между ними (валентные углы) и взаимное расположение атомов в простых молекулах, а рентгеноструктурный анализ – аналогичные параметры для более крупных молекул, образующих молекулярные кристаллы. Составление каталогов молекулярных структур и использование простых представлений о валентности заложили основы структурной химии (пионером ее был Л.Полинг) и дали возможность использовать молекулярные модели для объяснения сложных явлений на молекулярном уровне. Если бы молекулы не имели определенной структуры или если бы параметры связей C–C и С–H в хромосомах сильно отличались от таковых в молекулах метана или этана, то с помощью простых геометрических моделей Дж.Уотсон и Ф.Крик не смогли бы построить в начале 1950-х годов свою знаменитую двойную спираль – модель дезоксирибонуклеиновой кислоты (ДНК). Исследуя методами ИК- и УФ-спектроскопии колебания атомов в молекулах, удалось установить природу сил, удерживающих атомы в составе молекул, что, в свою очередь, навело на мысль о наличии внутримолекулярного движения и позволило исследовать термодинамические свойства молекул (см. выше). Это был первый шаг к определению скоростей химических реакций. Далее, спектроскопические исследования в УФ-области помогли установить механизм образования химической связи на электронном уровне, что позволило описывать химические реакции, основываясь на представлении о переходе реагентов в возбужденное состояние (часто под действием видимого или УФ-света). Возникла даже целая научная область – фотохимия. Спектроскопия ядерного магнитного резонанса (ЯМР) дала возможность химикам исследовать отдельные стадии сложных химических процессов и идентифицировать активные центры в молекулах ферментов. Этот метод позволил также получить трехмерные изображения интактных клеток и отдельных органов. См. также МАГНИТНЫЙ РЕЗОНАНС; ФОТОХИМИЯ.

Теория валентности.

Используя эмпирические правила валентности, разработанные химиками-органиками, периодическую систему элементов и планетарную модель атома Резерфорда, Г.Льюис установил, что ключом к пониманию химической связи является электронная структура вещества. Льюис пришел к выводу, что ковалентная связь образуется в результате обобществления электронов, принадлежащих разным атомам; при этом он исходил из представления о том, что связывающие электроны находятся на строго определенных электронных оболочках. Квантовая теория позволяет предсказать структуру молекул и характер образующихся ковалентных связей в самом общем случае (см. также ХИМИЯ).

Наши представления о строении вещества, сформировавшиеся благодаря успехам квантовой физики в первой четверти 20 в., можно вкратце изложить следующим образом. Структура атома определяется балансом электрических сил отталкивания (между электронами) и притяжения (между электронами и положительно заряженным ядром). Почти вся масса атома сосредоточена в ядре, а его размер определяется объемом пространства, занятого электронами, которые вращаются вокруг ядер. Молекулы состоят из относительно стабильных ядер, удерживаемых вместе быстро движущимися электронами, так что все химические свойства веществ можно объяснить исходя из представления об электрическом взаимодействии элементарных частиц, из которых состоят атомы и молекулы. Таким образом, главные положения квантовой механики, касающиеся строения молекул и образования химических связей, создают основу для эмпирического описания электронной структуры вещества, природы химической связи и реакционной способности атомов и молекул (см. также АТОМ).

Химическая кинетика

занимается изучением механизма химических реакций и определением их скоростей. На макроскопическом уровне реакцию можно представить в виде последовательных превращений, в ходе которых из одних веществ образуются другие. Например, кажущееся простым превращение

на самом деле состоит из нескольких последовательных стадий:

и каждая из них характеризуется своей константой скорости k. С.Аррениус предположил, что абсолютная температура T и константа скорости реакции k связаны соотношением k = A exp( - Eакт)/RT, где А – предэкспоненциальный множитель (т.н. частотный фактор), Еакт – энергия активации, R – газовая постоянная. Для измерения k и Т нужны приборы, позволяющие отслеживать события, которые происходят за время порядка 10 –13 с, с одной стороны, и за десятилетия (и даже тысячелетия) – с другой (геологические процессы); необходимо также уметь измерять ничтожно малые концентрации чрезвычайно нестабильных реагентов. В задачу химической кинетики входит, кроме того, прогнозирование химических процессов, протекающих в сложных системах (речь идет о биологических, геологических, атмосферных процессах, о горении и химическом синтезе).

где CH3-группа ориентирована по-разному относительно приближающегося атома калия.

Один из вопросов, которым занимается физическая химия (а также химическая физика), – расчет констант скоростей реакции. Здесь широко применяется разработанная в 1930-х годах теория переходного состояния, в которой используются термодинамические и структурные параметры. Эта теория в сочетании с методами классической физики и квантовой механики позволяет моделировать ход реакции, как если бы она протекала в условиях эксперимента с молекулярными пучками. Проводятся опыты по лазерному возбуждению определенных химических связей, позволяющие проверить правильность статистических теорий деструкции молекул. Разрабатываются теории, обобщающие современные физические и математические концепции хаотических процессов (например, турбулентности). Мы уже не так далеки от того, чтобы до конца понять природу как внутри-, так и межмолекулярных взаимодействий, раскрыть механизм реакций, протекающих на поверхностях с заданными свойствами, установить структуру каталитических центров ферментов и комплексов переходных металлов. Что касается микроскопического уровня, можно отметить работы по изучению кинетики образования таких сложных структур, как снежинки или дендриты (кристаллы с древовидной структурой), которые стимулировали развитие компьютерного моделирования, основанного на простых моделях теории нелинейной динамики; это открывает перспективы создания новых подходов к описанию строения и процессов развития сложных систем. См. также БИОХИМИЯ; БИОФИЗИКА; ХИМИИ ИСТОРИЯ; КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ; ФИЗИКА; РАСТВОРЫ; СВЕРХТЕКУЧЕСТЬ.

Даниэлс Ф., Олберти Р. Физическая химия. М., 1978
Эткин П.М. Физическая химия. М., 1980
Фролов Ю.Г., Белик В.В. Физическая химия. М., 1993
Грязнов В.М., Гульянова С.Г. Физическая химия. М., 1994

Читайте также: