Интерферометр принцип работы кратко

Обновлено: 05.07.2024

Измерительный прибор, в котором используется Интерференция волн. Существуют И. для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются И. весьма широко. Так, акустические И. и радиоинтерферометры используются для измерения скорости распространения волн (акустических и радио), для измерения расстояний между двумя излучателями волн или между излучателем и отражающим телом, т. е. применяются как дальномеры. Наибольшее распространение получили оптические И., о которых пойдёт речь ниже. Они применяются для измерения длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин, угловых размеров звёзд и пр., для контроля качества оптических деталей и их поверхностей, для контроля чистоты обработки металлических поверхностей и пр.

Принцип действия всех И. одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков (см. Когерентность), которые проходят различные оптические пути, а затем сводятся вместе. В месте схождения пучков наблюдается интерференционная картина (см. Интерференция света), вид которой, т. е. форма и взаимное расположение интерференционных максимумов и минимумов, зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, разности их оптических путей (оптической разности хода), относительной интенсивности, размеров источника, спектрального состава света.

Методы получения когерентных пучков в И. очень разнообразны, поэтому существует большое число различных конструкций И. По числу интерферирующих пучков света оптические И. можно разбить на многолучевые и двухлучевые.

Примером двухлучевого И. может служить И. Майкельсона (рис. 1). Параллельный пучок света источника L, попадая на полупрозрачную пластинку P1, разделяется на пучки 1 и 2. После отражения от зеркал M1 и M2 и повторного прохождения через пластинку P1 оба пучка попадают в объектив O2, в фокальной плоскости D которого они интерферируют. Оптическая разность хода Δ = 2(ACAB) = 2l, где l — расстояние между зеркалом M2 и мнимым изображением M1' зеркала M1 в пластинке P1. Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M1 расположено так, что M1' и M2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму концентрических колец. Если же M2 и M1' образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина M2M1' и представляющие собой параллельные линии.

И. Майкельсона широко используется в физических измерениях и технических приборах. С его помощью впервые была измерена абсолютная величина длины волны света, доказана независимость скорости света от движения Земли (см. Майкельсона опыт). Перемещая одно из зеркал И. Майкельсона, получают возможность плавно изменять Δ, а зависимость интенсивности центрального пятна от Δ, в свою очередь, даёт возможность анализировать спектральный состав падающего излучения с разрешением 1/Δ см —1 . На этом принципе построены Фурье-спектрометры (см. Фурье-спектроскопия), применяющиеся для длинноволновой инфракрасной области спектра (50—1000 мкм) при решении задач физики твёрдого тела, органической химии и химии полимеров, диагностики плазмы. Впервые получено разрешение ~ 0,005 см —1 в диапазоне длин волн 0,8—3,5 мкм на Фурье-спектрометре, разность хода в котором контролировалась и измерялась с помощью гелий-неонового газового лазера (См. Газовый лазер).

Сочетание И. Майкельсона и призменного монохроматора (рис. 2, а) — Компаратор интерференционный Кёстерса — применяется для абсолютного и относительного измерений длин концевых мер (См. Концевые меры) (измерительных плиток) сравнением их с длиной волны света или между собой с точностью — 0,025 мкм, а сочетание его с лазером (при стабилизации частоты ~ 2․10 -9 ) позволяет с такой же абсолютной точностью измерять длины порядка 10 м. При замене плоских зеркал в И. Майкельсона отражающими триэдрами его используют для измерения углов с точностью до 10 -6 рад. Сочетание И. Майкельсона с микроскопом (микроинтерферометр В. П. Линника) позволяет по виду интерференционной картины определять величину и форму микронеровностей металлических поверхностей.

Существуют двухлучевые И., предназначенные для измерения показателей преломления газов и жидкостей, — интерференционные Рефрактометры. Один из них — И. Жамена (рис. 3). Пучок света S после отражения от передней и задней поверхностей первой пластины P1 разделяется на два пучка S1 и S2. Пройдя через кюветы K1 и K2, пучки, отразившиеся от поверхностей пластины P2, попадают в зрительную трубу Т, где интерферируют, образуя полосы равного наклона. Если одна из кювет наполнена веществом с показателем преломления n1, а другая с n2, то по смещению интерференционной картины на число полос m по сравнению со случаем, когда обе кюветы наполнены одним и тем же веществом, можно найти Δn = n1n2 = =mλ/l (l — длина кюветы).

Разновидностями И. Жамена являются И. Маха — Цендера и И. Рождественского (рис. 4), где используются две полупрозрачные пластинки P1 и P2 и два зеркала M1 и M2. В этих И. расстояние между пучками S1 и S2 может быть сделано очень большим, что облегчает установку в один из них различных исследуемых объектов, поэтому они широко применяются в аэрогазодинамических исследованиях.

В И. Рэлея (рис. 5) интерферирующие пучки выделяются с помощью двух щелевых диафрагм D. Пройдя кюветы K1 и K2, эти пучки собираются в фокальной плоскости объективом O2, где образуется интерференционная картина полос равного наклона, которая рассматривается через окуляр O3. При этом часть пучков, выходящих из диафрагм, проходит ниже кювет и образует свою интерференционную картину, расположенную ниже первой. Если показатели преломления n1 и n2 веществ в кюветах, то из-за разности хода в кюветах верхняя картина сместится относительно нижней. Измеряя величину смещения по числу полос m, можно найти Δn.

Для измерения угловых размеров звёзд и угловых расстояний между двойными звёздами применяется звёздный И. Майкельсона (рис. 6). Свет от звезды, отразившись от зеркал M1, M2, M3, M4, образует в фокальной плоскости телескопа интерференционную картину. Угловое расстояние между соседними максимумами θ = λ/D (рис. 6, б). При наличии двух близких звёзд, находящихся на угловом расстоянии φ, в телескопе образуются две интерференционные картины, также смещенные на угол φ. Изменением D добиваются наихудшей видимости картины, что будет при условии φ = 1 /2θ = λ/2D, откуда можно определить φ.

Многолучевой И. Фабри — Перо (рис. 7) состоит из двух стеклянных или кварцевых пластинок P1 и P2, на обращённые друг к другу и параллельные между собой поверхности которых нанесены зеркальные покрытия с высоким (85—98%) коэффициентом отражения. Параллельный пучок света, падающий из объектива O1, в результате многократных отражений от зеркал образует большое число параллельных, когерентных пучков с постоянной разностью хода между соседними пучками. В результате многолучевой интерференции в фокальной плоскости L объектива O2 образуется интерференционная картина, имеющая форму концентрических колец с резкими интенсивными максимумами, положение которых зависит от длины волны. Поэтому И. Фабри — Перо разлагает сложное излучение в спектр. Применяется И. Фабри — Перо как интерференционный спектральный прибор высокой разрешающей силы. Специальные сканирующие И. Фабри — Перо с фотоэлектрической регистрацией используются для исследования спектров в видимой, инфракрасной и сантиметровой областях длин волн. Разновидностью И. Фабри — Перо являются оптические резонаторы Лазеров, излучающая среда которых располагается между зеркалами И.

К многолучевым И. также относятся различного рода дифракционные решётки (См. Дифракционная решётка), которые используются как интерференционные спектральные приборы.

Интерферометр

Рис. 1. Схема интерферометра Майкельсона (P2 — пластинка, компенсирующая дополнительную разность хода, появляющуюся за счёт того, что луч 1 проходит дважды через пластинку P1).

Интерферометр. Рис. 2

Рис. 2. а — схема интерферометра Кёстерса (обозначения те же, что в интерферометре Майкельсона; А — диспергирующая призма, К — концевая мера, S1 — щель монохроматора); б — вид интерференционной картины.

Интерферометр. Рис. 3

Рис. 3. Схема интерферометра Жамена.

Интерферометр. Рис. 4

Рис. 4. Схема интерферометра Рождественского.

Интерферометр. Рис. 5

Рис. 5. а — схема интерферометра Рэлея; б — вид интерференционной картины.

Интерферометр. Рис. 6

Рис. 6. а — схема звёздного интерферометра Майкельсона; б — вид интерференционных картин.

Пучок света с помощью выбранного устройства пространственно разделяется на два или большее число когерентных пучков (см. когерентность), которые проходят различные оптические пути, а затем сводятся вместе. В месте схождения пучков наблюдается интерференционная картина (см. [1]

Интерферометры применяются как при точных измерениях длин, в частности в станкостроении и машиностроении, так и для оценки качества оптических поверхностей и проверки оптических систем в целом.

Интерферометр в астрономии

Интерферометры широко используются в астрономии для создания телескопов с высоким разрешением. Они позволяют заменить телескоп с большой необходима для получения высокого разрешения) на решётку телескопов с меньшими апертурами, соединёнными по принципу интерферометра. [2]

Радиоинтерферометр

<\displaystyle \Delta ></p>
<p>где
— разность хода лучей;

<\displaystyle \alpha ></p>
<p>B — расстояние между антеннами;
— угол между направлением прихода лучей и нормалью к линии, на которой расположены антенны.


Разность хода лучей интерферометра

<\displaystyle \alpha =0></p>
<p>Таким образом при
волны, пришедшие на обе антенны суммируются в фазе. В противофазе волны первый раз окажутся при

<\displaystyle \Delta =<\frac <\lambda ></p>
<p>>>

<\displaystyle \alpha =\arcsin <\frac <\lambda ></p>
<p>>>
,

<\displaystyle \lambda ></p>
<p>где
— длина волны.

<\displaystyle \Delta =<\lambda ></p>
<p>Следующий максимум будет при >
, минимум при />" width="" height="" />
и т. д.

<\displaystyle <\frac <\lambda ></p>
<p>Таким образом получаем многолепестковую равна >>
.

При большем количестве периодически расположенных антенн ширина главного максимума будет определяться отношением длины волны к расстоянию между крайними антеннами, а расстояние до боковых максимумов — отношением двух длин волн к расстоянию между соседними антеннами, то есть с увеличением количества антенн боковые максимумы будут отдаляться от главного. Как правило, антенны интерферометра делают направленными, понижая уровень боковых лепестков диаграммы направленности интерферометра за счёт ДН отдельных антенн.

измерительный прибор, основанный на интерференции волн. Существуют И. для звук. волн и для эл.-магн. волн (оптических и радиоволн). Оптич. И. применяются для измерения оптич. длин волн спектр. линий, показателей преломления прозрачных сред, абс. и относит. длин объектов, угл. размеров звёзд и пр., для контроля кач-ва оптич. деталей и их поверхностей и т. д.

Принцип действия всех И. одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков (см. КОГЕРЕНТНОСТЬ), к-рые проходят разл. оптич. пути, а затем сводятся вместе, и наблюдается результат их интерференции (см. ИНТЕРФЕРЕНЦИЯ СВЕТА). Вид интерференционной картины зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, оптич. разности, хода, относит. интенсивности, размеров источника, спектр. состава света.

Методы получения когерентных пучков в И. разнообразны, и потому существует большое число разл. конструкций И. По числу интерферирующих пучков света оптич. И. можно разделить на многолучевые и двухлучевые. Многолучевые И. применяются гл. обр. как интерференционные спектральные приборы для исследования спектр. состава света. Двухлучевые И. используются и как спектр. приборы, и как приборы для физ. и техн. измерений.

Примером двухлучевого И. может служить интерферометр Майкельсона (рис. 1). Параллельный пучок света источника L, проходя через объектив O1 и попадая на полупрозрачную пластинку Р1 разделяется на два когерентных пучка 1 и 2. После отражения от зеркал M1 и М2 и повторного прохождения луча 2 через пластинку P1 оба пучка проходят в направлении А О через объектив O2 и интерферируют в его фокальной плоскости D. Наблюдаемая интерференц. картина соответствует интерференции в возд. слое, образованном зеркалом M2 и мнимым изображением М'1 зеркала M1 в пластинке P1. Оптич. разность хода при этом равна:

где l — расстояние между M2 и M'1. Если зеркало М1 расположено так, что М'1 и М2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму концентрич. колец. Если же M2 и М'1 образуют возд. клин, то возникают полосы равной толщины, локализованные в плоскости клина M2M'1 и представляющие собой параллельные линии.

ИНТЕРФЕРОМЕТР1

Рис. 1. Схема интерферометра Майкельсона: Р2 — пластинка, компенсирующая дополнит. разность хода, появляющуюся за счёт того, что луч 1 проходит только один раз через пластинку P1; D — диафрагма.

Интерферометром Майкельсона широко пользуются в физ. измерениях и техн. приборах. С его помощью впервые была измерена абс. величина длины волны света, доказана независимость скорости света от движения источника и др. (см. МАЙКЕЛЬСОНА ОПЫТ). Он используется и как спектральный прибор, позволяющий анализировать спектры излучения с высоким разрешением, доходящим до =0,005 см-1 (см. ФУРЬЕ СПЕКТРОСКОПИЯ).

Интерферометр Майкельсона применяется в технике для абс. и относит. измерений длин эталонных пластинок с точностью до 0,005 мкм. В сочетании с микроскопом он позволяет по виду интерференц. картины измерять величину отступлений от плоскости и форму микронеровностей металлич. поверхностей.

Существуют двухлучевые И., предназначенные для измерения показателей преломления газов и жидкостей — интерференц. рефрактометры.

ИНТЕРФЕРОМЕТР2

ИНТЕРФЕРОМЕТР3

Для измерения угл. размеров звёзд и угл. расстояний между двойными звёздами применяется звёздный интерферометр Майкельсона (рис. 3, а). Свет от звезды, отразившись от плоских зеркал М1, М2, М3, M4, образует в фокальной плоскости телескопа интерференц. картину. Угл. расстояние между соседними максимумами q=l/D, где D — расстояние между зеркалами M1 и М2 (рис. 3, а). При наличии двух близких звёзд, находящихся на угл. расстоянии j, в телескопе образуются две интерференц. картины, также смещённые на угол j, ухудшая видимость полос. Изменением D добиваются наихудшей видимости картины, что будет при условии

Многолучевой интерферометр Фабри — Перо (рис. 4) состоит из двух стеклянных или кварцевых пластинок Р1 и Р2, на обращённые друг к другу и параллельные между собой поверхности к-рых нанесены зеркальные покрытия с высоким (85—98%) коэфф. отражения. Параллельный пучок света, падающий из объектива О1, в результате многократного отражения от зеркал образует большое число параллельных когерентных пучков с пост. разностью хода D=2nhcosq между соседними пучками, но разл. интенсивности. В результате многолучевой интерференции в фокальной плоскости L объектива О2 образуется интерференц. картина, имеющая форму концентрич. колец с резкими интенсивными максимумами, положение к-рых определяется из условия D=ml (m — целое число), т. е. зависит от длины волны. Поэтому интерферометр Фабри — Перо разлагает сложное излучение в спектр. Применяется такой И. и как интерференционный спектр. прибор высокой разрешающей силы, к-рая зависит от коэфф. отражения зеркал r и от расстояния h между пластинками, возрастая с их увеличением. Так, напр., при r=0,9,h=100 мм, l= 5000? минимальный разрешаемый интервал длин волн dl=5*10-4 ?. Специальные сканирующие интерферометры Фабри — Перо с фотоэлектрич. регистрацией используются для исследования спектров в видимой, ИК и в сантиметровой области длин волн.

ИНТЕРФЕРОМЕТР4

Разновидностью интерферометров Фабри — Перо явл. оптические резонаторы лазеров, излучающая среда к-рых располагается между зеркалами И. Разность частот Dn между соседними продольными модами в излучении лазеров зависит от расстояния между зеркалами резонатора l: Dn=с/2l. Перемещение одного из зеркал на величину dl приводит к изменению разностной частоты на d(Dn)=cdl/2l2, к-рое может быть измерено с помощью фотоприёмника радиотехн. методами. Это используется в лазерных И., предназначенных для измерения длин объектов и их перемещений.

Использование в измерит. И. в кач-ве источника света лазеров, обладающих высокой монохроматичностью и когерентностью, позволяет значительно повысить точность измерений.

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

009-28.jpg

- прибор, основанный на явлении интерференции волн. В соответствии с природой волн существуют интерферометры акустические для звуковых волн и И. для эл.-магн. волн. К последним относятся оптич. И. и радиоинтерферометр. В данной статье рассматриваются оптич. И., к-рые получили наиб, распространение как приборы для измерения длин волн спектральных линий и их структуры; для измерения показателей преломления прозрачных сред; в метрологии для абс. и относит, измерений длин и перемещений тел, измерения угл. размеров звёзд (см. Интерферометр звёздный); для контроля формы, микрорельефа и деформации поверхностей оптич. деталей и чистоты металлич. поверхностей и пр. 1 в среде с показателем преломления n 1 , а другой - путь l 2 в среде с n 2 , то оптич. разность хода лучей D=l 1 n 1 -l 2 n 2 +d определяет результат интерференции. Здесь d- изменение фазы на границах раздела сред. Интенсивность света в данной точке образующейся интерференц. картины при равных амплитудах А интерферирующих лучей изменяется в зависимости от величины D по закону: I==4A 2 сos 2 (pD/l). При D, равной целому числу длин волн l (D=ml), интенсивность имеет макс, значение - максимум интерференц. полосы (m - порядок интерференции). Разл. m соответствуют полосы разного порядка. Любое изменение величин l, n и l, входящих в выражение для D=ml, приводит к смещению интерференц. полос. Измеряя величину смещения полос при постоянных l и l, определяют величину изменения nинтерференц. рефрактометрами Рэлея и Жамена (см. Интерферометр Рэлея, Интерферометр Жамена). Если известны l и n, то по смещению полос можно измерить геом. длины, для чего служат интерференционные компараторы. Т. к. интерференц. картина смещается заметно даже при небольших изменениях разности хода D~0,1l, точность измерения с помощью И. очень высока (поскольку l@0,5 мкм).При использовании источника монохроматич. света в поле зрения И. наблюдается большое число светлых и тёмных неотличимых друг от друга интерференционных полос разл. порядков. Изменение разности хода D (за счёт изменения l или n )приводит к смещению полос в поле зрения. В этом случае измерение возникшей разности хода сводится к счёту числа полос, прошедших через перекрестие в поле зрения, что производится визуально (при непрерывном изменении D) или фотоэлектрич. методами. -8 .

Рис. 1. Схема интерферометра Физо (для наглядности угол a и размеры дефектов увеличены).

Методы, с помощью к-рых в И. могут быть получены когерентные пучки, весьма разнообразны, и потому существует большое число разл. конструкций И., обычно приспособленных к измерению к.-л. одной величины (l, n или l). По методу получения когерентных пучков И. делятся на два типа. В основе одного из них когерентные пучки получаются в результате отражения от двух поверхностей плоскопараллельной или клиновидной пластинки с образованием соответственно полос равного наклона или равной толщины. В И. др. типапроисходит интерференция лучей, вышедших от источника под углом друг к другу (см. Интерференция света). К первому типу относятся интерферометры Физо, Майкельсона и его модификации, Жамена и др.; ко второму типу - интерферометр Рэлея и др. 1 диафрагмы D и объектива О 2 направляется параллельным пучком на эталонную Э и контролируемую К пластинки (положенные одна на другую) почти перпендикулярно к их поверхностям. При этом строго плоская эталонная

009-29.jpg

Рис. 2. а - Вид дефектов сверху на контролируемой пластинке; б - Сечение эталонной и контрольной пластинок. Сечение по линии А-А (угол a и размеры дефектов для наглядности сильно увеличены); в- Вид интерференционной картины полос равной толщины в интерферометре Физо.

и контролируемая поверхности пластинок образуют между собой небольшой угол a. С помощью полупрозрачной пластинки П в отражённом свете наблюдаются интерференционные полосы равной толщины, к-рые локализованы в области воздушного клина между контролируемой и эталонной поверхностями. Положения этих полос определяются из условия: D=2dn+l/2=ml=const (при п~1), где d - толщина воздушного клина. Если контролируемая поверхность идеально плоская, то полосы равного наклона имеют форму прямых эквидистантных линий, параллельных ребру клина (d=const), расстояние между к-рыми равно z=l/2a (рис. 2, в) (при a=10 " и l~0,5 мкм, z=5 мм). Если же на контролируемой поверхности имеются к.-л. дефекты, напр, небольшие углубления или выступы (рис. 2, а, б )или она не строго плоская, то в области расположения этих дефектов наблюдаются отклонения dz от прямолинейности. При этом относит, величина отклонения dz/z связана с высотой или глубиной дефекта dh соотношением dh=(l/2)dz/z. Невооружённый глаз может оценить величину dz/z~0,l, что соответствует величине обнаруженного дефекта dh=l/20 (при l=0,633 мкм, dh=0,031 мкм). Знак отклонения позволяет отличить тип дефекта: углубление или выступ (рис. 2, в). Если контролируемая поверхность имеет форму сферы, то интерференционные полосы имеют форму концентрических окружностей (см. Ньютона кольца). В интерферометре Физо поверхности контролируемой и эталонной пластинок из-за малости угла (угл. секунды) почти полностью соприкасаются друг с другом и в процессе юстировки могут быть повреждены. Поэтому для контроля поверхностей часто используются бесконтактные И., построенные по схеме интерферометра Майкельсона (рис. 3). Здесь параллельный пучок света из объектива О 2 входного коллиматора падает на полупрозрачную разделит, пластинку П и направляется к зеркалам M 1 и М 2 , к-рыми в данном случае служат эталонная Э и контролируемая К пластинки. После отражения от зеркал-пластинок оба пучка вновь соединяются разделит, пластинкой П и направляются в объектив О 3 выходного коллиматора и интерферируют. При этом оба зеркала ориентированы так, чтобы контролируемая поверхность К и мнимое изображение эталонной поверхности Э в разделит, пластинке образовали небольшой воздушный клин толщиной в его ср. части (на оптич. 2 -l 1 ,где l 1 и l 2 - расстояния от разделит, пластинки до зеркал: l 1 =AB, l 2 =AC. При интерференции наблюдаются полосы равной толщины, локализованные в плоскости клина, максимумы интенсивности к-рых определяются из условия

D=2(l 2 -l 1 )=2d=ml,

009-30.jpg

т . е. так же, как и в интерферометре Физо. Анализ интерференц. картины проводится так же, как и в интерферометре Физо. Модернизованный интерферометр Майкельсона, в к-ром одно из плоских зеркал заменено

Рис. 3. Принципиальная схема интерферометра Майкельсона для контроля плоских поверхностей бесконтактным методом.

сферическим (интерферометр Тваймана), позволяет проводить контроль качества сферич. (выпуклых или вогнутых) зеркал и качества объективов. Принцип интерферометра Майкельсона широко используется в ряде др. техн. И., напр, в И. для измерения абс. и относит, длин концевых мер. Большое число лазерных И. также построено по схеме интерферометра Майкельсона. Благодаря высокой монохроматичности и когерентности лазерного излучения такие И. позволяют проводить измерения при больших разностях хода, напр, измерять с высокой точностью большие линейные перемещения тел (достигающие неск. м), проводить проверку штриховых эталонных мер, шкал и др. 2 Df/c. Преимуществом таких И. является то, что измерение линейных размеров (и перемещений) сводится к определению частоты, к-рую можно измерить радиотехн. методами с высокой степенью точности. Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Захарьевский А. Н., Интерферометры, М., 1952; Коломийцов Ю. В., Интерферометры, Л., 11)76; Крылов К. И., Прокопенко В. Т., Митрофанов А. С., Применение лазеров в машиностроении и приборостроении. Л., 1978. В. II. Малышев.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Просветление оптики.На границе раздела воздух – стекло отражается 4% энергии световой волны. Поэтому при наличии в оптическом приборе достаточного количества линз, зеркал, преломляющих тел до наблюдателя доходит малая часть первоначальной энергии световой волны.


Чтобы увеличить освещенность изображения с помощью интерференции убирают отраженные лучи. Для этого на поверхность линзы наносят тонкую пленку, у которой показатель преломления меньше, чем показатель преломления линзы. В этом случае, наряду с лучом 1, отраженным от поверхности линзы, возникает луч 2, отраженный от поверхности пленки (рис. 4.8а). Эти лучи должны быть когерентными, что бы отражаясь, они гасили дуг друга. Толщина пленки определяется из условия

В этом случае происходит перераспределение световой энергии; она вся проходит в линзу, отраженной волны не будет.

Определение качества обработки поверхностей.На исследуемую поверхность кладут плоскопараллельную пластинку так, чтобы создать воздушный зазор между исследуемой поверхностью и пластинкой (рис. 4.8б). По искажению картины интерференции можно обнаружить дефекты ее обработки (царапины, шероховатость), так как в места нахождения дефекта искажена правильная картина чередования светлых и темных полос.

Интерферометры.Это приборы, в которых наблюдаемая картина интерференции служит для практических целей (для точных измерений длин волн, размеров малых предметов, показателей преломления газов, определения шероховатости поверхностей деталей и др.).


Картина интерференции получается пространственным делением пучка света на два или большее количество когерентных пучка, создания между ними оптической разности хода и затем наложения с целью получения картины интерференции.

Существуют различные виды таких приборов; здесь рассматривается двух лучевой интерферометр Майкельсона (рис. 4.9).

пластины В и А и попадает в зрительную трубу. Пластинка В необходима для того, чтобы создать одинаковые условия для лучей 1 и 2. Если зеркала 1 и 2 будут взаимно перпендикулярны, то на экране в зрительной трубе будет наблюдаться светлое или темное пятно. Для создания картины интерференции одно из зеркал немного наклоняют, это приводит к изменению оптической разности хода лучей, и на экране будут наблюдаться полосы равной толщины.

Если, например, вместо зеркала 1 поместить деталь, шероховатость которой надо определить, то по искажению линий интерференции можно определить степень шероховатости.

Если надо определить размер h малого предмета, то совместив один из концов этого предмета с зеркалом 2, перемещают это зеркало до другого конца предмета, считая число полос прошедших мимо указателя зрительной трубы. Тогда

где N – число темных полос, прошедших мимо указателя.

5.1. Дифракция света. Принцип Гюйгенса – Френеля. Метод зон Френеля

Под дифракцией света понимают явление непрямолинейного распространения света, проникновение его в область геометрической тени, огибание им препятствий. Основные закономерности явления дифракции можно понять на основе принципа Гюйгенса – Френеля.

Согласно принципу Гюйгенса – Френеля каждая точка фронта волны является источником вторичных когерентных волн. Этот принцип сводит явление дифракции к интерференции вторичных когерентных волн. Между явлениями интерференции и дифракции нет принципиального различия: если рассматривать наложение малого числа когерентных волн – это будет интерференция, если большого – дифракция.


Покажем, как можно объяснить явление дифракции с помощью принципа Гюйгенса – Френеля. Пусть на преграду, в которой имеется щель, падает плоская волна. На рис. 5.1 она изображена в тот момент времени t1, когда фронт волны занимает положение в этой щели. Найдем положение фронта волны в следующий момент времени t2 = (t1 + ∆t). Он отстоит от первоначального положения на достаточно малый интервал времени, за который вторичные волны проходят расстояние R, значительно меньшее размеров щели d (R = ct


Каждая точка фронта волны в соответствии с принципом Гюйгенса – Френеля является источником вторичных волн, которые за время ∆t проходят расстояние R, и фронт вторичной волы будет представлять собой сферу. Положение фронта волны в момент t2 можно найти как огибающую фронтов вторичных волн (рис.5.1). Учитывая, что скорость волны в каждой точке фронта волны перпендикулярна к ней, можно видеть, что имеются участки фронта волны, которые обеспечивают проникновение света в область геометрической тени. Если размеры этих участков фронта волны будут соизмеримы с размерами щели, то тогда явление дифракции света будет наблюдаться; если же они будут существенно меньше размеров щели, то явление дифракции, хоть и будет существовать, но будет незаметным.

На рис. 5.2 показано в определенный момент времени положение фронта волны, излучаемой точечным источником S монохроматического излучения (λ0). Найдем результирующую амплитуду волн, приходящих от всех точек фронта волны в точку наблюдения Р. В этой точке будет иметь место результат сложения вторичных когерентных волн, испускаемых каждым малым участком фронта волны.


Для расчета результирующей амплитуды используем метод разбиения фронта волны на зоны, предложенный Френелем. Для этого из точки наблюдения проводят сферы радиусов и т.д. Эти сферы разбивают фронт волны на зоны Френеля. При этом зоны Френеля обладают следующими свойствами.

1. Волны, приходящие в точку наблюдения от соседних зон Френеля имеют оптическую разность хода равную λ0/2 или разность фаз, равную π.

2. При не слишком больших значениях номера mзоны площади зон примерно одинаковы.

3. Для амплитуды волн, приходящих от разных зон Френеля, в точку наблюдения, справедливы следующие соотношения:

Cувеличением номера зоны будет уменьшаться амплитуда волны, приходящей в точку наблюдения, от рассматриваемой зоны.

Введение зон Френеля позволяет найти результирующую амплитуду в точке наблюдения через амплитуду волн от всех зон Френеля.

.(5.1)

В формуле (5.1) учтено, что при значении N, стремящемуся к бесконечности, вкладом зоны Френеля с номером Nможно пренебречь, по сравнению с вкладом от первой зоны Френеля.

Итак, в точке наблюдения результирующая амплитуда всех вторичных волн, испущенных от всех точек фронта волны, равна половине амплитуды вторичной волны, приходящей в точку наблюдения от первой зоны.

Метод зон Френеля позволяет предложить способы для получения значений амплитуды в точнее наблюдения, превышающих значение А1/2. Так, если закрыть непрозрачным экраном все зоны Френеля, кроме первой, то тогда можно увеличить амплитуду результирующей волны в два раза (АР = А1), а интенсивность – в четыре раза.

Для дальнейшего увеличения АР можно на пути волны поставить зонную пластинку, которая закрывает все четные зоны Френеля, что приводит к следующему результату:

Максимальное увеличение амплитуды АР можно получить с помощью фазовой зонной пластинки, которая изменяет фазу волн, идущих в точку наблюдения от четных зон Френеля на значение, равное π:

Практическое применение явления интерференции.

Просветление оптики.На границе раздела воздух – стекло отражается 4% энергии световой волны. Поэтому при наличии в оптическом приборе достаточного количества линз, зеркал, преломляющих тел до наблюдателя доходит малая часть первоначальной энергии световой волны.


Чтобы увеличить освещенность изображения с помощью интерференции убирают отраженные лучи. Для этого на поверхность линзы наносят тонкую пленку, у которой показатель преломления меньше, чем показатель преломления линзы. В этом случае, наряду с лучом 1, отраженным от поверхности линзы, возникает луч 2, отраженный от поверхности пленки (рис. 4.8а). Эти лучи должны быть когерентными, что бы отражаясь, они гасили дуг друга. Толщина пленки определяется из условия

В этом случае происходит перераспределение световой энергии; она вся проходит в линзу, отраженной волны не будет.

Определение качества обработки поверхностей.На исследуемую поверхность кладут плоскопараллельную пластинку так, чтобы создать воздушный зазор между исследуемой поверхностью и пластинкой (рис. 4.8б). По искажению картины интерференции можно обнаружить дефекты ее обработки (царапины, шероховатость), так как в места нахождения дефекта искажена правильная картина чередования светлых и темных полос.

Интерферометры.Это приборы, в которых наблюдаемая картина интерференции служит для практических целей (для точных измерений длин волн, размеров малых предметов, показателей преломления газов, определения шероховатости поверхностей деталей и др.).


Картина интерференции получается пространственным делением пучка света на два или большее количество когерентных пучка, создания между ними оптической разности хода и затем наложения с целью получения картины интерференции.

Существуют различные виды таких приборов; здесь рассматривается двух лучевой интерферометр Майкельсона (рис. 4.9).

пластины В и А и попадает в зрительную трубу. Пластинка В необходима для того, чтобы создать одинаковые условия для лучей 1 и 2. Если зеркала 1 и 2 будут взаимно перпендикулярны, то на экране в зрительной трубе будет наблюдаться светлое или темное пятно. Для создания картины интерференции одно из зеркал немного наклоняют, это приводит к изменению оптической разности хода лучей, и на экране будут наблюдаться полосы равной толщины.

Если, например, вместо зеркала 1 поместить деталь, шероховатость которой надо определить, то по искажению линий интерференции можно определить степень шероховатости.

Если надо определить размер h малого предмета, то совместив один из концов этого предмета с зеркалом 2, перемещают это зеркало до другого конца предмета, считая число полос прошедших мимо указателя зрительной трубы. Тогда

где N – число темных полос, прошедших мимо указателя.

5.1. Дифракция света. Принцип Гюйгенса – Френеля. Метод зон Френеля

Под дифракцией света понимают явление непрямолинейного распространения света, проникновение его в область геометрической тени, огибание им препятствий. Основные закономерности явления дифракции можно понять на основе принципа Гюйгенса – Френеля.

Согласно принципу Гюйгенса – Френеля каждая точка фронта волны является источником вторичных когерентных волн. Этот принцип сводит явление дифракции к интерференции вторичных когерентных волн. Между явлениями интерференции и дифракции нет принципиального различия: если рассматривать наложение малого числа когерентных волн – это будет интерференция, если большого – дифракция.

Покажем, как можно объяснить явление дифракции с помощью принципа Гюйгенса – Френеля. Пусть на преграду, в которой имеется щель, падает плоская волна. На рис. 5.1 она изображена в тот момент времени t1, когда фронт волны занимает положение в этой щели. Найдем положение фронта волны в следующий момент времени t2 = (t1 + ∆t). Он отстоит от первоначального положения на достаточно малый интервал времени, за который вторичные волны проходят расстояние R, значительно меньшее размеров щели d (R = ct А2 > А3 > А4 > А5 …, .

Cувеличением номера зоны будет уменьшаться амплитуда волны, приходящей в точку наблюдения, от рассматриваемой зоны.

Введение зон Френеля позволяет найти результирующую амплитуду в точке наблюдения через амплитуду волн от всех зон Френеля.

.(5.1)

В формуле (5.1) учтено, что при значении N, стремящемуся к бесконечности, вкладом зоны Френеля с номером Nможно пренебречь, по сравнению с вкладом от первой зоны Френеля.

Итак, в точке наблюдения результирующая амплитуда всех вторичных волн, испущенных от всех точек фронта волны, равна половине амплитуды вторичной волны, приходящей в точку наблюдения от первой зоны.

Метод зон Френеля позволяет предложить способы для получения значений амплитуды в точнее наблюдения, превышающих значение А1/2. Так, если закрыть непрозрачным экраном все зоны Френеля, кроме первой, то тогда можно увеличить амплитуду результирующей волны в два раза (АР = А1), а интенсивность – в четыре раза.

Для дальнейшего увеличения АР можно на пути волны поставить зонную пластинку, которая закрывает все четные зоны Френеля, что приводит к следующему результату:

Максимальное увеличение амплитуды АР можно получить с помощью фазовой зонной пластинки, которая изменяет фазу волн, идущих в точку наблюдения от четных зон Френеля на значение, равное π:

Читайте также: