Гидравлическая система это кратко

Обновлено: 03.07.2024

В основе работы гидравлики лежит закон Паскаля, открытый в 17 веке. Закон Паскаля гласит, что давление, действующее на жидкость в закрытом сосуде, передается во всех направлениях с одинаковой силой. На этом принципе базируется работа всех гидравлических машин объемного действия. Они вырабатывают гидравлическую энергию, приводя в движение рабочие органы оборудования. Далее давайте подробнее рассмотрим, как работает гидравлика.

Устройство, схема и принцип работы

Устройство работы гидравлики представляет собой закрытую циклическую систему, где все начинается с насоса, закачивающего гидравлическое масло из маслобака, и заканчивается опять же на возвращении жидкости в бак. Жидкость проходит весь цикл, попутно совершая действия, приводящие в работу отдельные гидроузлы. этого запускаются в работу исполнительные органы машин и механизмов. Любое механическое усилие рабочей техники и сложного промышленного оборудования зависит от гидравлики.

Сфер применений гидравлики сотни, а возможно и тысячи, но принцип везде один – в закрытой системе механизмов преобразуется механическая энергия в энергию жидкости и наоборот. Таким образуем создается механическое усилие посредством жидкости.

Схема гидросистем спецтехники и сложного промышленного оборудования в общем виде одинаковая. Для всех систем в основе лежит перечень обязательных элементов:

В зависимости от назначения техники и оборудования наполнение системы может отличаться.

Схема стандартной гидросистемы - Промснаб спб

Схема стандартной гидросистемы

Как работает гидравлика?

А теперь рассмотрим на конкретных примерах, как работает гидравлика, и какие конкретные задачи она выполняет.

Как работает гидравлика на тракторе?

Принцип работы гидравлики на тракторе достаточно прост. Насос создает поток рабочей среды в гидросистеме трактора. Далее гидрораспределитель направляет масло от гидронасоса к цилиндрам и гидромотору, которые приводят в движение навесное оборудование трактора.

Как работает гидравлика на экскаваторе?

Принцип работы гидравлики экскаватора такой же, как и у гидравлики трактора, т.к. гидросистема также отвечает за работу навесного оборудования. В данном случае давление жидкости двигает поршень гидроцилиндра, поэтому ковш экскаватора поднимает и опускает грунт на строительной площадке. Управляет данной операцией сам водитель или автоматизированная система.

Как работает гидравлика погрузчика?

Как работает гидравлика? На протяжении веков люди знали, как использовать гидравлическую энергию для повседневного использования. Это одна из наиболее широко используемых и старейших форм использования энергии. Ее применение варьируется от полива газонов до строительного оборудования и тяжелой техники. Это настолько широко распространено, что многие домашние хозяйства и офисы могут ежедневно использовать гидравлическое оборудование. Инженеры прошлого создали основу для современных гидравлических систем, чтобы удовлетворить потребности современного мира.

Кто же тогда изобрел гидравлику? Трудно определить, кто именно изобрел гидравлические системы. Гидравлические системы были созданы на основе работ таких великих умов, как Леонардо да Винчи, Галилео Галилей, Блез Паскаль и Джозеф Брама, и это лишь некоторые из них. Гидравлика нашла свое место в современном мире во время промышленной революции, предлагая широкие и эффективные области применения.

С началом 20-го века появились новые и разнообразные области применения гидравлики. Гидравлика широко используется в системах, поскольку она легко адаптируется, проста и гибка в использовании с различными типами приводов. Высокая плотность мощности является одним из преимуществ системы. Помимо транспортных средств и промышленного использования, вы можете найти гидравлические системы повсюду. Самая сложная техника включает самолеты, космические челноки, строительное оборудование и лифты.

Гидравлика в системе Space Shuttle
Гидравлика в тракторе
Гидравлика в тяжелой технике

Что такое гидравлическая система?

Гидравлические системы сегодня можно найти в широком спектре применений, от небольших сборочных процессов до комплексных применений в сталелитейной промышленности и тяжелой технике. Гидравлика позволяет оператору выполнять значительную работу, поднимая тяжелые грузы, поворачивая вал, сверля точные отверстия и т.д. С минимальными затратами на механическую связь за счет применения закона Паскаля.

Гидравлический пресс обычно состоит из пары цилиндров, которые соединены между собой и заполнены гидравлической жидкостью, такой как масло. По бокам этих цилиндров установлены два поршня, которые остаются в контакте с жидкостью. Когда определенное усилие прикладывается в меньшей части поршня, давление передается по всей жидкости. Согласно упомянутому закону Паскаля, давление будет идентичным давлению, оказываемому жидкостью в другом поршне. Для получения дополнительной информации о том, как работает гидравлический цилиндр, прочтите это в статье «Как работает гидроцилиндр«.

Гидравлическая жидкость создает мощность жидкости путем прокачки жидкости через гидравлическую систему. Жидкость поступает в цилиндр через клапан, и гидравлическая энергия преобразует ее обратно в механическую энергию. Клапаны помогают направлять поток жидкости, и при необходимости давление может быть снижено.

Принцип закона Паскаля реализуется в гидравлической системе с помощью гидравлической жидкости, которая передает энергию из одной точки в другую. Поскольку гидравлическая жидкость почти несжимаемая, она может мгновенно передавать мощность.

Британский механик Джозеф Брама применил принцип закона Паскаля и разработал первый гидравлический пресс в начале промышленной революции. Его гидравлический пресс был запатентован в 1795 году, широко известный как пресс Брама. Он подсчитал, что давление, приложенное к небольшой области, преобразуется в большую силу в области, которая больше с другой стороны цилиндра.
Как работает гидравлическая система?

Гидравлическая система состоит из пяти элементов: привода, насоса, регулирующих клапанов, двигателя и нагрузки. Двигателем может быть электродвигатель или двигатель любого типа. Насос действует в основном для повышения давления.

Гидравлические системы состоят из множества частей:

  • Электродвигатель приводит в действие гидравлический насос.
  • Резервуар содержит гидравлическую жидкость.
  • Гидравлический насос проталкивает жидкость через систему и преобразует механическую энергию в мощность гидравлической жидкости.
  • Клапаны регулируют поток жидкости и при необходимости сбрасывают избыточное давление из системы.
  • Гидравлический цилиндр преобразует энергию обратно в механическую энергию.

Существует много типов гидравлических систем, но каждая из них содержит те же основные компоненты, что и перечисленные. Все они предназначены для одинаковой работы.
Наука, лежащая в основе гидравлики – принцип Паскаля

Наука, лежащая в основе гидравлики, называется принципом Паскаля. Закон Паскаля или принцип Паскаля, основа механики жидкости, был открыт в 1653 году и опубликован в 1663 году Блезом Паскалем. Согласно ему, если давление изменится в любой точке гидравлической жидкости, энергия будет передаваться одинаково во всех направлениях. Когда вы оказываете давление на жидкость, она распределяется равномерно и не уменьшается. Давление жидкости будет одинаковым во всех частях контейнера.

Согласно принципу Паскаля, давление равно силе, деленной на площадь, на которую оно действует. Давление, используемое на поршне, приводит к равному увеличению давления на втором поршне в системе. Если площадь в 10 раз превышает первую площадь, то усилие на втором поршне в 10 раз больше, даже давление одинаковое по всему цилиндру. Гидравлический пресс создает этот эффект, основанный на принципе Паскаля. Паскаль также обнаружил, что давление в точке покоящейся жидкости одинаково во всех направлениях; давление будет одинаковым на всех плоскостях, проходящих через определенную точку.
Формула закона Паскаля

Паскаль обнаружил, что изменение давления, приложенного к закрытой жидкости, передается без уменьшения в каждую точку жидкости и на стенки контейнера, который ее содержит. Это происходит потому, что жидкости почти несжимаемы, поэтому при приложении давления жидкость передает его во всех направлениях вертикально к стенкам контейнера, в котором они находятся.

В этом примере небольшая сила F1, приложенная к небольшому поршню площадью A1, вызывает увеличение давления в жидкости. Согласно принципу Паскаля, это увеличение передается большему поршню площадью A2 путем приложения силы F2 к этому поршню.

Давление-это приложенная сила к поверхности, как;

P=F/A >>> F-используемая сила, а A-площадь поверхности.

Как работает Гидравлическая система по закону Паскаля

По обе стороны контейнера расположены два поршня, и контейнер заполнен несжимаемой жидкостью, такой как масло. Приложенное давление будет одинаково и не уменьшится во всех частях системы

Для первого поршня сила F1 приложена к площади поверхности A1. Давление P1 тогда;

P1=F1/A1

Давление P2 во втором цилиндре с силой F2 и площадью поверхности A2 будет равно;

P2=F2/A2

Когда вы прикладываете давление(P1) в первом поршне, оно будет одинаково передаваться через замкнутую несжимаемую жидкость.

P1=P2

Гидравлическая система позволяет поднимать тяжелый груз с небольшим усилием. Это уравнение показывает, что сила F2 больше силы F1 в разы, равной соотношению площадей двух поршней. Обратите внимание, что давления в обоих поршнях по существу одинаковы, и поскольку их площади различны, то и силы различны, в результате чего соотношение между их величинами равно соотношению между их площадями.

Блез Паскаль – Отец гидравлики

Блез Паскаль (1623-1662) — французский математик, физик, изобретатель, философ и писатель. Он внес значительный вклад в науку на протяжении всей своей жизни. Паскаль внес вклад в несколько областей физики, в первую очередь в области механики жидкости и давления. В честь его научного вклада в соответствии с ним была названа единица измерения давления (СИ) и закон Паскаля. Паскаль разработал теорию вероятностей, которая стала его самым влиятельным вкладом в математику.

Одно из его самых известных утверждений известно как принцип Паскаля, который гласит, что –

“Давление, оказываемое на жидкость, которая не сжимается и находится в равновесии в сосуде с недеформируемыми стенками, передается с одинаковой интенсивностью во всех направлениях и во всех точках жидкости”.

Его работа в области гидродинамики и гидростатики была сосредоточена на принципах гидравлических жидкостей. Он изобрел гидравлический пресс, гидравлическое давление с умноженной силой и шприц, используемый в медицине. Он доказал, что гидростатическое давление зависит не от веса жидкости, а от перепада высот.

Плюсы и минусы гидравлических систем

Гидравлические системы-это цепи передачи энергии, которые преобразуют механическую энергию в давление и снова возвращают ее в механическое движение. Как правило, начальная механическая энергия представляет собой вращательное движение, создаваемое двигателем внутреннего сгорания или электродвигателем. Передача давления и расхода создается с помощью гидравлического масла, а конечное движение может быть как вращательным, так и линейным.
Преимущества гидравлической системы заключаются в следующем:

  • Гидравлические системы являются самосмазывающимися
  • Хорошее соотношение мощности и веса
  • Относительно небольшие компоненты
  • Простая и гибкая передача энергии с помощью гидравлических труб
  • Возможность отключения привода от выработки гидравлической энергии за счет легкой передачи гидравлической энергии
  • Гидравлическими системами можно управлять как вручную, так и с помощью современной электроники.

Слабыми сторонами гидравлической системы являются:

  • Чистота трансмиссионных жидкостей
  • Характеристики жидкостей, зависящие от температуры
  • Передача электроэнергии на большие расстояния приводит к потерям мощности в системе
  • Компоненты и гидравлические жидкости требуют регулярного технического обслуживания

Каково будущее гидравлики?

Мы можем быть уверены, что гидравлика будет значительной частью оборудования в следующем столетии или даже дольше, потому что трудно предсказать технологии, которые появятся по мере нашего экспоненциального продвижения вперед. Например, абсолютно никто не предсказывал появление Интернета в 1950 году, и сейчас мы все еще ждем летающих автомобилей и колонизации Марса, которые могут быть ближе, чем мы думаем, если мы попросим Илона Маска предсказать эти факты.

Вы случайно не наткнулись на термин “электрогидравлика“? Что, если вы объедините компьютеры с гидравликой? В будущем компьютеры будут часто устанавливаться на гидравлическое оборудование. Это обеспечит точное распределенное управление. Подумайте о том, что это будет означать для двигателей, цилиндров, клапанов и насосов. Электрогидравлика прокладывает себе путь к современной гидравлике.

Гидравлика обладает огромной концентрацией мощности. Мы называем это плотностью мощности. Соответствие гидравлики для мускулов и компьютеров для мозга делает гидравлику умнее и эффективнее. Электроника не может с этим сравниться, по крайней мере пока. Что может обеспечить электроника, так это гораздо лучшую координацию и контроль.

В ближайшее время приготовьтесь к работе с гидравлическим оборудованием со все более высоким IQ, оснащенным искусственным интеллектом. Учитывая постоянно развивающееся и стремительное развитие технологий, гидравлическое оборудование становится все более мощным. К сожалению, навыки оператора развиваются не с той же скоростью, и именно поэтому срочно требуется более удобное оборудование. Для обеспечения безопасности оператора и долгосрочной жизнеспособности оборудования конструкция гидравлического оборудования должна быть более удобной для пользователя. Задача будет заключаться в том, чтобы сделать само гидравлическое оборудование более умелым. Гидравлика с искусственным интеллектом справится с этой задачей.

Будущее гидравлических систем

Развитие гидравлических технологий с 19 века было феноменальным. Основными преимуществами гидравлических систем являются легкая и мощная передача энергии, гибкие и индивидуальные свойства, а также возможность многократной передачи силы в различных отраслях промышленности. Гидравлические системы успешно используются в эксплуатации и управлении станками, сельскохозяйственным, строительным и горнодобывающим оборудованием, а также в автомобильной и авиационной промышленности. Без сомнения, мы можем сказать, что жидкая энергия может успешно конкурировать с механическими и электрическими системами. Гидравлические силовые системы могут обеспечивать усилие от нескольких килограммов до тысяч тонн.

Поскольку развитие технологий быстро развивается в современном мире, а разнообразие гидроэнергетических систем становится все более специфичным и адаптированным для многих отраслей промышленности, по-прежнему существует множество возможностей для дальнейшего развития использования гидравлики. Гидроэнергетические системы стали одним из основных игроков в технологиях передачи гидравлической энергии, широко используемых в промышленности, горнодобывающей промышленности, лесном хозяйстве, авиационной промышленности и даже в космической технике. Гидравлические силовые системы широко используются в автомобильной технике в тормозных, рулевом механизмах и их трансмиссиях. Промышленная автоматизация и массовое производство также используют основы гидроэнергетических технологий.

Поскольку космическая гонка продолжает развиваться, гидравлические системы также играют там важную роль.

Гидравлическая промышленность становится все более и более активной. Потребности клиентов меняются и превращаются в более сложные и конкретные запросы. Мы любим новые задачи и готовы решать их за вас. Мы в Seal Market позаботимся о том, чтобы предоставлять услуги, в которых вы нуждаетесь, также в будущем.

Гидросистема (гидрасистема) (сокр. от гидравлическая система) — это совокупность элементов, воздействующих на текучую среду таким образом, что свойства каждого элемента оказывают влияние на состояние текучей среды во всех элементах системы [1] .

В отношении проблем, связанных с проектированием и контролем гидросистем, существует понятие гидравлическая цепь, введенное академиком А.П. Меренковым [2] .

Данное определение гидросистем фактически подчеркивает взаимосвязь свойств множества элементов посредством текучей среды, что вытекает из определения - система, т.е. единой сущности, объединяющей множество элементов по каким-либо критериям.

Различают природные и технические гидросистемы. Примерами сложных технических гидросистем являются системы сбора и подготовки нефти и газа, водо- и газоснабжения, канализации, ирригационных каналов и т.п. К Природным гидросистемам можно отнести системы продуктивных пластов, насыщенных водой, газом, газоконденсатом или нефтью.

Несмотря на разнообразие гидросистем, отличающихся назначением, структурой, гидравлическими и размерными характеристиками, по мнению многих авторов [1] [2] , все они содержат одни и те же элементы.

Накопители текучей среды — замкнутые объёмы естественного и искусственного происхождения, служащие для вмещения текучей среды и придающие ей относительно стабильный энергетический потенциал. Они характеризуются пренебрежимо малыми скоростями течения жидкости и газа, которые не влияют на функционирование рассматриваемой системы. К данным элементам следует относить различные емкости, водохранилища, моря, озера, реки, пористые пласты, атмосферу и т.п., которые являются оконечными для рассматриваемой гидросистемы. В рамках выбранной гидросистемы они могут служить как источником, так и приемником текучей среды.

Устройства по управлению потоком текучей среды — устройства, служащие для изменения гидравлических параметров и направления перемещения потока. Этими устройствами являются задвижки, клапаны, распределители потоков, штуцеры, регуляторы расхода и давления и т.п.

Каналы связи – сооружения, необходимые для обеспечения направленного движения текучей среды от одного элемента гидросистем к другому. Каналами связи могут быть как открытые каналы ирригационных систем, так и закрытые трубопроводы, служащие единой цели: пропусканию сквозь себя потока текучей среды для обеспечения связи других элементов (УУ, АСП, НТС) рабочей средой.

Приборы для регистрации параметров текучей среды — устройства, предназначенные для контроля параметров потока текучей среды.

Основной проблемой, связывающей всю массу гидросистем, является расчёт параметров потоков текучей среды(или нескольких сред) в гидросистемах сетевой структуры с большим количеством элементов, которые различным образом изменяют свойства сред и их энергетические показатели.

Наиболее известными программными продуктами для моделирования, контроля и управления гидросистем являются Eclipse, Tempest, TimeZYX для гидросистем продуктивных пластов и PipeSim, "Экстра" [3] , HydraSym [4] , OisPipe, "Гидросистема" для технических и смешанных (объединяющих природные и технические гидросистемы) гидросистем.

Примечания

Литература

1. А.В. Стрекалов. Математические модели гидравлических систем для управления системами поддержания пластового давления. Тюмень, 2007. ОАО Тюменский дом печати. 664 с.

Гидравлические системы – это комплексы гидравлических устройств, обеспечивающих высокую интенсивность работ, выполняемых промышленным оборудованием. Они являются важными элементами литейного, прессового, транспортировочного оборудования, устанавливаются в металлообрабатывающих станках и конвейерах. Принцип работы гидросистем заключается в преобразовании механической энергии приводного двигателя в гидравлическую и передаче мощности к рабочим органам промышленного оборудования. В металлорежущих и других станках гидравлика обеспечивает оптимальный режим функционирования, благодаря возможности бесступенчатого регулирования, обеспечению плавных движений и эффективной автоматизации процессов.

Элементы промышленной гидравлики

Машины и механизмы, используемые в промышленности, имеют разнообразное и часто очень сложное устройство, но схема гидросистем классического типа включает однотипный ряд основных элементов.

Рабочий гидроцилиндр

Служит для преобразования гидравлической энергии в механическое движение рабочих органов. Может направлять жидкость в одном направлении (одностороннее действие) или в двух (двухстороннее действие). Конструктивные варианты – поршневые с одним или двумя штоками и плунжерные, однополостные и двухполостные, телескопические, специального исполнения для конкретной области применения. В конструкции цилиндра может присутствовать датчик линейного перемещения, обеспечивающий обратную связь в системах пропорционального или сервоуправления.

В сложных механизмах вместо гидроцилиндров устанавливают гидромоторы, в которые рабочая жидкость поступает из насоса, а потом возвращается в магистральный трубопровод. В зависимости от требуемых характеристик, гидравлические системы комплектуют лопастными, шестеренными, поршневыми гидродвигателями.

Гидрораспределители – дросселирующие и направляющие

Эти компоненты служат для управления потоками. По конструкции их распределяют на – золотниковые, клапанные, крановые. В промышленной гидравлике наиболее востребованы гидрораспределители золотникового типа, благодаря простоте в эксплуатации, надежности и небольшим габаритам.

Клапаны

Это механизмы, которые служат для регулирования пуска, остановки, интенсивности потока. Сервоприводные и пропорциональные клапаны осуществляют свои движения пропорционально подаваемому электрическому сигналу.

Насосы

Это оборудование служит для преобразования механической энергии гидропривода в давление рабочей жидкости востребовано в гидравлических системах различного вида. Для промышленной техники, эксплуатируемой в тяжелых условиях, обычно применяют динамические модели, устойчивые к посторонним включениям. Насосы бывают принудительного типа, по конструкции – поршневые (аксиальные и радиальные), шестеренные, лопастные. Производители также предлагают модели специального исполнения, например с пониженным уровнем пульсации и шума, способные выдерживать сложные эксплуатационные условия.

В зависимости от функционального назначения, в гидравлических системах присутствуют различные дополнительные элементы: фильтры (напорные, всасывающие, воздушные, сливные), блоки разгрузки, зарядные устройства, крепежные детали, маслоохладители и другие.

Схема самого простого варианта гидросистемы


На схеме показана одна из самых простых систем промышленной гидравлики, действующая следующим образом:

  • Гидравлическая жидкость поступает из бака Б через насос Н в гидрораспределитель Р.
  • В зависимости от положения гидрораспределителя (1, 2, нейтрального), гидравлическая жидкость поступает в соответствующую полость гидроцилиндра, провоцируя его движение в нужную сторону. В нейтральном положении гидроцилиндр неподвижен.
  • За насосом Н установлен предохранительный клапан, настраиваемый на определенное давление. При срабатывании предохранительного клапана гидравлическая жидкость возвращается в бак Б, минуя остальные элементы системы.

Варианты управления гидросистемами

Для конкретного привода выбирают наиболее удобный способ управления гидравлическими системами в зависимости от циклограммы функционирования гидросистемы, параметров нагрузки, количества регулируемых клапанов:

Читайте также: