Источники питания постоянного тока их классификация и технические характеристики кратко

Обновлено: 18.05.2024

Источники питания постоянного тока, схема которых включает выпрямитель (AC/DC преобразователь), представляют собой востребованные устройства, широко применяемые в автоматизированных испытательных системах, предназначенных для проверки электрооборудования, модулей, монтажных схем. Также их используют для электропитания различной радиоэлектронной аппаратуры, электродвигателей, заряда аккумуляторных батарей, протекания электрохимических процессов. Они преобразуют переменное напряжение электросети в стабилизированное постоянное напряжение. Многие модели предоставляют возможность регулировки выходных параметров.

Отдельный вид источников питания (ИП) составляют конверторы (DC/DC преобразователи). Они работают от сети постоянного тока. Их сфера применения включает автоматизированные системы управления техпроцессами, энергетику, транспорт, телекоммуникационные и информационные технологии, охранно-пожарные системы.

Основными техническими характеристиками источников питания постоянного тока являются:

  • Номинальное входное напряжение.
  • Номинальное выходное напряжение и диапазон его регулировки.
  • Максимальный ток нагрузки.
  • Точность стабилизации выходного напряжения.
  • КПД.

Помимо базовых характеристик, большое значение имеют и другие рабочие параметры, которые мы рассмотрим более подробно.

Содержание

Шумы и пульсации

Эта характеристика источников питания постоянного тока определяет качество выходного сигнала, а также выбор между импульсным и линейным источником электропитания. Импульсные преобразователи являются по сути генераторами шумов. Устройства, использующие для управления переключением силовых ключей широтно-импульсную модуляцию, создают шумы в определенной полосе частот. Частота повторения шума зависит от частоты переключения импульсного источника питания, а амплитуда сильно зависит от топологии оборудования. Пульсации представляют собой флуктуацию выходного напряжения, которая связана с зарядом и разрядом устройства. Она может быть уменьшена с помощью увеличения входной или выходной емкости.

Для многих задач, связанных с тестированием электроаппаратуры, целесообразно использовать не импульсные, а линейные ИП. Несмотря на то, что они отличаются низкой эффективностью, габаритами и весом, выделением значительного количества тепла, их можно применять в приложениях, где не требуется высокая мощность (до 200 Вт на один канал). Линейные устройства генерируют высокочастотный шум, который можно легко отфильтровать. Также они обладают высокой скоростью реагирования на изменение нагрузки. Если же поставленная задача не выдвигает повышенных требований к уровню шума и пульсаций, лучше выбрать импульсный преобразователь. Он характеризуется высокой мощностью, компактностью, широкими диапазонами регулировки, гибкостью настроек.

Скорость изменения выходного напряжения

Это важный параметр, который имеет большое значение в сфере тестирования электроприборов. При испытаниях на аппаратуру подаются различные напряжения для проверки ее правильного функционирования в пределах рабочего диапазона. Чем быстрее источник питания реагирует на изменение настроек, тем выше производительность тестирования. В стандартных устройствах время установки выходного напряжения с точностью до 1% составляет в среднем 50-500 мс. Существуют специальные схемы регулируемых источников питания постоянного тока, которые позволяют уменьшить данный показатель до 1-4 мс.

Время реакции на изменение нагрузки

Этот параметр определяет, насколько быстро ИП реагирует на изменение нагрузки или скачки электротока. Если выходной ток быстро изменяется в широком диапазоне значений, выходное напряжение также начинает с высокой скоростью уменьшаться или увеличиваться. Время, которое необходимо устройству для стабилизации характеристик, называется временем реакции (или отклика) на изменение нагрузки. Из-за использования обратной связи в топологии для контроля выходного напряжения, импульсные ИП отличаются сравнительно медленной реакцией.

Чтобы обезопасить тестируемые устройства от сильных перегрузок, рекомендуется применять предварительную нагрузку. Она подключается параллельно с испытываемым прибором и ограничивает скачки напряжения. У современных импульсных источников питания время отклика составляет 40-80 мкс, а у линейных — до 1 мкс.

Возможность параллельного и последовательного подключения ИП

Параллельное подключение источников электропитания обеспечивает увеличение выходного электротока. Многие ИП оснащены специализированной параллельной шиной управления. Она позволяет создавать единую конфигурацию из нескольких источников. Система автоматически определяет, какие устройства являются ведущими, а какие ведомыми.

Последовательное подключение источников питания используется, если необходимо увеличение напряжения. При этом оно не должно превышать электрическую прочность изоляции выходных клемм.

Цифровое программирование

Многие источники питания поддерживают возможность цифрового программирования для режимов стабилизации напряжения (CV) или тока (CC). Устройства работают в режиме стабилизации напряжения при условии, что ток нагрузки меньше установленного значения. После достижения электротоком порогового значения ИП переходит в режим стабилизации тока. Выходное напряжение может ограничиваться, чтобы исключить перегрузку по мощности. Настройка осуществляется через панель управления устройства или с компьютера через интерфейсы USB, LAN, GPIB.

Программирование предоставляет расширенные возможности по управлению. Например, можно формировать последовательность изменений напряжения и тока, генерирование пилообразных и других сигналов для тестирования предохранителей и различных электроприборов.

Итоги

В статье были рассмотрены основные характеристики источников питания постоянного тока, применяемых в испытательных системах.

В электрической цепи необходим элемент, который обеспечивает наличие электрического поля и поддерживает его в стабильном состоянии. Эту роль играет источник постоянного тока. Для работоспособности схемы важно, чтобы такой элемент обеспечивал необходимые характеристики на постоянной основе.

Источники постоянного тока

Что такое источник тока

Если в определённом объекте на одной клемме будет избыток электронов, а на другой недостаток, то после его включения в цепь в ней появится электрическое поле, которое обеспечит наличие тока и напряжения, необходимых для правильной работы схемы.

При этом электроны будут перемещаться с той клеммы, где имеется их избыток на ту, где их не хватает. Если не принимается никаких дополнительных мер, то после перемещения носителей на новое место произойдёт уравнивание зарядов, а напряжение и ток станут равны нулю. В результате электрическое поле исчезнет.

Как известно, источники постоянного тока действуют так, что заряды на клеммах поддерживаются постоянными. Обязательным условием при этом является перемещение электронов обратно на ту клемму, где должен быть их избыток. Такой перенос происходит в результате проведённой работы. Она осуществляется в постоянном режиме.

Обозначение источников тока на схемах

На практике со временем источник постоянного тока постепенно разряжается, и количество зарядов на его клеммах уменьшается. Как пример можно привести постепенную разрядку аккумулятора электронного гаджета.

Силы, которые выполняют работу по восстановлению зарядов клемм, могут иметь различную природу. Чаще всего они представляют собой результат определённых химических процессов.

Различные виды источников тока

Наиболее распространённой разновидностью являются источники питания постоянного тока, имеющие химическую природу. Это батарейки и аккумуляторы. В результате происходящих внутри них химических реакций электроны с внешних оболочек атомов отрываются и перемещаются на отрицательную клемму.

Пальчиковые батарейки АА

Следовательно, можно утверждать, что внутри аккумулятора или батарейки проходит ток, причём его движение определяется происходящими химическими процессами. Как правило, такие источники тока позволяют использовать относительно небольшое напряжение.

Источники энергии могут быть и электромеханическими. С их помощью получают довольно высокое напряжение. Электромеханические устройства производят электроэнергию за счет выполнения механической работы. Этот способ нашел широкое применение в промышленности.

Устройство генераторов электротока

Принцип действия теплового источника постоянного электрического тока основан на таком явлении, как нагрев. Под воздействием высокой температуры в месте контакта двух металлов или полупроводниковых структур возникает электродвижущая сила. Она будет тем больше, чем выше затраты тепловой энергии. Электроток протекает от нагретого участка к холодному.

Термоэлектрические источники практически не используются для энергетического обеспечения электрооборудования, поскольку в них возникает небольшая разность потенциалов. Основные потребители такой электрической энергии — датчики температуры.

Термоэлектрический генератор

Использование световых источников в технике получает всё большее распространение. В таких устройствах электроны под воздействием фотонов света получают дополнительную энергию и покидают свои атомы, образуя электрический ток. Этот экологичный вариант получения электроэнергии возможен, например, в пустынной местности, где практически всегда солнечная погода. Фотоэлектрический источник питания выгодно устанавливать на крышах домов, чтобы обеспечивать граждан и организации электрической энергией.

Солнечные батареи

Получение постоянного тока из переменного

Постоянный электроток можно получать не только с помощью аккумуляторов или солнечных батарей. Часто прибегают к преобразованию переменного тока в постоянный. В качестве примера можно привести использование переменного напряжения 220 В в домах и квартирах для питания электроприборов.

В этом случае для получения постоянного применяют выпрямители. Это могут быть диодные мосты или трансформаторы, обеспечивающие нужные параметры выходного тока.

Как действуют химические источники

Такие источники можно разделить на два типа:

  • Гальванические, принцип действия которых основан на применении электролитических реакций.
  • Аккумуляторные, способные подзаряжаться, используя для этого электрическую энергию.

Гальванические называют еще первичными источниками, а аккумуляторные — вторичными. Принцип действия первых основан на наличии электрического состава, в который погружены клеммы. Происходящие здесь химические процессы обеспечивают перемещение электронов таким образом, что на одной клемме постоянно присутствует недостаток электронов, а на второй — их избыток.

Принцип образования электроэнергии из химических веществ

Для работы гальванических устройств не требуется использование дополнительного источника энергии для зарядки. Недостатком гальванических источников тока является то, что в процессе их эксплуатации происходят необратимые химические реакции, которые постепенно снижают эффективность работы батареи, и в конце концов приводят к прекращению её функционирования.

Клемму с положительным зарядом принято называть катодом, а с отрицательным — анодом. Первый обычно изготавливают из кадмия, свинца, цинка. Для второго применяют графит, оксид марганца, гидроксид никеля или оксид свинца.

Существуют разные виды гальванических батарей. Их название определяется применяемым электролитом. В основном используются:

  • Литиевые.
  • Щелочные.
  • Солевые, которые также называются сухими.

Батареи второго и третьего типа состоят из граффито-марганцевого стержня, который является катодом. Он расположен внутри цинкового стаканчика, выполняющего функции анода. Промежуток между ними заполнен электролитом.

Важно отметить, что последний не является жидкостью, а представляет собой пасту. В щелочных аккумуляторах применяется гидроксид калия, а в солевых — паста, сделанная на основе хлорида аммония.

Катод литиевого аккумулятора выполняется из производных лития на алюминиевой фольге, а анод — из графита на фольге из меди. Между ними расположен пористый сепаратор, пропитанный электролитом и выполняющий функции проводника.

Рабочий цикл аккумулятора, в отличие от батареи, заключается в том, что в процессе зарядки под воздействием электрической энергии здесь происходят химические реакции, обеспечивающие накопление зарядов на клеммах. То есть, сначала электрическая энергия преобразуется в химическую, а затем последняя вновь превращается в электрическую.

Внешний вид аккумуляторов

Однако такие преобразования не постоянны, они постепенно уменьшают эффективность работы источника питания. Со временем получаемый при перезарядке потенциал на клеммах становится меньше, а время разрядки короче. Наличие эффекта памяти существенно снижает эффективность использования источника энергии.

Эффект памяти проявляется следующим образом: если зарядка происходит до максимального значения, а разрядка до нулевого, то его влияние минимально. Если же аккумулятор начинают использовать, зарядив не полностью, то он запоминает последнее значение и в дальнейшем считает его максимальным. При последующих подзарядках аккумулятор его уже превосходить не будет.

Наиболее распространены следующие типы аккумуляторов:

  • Литий-ионные.
  • Щелочные никель-кадмиевые.
  • Свинцово-кислотные.

Каждая перечисленная здесь разновидность имеет соответствующее обозначение на своем корпусе, а также свои сильные и слабые стороны.

Принцип работы никель-кадмиевого аккумулятора

Свинцово-кислотные или никель-кадмиевые аккумуляторы обычно монтируют как блок. При этом катод предыдущего элемента соединяют с анодом последующего. В результате потребитель получает суммарную разность потенциалов.

Литий-ионные аккумуляторы более популярны, благодаря возможности многократной перезарядки практически без появления эффекта памяти.

Механические источники

При их использовании получают ток с помощью генераторов. Механическая энергия обеспечивает его вращение, а изменяющаяся энергия магнитного тока — образование переменного тока. Чтобы получить постоянное напряжение, необходимо воспользоваться выпрямителями. Такие устройства строятся на различных схемах. Выпрямители могут быть однополупериодными и двухполупериодными.

Однополупериодный выпрямитель

В первом случае поступающий ток, имеющий синусоидальную форму, преобразуется таким образом, что остаются только положительные импульсы, а отрицательные пропадают. Во втором — положительные остаются на месте, а отрицательные меняют полярность. В последнем случае преобразование энергии происходит более эффективно.

Двухполупериодный выпрямитель

Схема выпрямителя, включающая входной трансформатор обеспечивает более низкие пульсации. Такие варианты приборов называют линейными.

Для выпрямления также применяются импульсные схемы. Сначала из переменного напряжения получают сигнал с частотой импульсов 15–60 кГц, который далее преобразуют в постоянный ток.

Последний вариант позволяет создавать более компактную схему. Использование таких устройств получает всё большее распространение в современной электротехнике.

Источники постоянного тока

Постоянный ток — это такой ток, который почти (поскольку ничего идеального в мире нет) не изменяется во времени, ни по величине, ни по направлению. Исторически первые источники постоянного тока были исключительно химическими. Сначала они были представлены только гальваническими элементами, а позже появились и аккумуляторы.

Гальванические элементы и аккумуляторы имеют строго определенную полярность, и направление тока в них самопроизвольно не изменяется, поэтому химические источники тока — это принципиально источники постоянного тока.

Источники постоянного тока

Гальванический элемент

Гальванические элементы

Когда внешняя цепь батарейки замыкается на нагрузку, на аноде (отрицательном полюсе) происходит химическая реакция окисления цинка, одновременно с этим на катоде (положительном полюсе) идет реакция восстановления оксида марганца четырехвалентного до оксида марганца трехвалентного.

В результате с отрицательного полюса электроны бегут в сторону положительного полюса через внешнюю цепь нагрузки. Так работает источник постоянного тока — гальванический элемент.

Химический процесс в гальваническом элементе не обратим, то есть пытаться заряжать его бесполезно. Напряжение между полюсами новой пальчиковой батарейки 1,5 вольта, что обусловлено потенциалами веществ, участвующих в химической реакции внутри нее.

Батарейка и лампочка

Аккумулятор

Литий-ионный аккумулятор, в отличие от батарейки, можно после разрядки снова заряжать, поскольку химический процесс в нем обратим. С виду аккумулятор работает как батарейка, то есть тоже дает в цепь нагрузки принципиально только постоянный ток, но емкость у аккумулятора обычно больше чем у батарейки примерно такого же размера.

Аккумуляторы

В ходе разрядки литиевого аккумулятора, химическая реакция на аноде (отрицательном электроде) состоит в отделении лития от углерода и его переходе в состав соли на катоде (положительном электроде). А при зарядке ионы лития вновь переходят к углероду на аноде.

Разность потенциалов между полюсами литий-ионного аккумулятора может доходить до 4,2 вольт. Максимальный ток зависит от площади взаимодействия электродов внутри аккумулятора с электролитом и соответственно друг с другом.

Генератор

В промышленных масштабах постоянный ток получают при помощи генераторов постоянного тока. Как правило, на статоре такой машины расположены неподвижные магниты либо электромагниты, наводящие во вращающихся контурах ЭДС по закону электромагнитной индукции.

Генераторы на электростанции

Вращающиеся контуры соединены каждый с контактными пластинами щеточно-коллекторного узла, через которые посредством неподвижных щеток и снимается в цепь нагрузки генерируемый ток. Поскольку контуры контактируют с положительной и отрицательной щетками только при прохождении мимо определенных магнитных полюсов статора, ток во внешней цепи получается выпрямленным переменным, то есть пульсирующим постоянным.

Величина тока зависит от сечения проводов, индукции магнитного поля статора и площади статора. Величина напряжения — от скорости вращения ротора генератора и от индукции магнитного поля статора.

Солнечный элемент

Солнечные батареи также дают постоянный ток. Фотоны солнечного света попадая на фотоэлемент вызывают движение положительно заряженных дырок и отрицательно заряженных электронов через p-n-переход, и во внешней цепи получается таким образом постоянный ток.

Солнечные элементы

Чем больше совокупная площадь фотоэлементов — тем больше электронов и дырок участвуют в образовании тока, тем больший ток можно получить от солнечной батареи. Генерируемое напряжение солнечной батареи зависит от интенсивности солнечного света и от количества соединенных последовательно фотоэлементов, входящих в конструкцию солнечной батареи.

Трансформатор с выпрямителем

Раньше в электронной аппаратуре для получения постоянного тока, при питании от бытовой сети переменного тока, сплошь и рядом использовались блоки питания с трансформаторами на железе. Переменное сетевое напряжение понижалось при помощи трансформатора, а затем выпрямлялось при помощи лампового или диодного выпрямителя.

Трансформатор с выпрямителем

После выпрямителя в такой схеме всегда стоит фильтр, состоящий как минимум из конденсатора, а в лучшем случае — из конденсатора и дросселя, да еще и транзисторного стабилизатора напряжения, особенно если источник тока должен быть регулируемым.

Напряжение на выходе такого блока питания зависит от количества витков вторичной обмотки трансформатора, а максимальная величина тока — от номинальной мощности трансформатора.

Источник питания для светодиодной ленты

Импульсный блок питания

Сегодня в радиоэлектронной аппаратуре для получения постоянного тока почти не используют блоки питания с низкочастотными трансформаторами на железе, на замену им пришли импульсные блоки питания. В них выпрямленное сетевое напряжение сначала понижается при помощи высокочастотного трансформатора и транзисторных ключей, а затем выпрямляется. Ток направляется через фильтр в конденсатор фильтра.

Импульсный блок питания

Конструкция импульсного блока питания получается гораздо меньше размером, чем с трансформатором на железе. Но шумов в выходном токе больше. Поэтому особое внимание при конструировании импульсных блоков питания уделяют фильтрации тока на выходе к нагрузке.

Напряжение на выходе импульсного блока питания зависит от устройства электронной схемы, а максимальный ток — от размера высокочастотного трансформатора и качества находящихся на схеме радиоэлектронных компонентов.

Конденсатор и ионистор

Источником постоянного электрического тока можно назвать в определенном смысле электрический конденсатор. Конденсатор накапливает электрическую энергию в форме постоянного электрического поля между своими обкладками, а затем может отдавать эту энергию в форме постоянного тока или импульсного разряда. И то и другое по сути — постоянный ток, отличающийся лишь длительностью проявления.

Ионисторы

Но электролитические конденсаторы сегодня выпускаются на огромные емкости в тысячи и более микрофарад. Особая разновидность конденсатора — ионистор (суперконденсатор) — он занимает промежуточное место между аккумулятором и конденсатором.

Химические процессы в ионисторе протекают практически с такой же скоростью как в конденсаторе, но в отличие от аккумулятора, ионистор обладает меньшим внутренним сопротивлением, что позволяет получать от ионисторов большие постоянные токи на протяжении более длительного времени. Чем больше емкость конденсатора — тем больший по величине и более продолжительный ток можно получить с его помощью.

Эта статья общий экскурс в первичные и вторичные источники питания. В ней я расскажу о том, что такое источники питания, их виды и какие они бывают. Рассмотрим подробности типовых блоков из которых состоит стандартный источник питания и рассмотрим основные характеристики блоков питания.


Виды и классификация источников питания

Все источники можно можно упрощенно разделить на следующие разновидности:

К ним относятся всевозможные преобразователи не электрических видов энергии в электрическую. Их можно условно классифицировать на следующие виды: Атомные батареи; Химические источники; Солнечные батареи; Термогенераторы; Топливные элементы; Электрические машины постоянного и переменного тока (генераторы).

Химические источники питания: к ним относятся сухие гальванические элементы, кислотные и щелочные аккумуляторы. Наибольшее распространение среди них получили кислотные аккумуляторные и литиевые батареи.

Солнечные батареи их принцип работы базируется на вентильном фотоэффекте в полупроводниках (фото–ЭДС возникающей на p–n переходе). Под действием светового потока электроны переходят на более высокий энергетический уровень, поддерживая, тем самым, протекание тока во внешней цепи.

Топливные элементы преобразуют энергию топлива в электрическую, без реакции горения. Действие этих элементов базируется на принципах электрохимического окислении углеводородного топлива (пропан, водород, метан, керосин) в окислительной среде. Другими словами Топливные элементы представляют собой "вечные батарейки", при условии, что к ним непрерывно подводится топливо и окислитель (воздух).

Работа термогенераторов основана на термоэлектрическом эффекте, появляющемся при нагреве контакта двух полупроводников или проводников, что приводит к генерации на их свободных (холодных) концах ЭДС.

Одним из электродов атомной батареи является радиоактивный изотоп, вторым служит металлическая оболочка. Под действием радиоактивного излучения на электродах генерируется разность потенциалов в несколько киловольт при токе единицы миллиампер. Срок службы атомных элементов от нескольких лет до десятилетий.

Электрические машины - преобразуют механическую энергию поступательного или вращательного движения в электрическую и наоборот. Их делят на электрические машины постоянного и переменного тока. При одинаковой мощности эти виды электрических машины переменного тока имеют лучшие показатели, чем их аналоги постоянного тока. Поэтому 98% электроэнергии в мире генерируется электрическими машинами переменного тока.

Они не производят электроэнергию, они её преобразуют. Например, блок питания ноутбука преобразовывает сетевое напряжение 220В в постоянное - 19 Вольт. Все виды вторичных питающих источников необходимы для того, чтобы обеспечить электронным устройствам необходимые параметры тока, напряжения, пульсаций и частоты.

Основные задачи вторичных ИП

Любой вид вторичного БП должен обеспечивать передачу требуемой мощности с минимальными потерями и выполнением заданных характеристик на выходе без вреда для работы схемы. Обычно требуюмую мощность выбирают с некоторым запасом.
Преобразование переменного напряжения в постоянное, и наоборот, а кроме того формирование импульсов напряжения, преобразование частоты и т. д. Чаще всего преобразовывают переменноее напряжения заводской частоты в постоянное.
Преобразование напряжения – как в направление повышения, так и понижения. Часто в поставленной задаче требуется целый комплекс различных напряжений различного номинала и величины для различных электронных цепей.
Стабилизация в определённых пределах – тока, напряжения или других параметров на выходе БП, в зависимости от влияния большого количества внешних дестабилизирующих причин: изменения тока нагрузки, напряжения на входе и т.п. Чаще всего в радиолюбительской практике и основах электроники требуется стабилизация напряжения на нагрузке, гораздо реже необходима стабилизация тока.
Обеспечение хорошей защиты по току или напряжению в случае различных неисправностей (допустим, короткого замыкания - КЗ). Также во многих реальных ситуациях требуется защита от тока идущего по неправильному пути: например через землю при прикосновении человека или токопроводящего предмета к токоведущим частям.
Во всех современных видах питающих источников должна быть отличная гальваническая развязка цепей это одна из основных защитных мер от протекания электрического тока по другому пути.
Регулировка и настройка в процессе эксплуатации у потребителя. В некоторых случаях может потребоваться изменение каких-либо выходных параметров.
Функция управление – может включать регулировку, включение или отключение каких-либо узлов и схем, или БП в целом. Может быть выполнена как непосредственно с помощью управляющих органов на корпусе устройства), так и дистанционным или программным способом.
В некоторых случаях может потребоваться контроль и отображение параметров на входе и на выходе источника питания, включения или отключения цепей, срабатывания различных видов защит. Также контроль может быть дистанционным, непосредственным или автоматическим.

Обычно перед всеми видами вторичных источников стоит основная задача преобразования сетевой электроэнергии переменного тока промышленной частоты (например, в России это 220 Вольт, 50 Гц, а на враждебном западе – 120 Вольт, 60 Гц).

Линейные источники питания и их виды сегодня практически замещены импульсными, но несмотря на этот факт, они все еще продолжают оставаться практичным решением в радиолюбительских самоделках. Так как они достаточно просты, легко настраиваются и не требуют использования дорогих компонентов, а главное они гораздо надежнее импульсных блоков питания.

Простейший линейный источник питания состоит из сетевого понижающего трансформатора, диодного моста с фильтром и стабилизатора. Основным минусом такой схемы является низкий КПД и необходимость резервирования мощности практически во всех компонентах схемы (т.е. нужна установка радиодеталей допускающих большие нагрузки, чем предполагаемые).

На рисунке показана простейшая схема трансформаторного БП без функции стабилизации тока или напряжения, с двухполупериодным мостовым выпрямителем.

Трансформатор, в некоторых случаях автотрансформатор понижает сетевое напряжение до нужного (в соответствии с поставленными задачами) уровня, затем выпрямитель - выпрямляет его до пульсирующего однонаправленного. В большинстве случаев выпрямитель имеет всего один диод (однополупериодный выпрямитель) или четыре диода, образующие диодный мост (двухполупериодный выпрямитель - показан на рисунке выше). Иногда в радиолюбительской практике могут применятся и другие схемы, например, в выпрямителях с удвоением или умножением напряжения, далее постоянное напряжение сглаживается фильтром, обычно он сглаживает колебания (или как их еще называют многие радиолюбители пульсации). Обычно сетевой фильтр представляет собой просто конденсатор большого уровня емкости. Стабилизатор напряжения необходим для того, чтобы поддерживать требуемый уровень на нагрузке.

Простейший сглаживающий фильтр - это конденсатор большой ёмкости, подключенный параллельно выпрямителю (диодному мосту).

Также в принципиальной схеме могут быть применены фильтры высокочастотных помех или всплесков, реализована защита на варисторах и от короткого замыкания.

Условно все линейные источники можно также разделить на стабилизированные и нестабилизированные. В стабилизированных источниках питания стабилизатор отвечает за поддержание стабильного выходного напряжения.

Самая простейшая схема самодельного блока питания постоянного тока, состоит из трех основных функциональных узлов — это понижающий трансформатор, диодный выпрямитель и сглаживающий конденсаторный фильтр. В зависимости от номинальной мощности БП и эти узлы будут иметь разные габариты и типы. Основный и наиболее дорогой частью является трансформатор, который понижает сетевое переменное напряжения до необходимых номиналов. Прежде чем его выбрать, определитесь с электрической мощностью, которая необходима. Для этого напряжение перемножите на силу тока нагрузки, плюс оставьте небольшой запас мощности примерно на 20-30%.

Схемы стабилизаторов напряжения - радио любительская подборка стабилизаторов напряжения. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных конструкция является возможность защиты от короткого замыкания в нагрузке.

На дворе 21 век трансформаторных блоков питания остается все меньше, т.к им на смену пришли импульсные блоки питания, иначе их еще называют бестрансформаторным. Почему это произошло? Во первых импульсные блоки питания куда более компактны, легче и дешевле в производстве. По мимо этого КПД импульсных источников может доходить до 80%.

Простой импульсный блок питания своими руками:

Самый простой и яркий представитель импульсных блоков для светодиодных лент, модулей изготавливается на питающее напряжение - 5,12,24 В. Содержит совсем небольшое количество радио компонентов, имеет легкий вес и небольшие габариты. Аналогичный трансформаторный БП весил бы пару килограмм, а то и больше. В БП для светодиодных лент тоже имеется трансформатор, но он очень маленький, так как работает на высоких частотах. Отдельным пунктом можно сказать, что КПД такого блока – около 70-80%, но при этом от него генерируются сильные помехи в бытовую сеть. Существует огромное количество импульсных БП работающих на аналогичном принципе - для ноутбуков и нетбуков, принтеров, факсов, телевизоров и мониторов и т. п. Итак, основной плюс ИБП - малые габариты и низкий вес. Гальваническая развязка в них также имеется. А основной их минус тот же, что и у типового трансформаторного. Он может быстро сгореть от перегрузки.

Желательно иметь 15 – 20 % запас по напряжению, току и мощности. То есть если у вас имеется трансформатор на 150 Вт – лучше не подключайте к нему больше, чем 100 Вт нагрузку. . Также стоит добавить, что ИБП не любят включения без нагрузки. Поэтому не рекомендуется оставлять зарядные устройства для мобильниуов и планшетников в розетке по окончанию работы. Хотя большинство современных ИБП имеют защиту от включения без нагрузки.

Как видите ИБП выполняют точно такую же работу, а именно, обеспечивают требуемый уровень напряжения для питания различных устройств электронной техники, которые к ним подсоединены.

Плюсы и минусы импульсных источников питания и их виды

Обладают меньшим весом за счет того, что с ростом частоты можно применять импульсные трансформаторы гораздо меньших размеров при той же самой мощности
значительно более высокий уровень коэффициента полезного действия КПД (В некоторых случаях КПД достигает даже уровня 95-98 %) за счет того, что основные потери в ИБП связаны с переходными процессами в моменты переключения их ключевого элемента (обычно силового биполярного или полевого транзистора). Так как большую часть времени ключевые радио компоненты находятся в одном из двух своих устойчивых состояний (то есть транзистор либо открыт, или закрыт) потери электрической энергии будут минимальны;
Гораздо более низкая стоимость, благодаря массовому заводскому выпуску унифицированных компонентов и разработке недорогих силовых транзисторов высокой мощности, работающих в ключевом режиме. Кроме этого следует учитывать значительно более малую цену импульсных трансформаторов при аналогичной передаваемой мощности, и возможность применения не таких мощных силовых радио компонентов, так как режим их работы ключевой;
Широкий диапазоном питающего напряжения и частоты ИБП еще один жирный плюс в сравнении с классическими. В практическом применении это означает возможность применения одного и того же ИБП для устройств цифровой электроники в разных странах, сильно отличных по уровню сетевого напряжения и частоты в типовых электрических розетках;
Наличием в большинстве современных ИБП встроенных защитных цепей от различных аварийных ситуаций, например от отсутствия нагрузки на выходе схемы или короткого замыкания.

Так как работа основной части схемы происходит без гальванической развязки от сети, что, затрудняет ремонт таких устройств;
Абсолютно все ИБП являются основной причиной появления и образования высокочастотных помех в сетях переменного тока, т.к это связано с принципом их работы. Поэтому необходимо использовать дополнительные помехоподавляющие меры, но и они не устраняют помехи на все 100%. Поэтому в некоторых случаях недопустимо применение ИБП в некоторых видах радиоэлектронной аппаратуры

Основными техническими характеристиками, характеризующими все виды питающих источников, являются:

выходное напряжение Uвых;
уровень пульсаций Uвых (величина пульсаций);
выходной ток;
пределы изменения напряжения питающей сети; максимальная мощность, потребляемая источником от питающей сети;
Коэффициент стабилизации - показывает на сколько хорошо происходит стабилизация Uвых

Читайте также: