Этапы эволюции микроорганизмов кратко

Обновлено: 02.07.2024

Эволюция микроорганизмов началась более 3 миллиардов лет назад. Первоначально они имели минимальное количество структур, которые обеспечивали жизнедеятельность. Но постепенные изменения на протяжении 1-1.5 миллиардов лет привели к появлению прокариотов, эукариотов и простейших. Вторая половина ХХ столетия (после изобретения антибиотиков) отмечена ускорением эволюционного развития свободноживущих и паразитических микроорганизмов, появлением новых инфекционных агентов, мутациями уже известных форм. Широко распространилась микрофлора, устойчивая к антибактериальным, противовирусным, дезинфицирующим и химиопрепаратам.

Общие этапы эволюции микроорганизмов

Первичная атмосфера Земли, по сравнению с другими планетами Солнечной системы – Сатурном, Нептуном или Ураном, содержащими большое количество благородных газов, состояла преимущественно из водорода, азота, углекислоты. Кислород, выделяющийся в результате фотолиза паров воды, сразу соединялся с другими элементами, а не присутствовал в воздухе свободном состоянии.

Модель бактерий

Теорий происхождения микробов множество, но почти все сходятся в том, что жизнь зародилась именно в воде.

Под воздействием солнечных радиоактивных лучей, электромагнитных волн, электрических разрядов, температурных факторов из них формировались органические вещества, накапливающиеся в водоемах. При достижении определенной концентрации возникли первые самовоспроизводящиеся организмы. Предположительно ими были сине-зеленые водоросли, которые, научившись использовать энергию солнечного света (явление фотосинтеза), стали выделять кислород.

Насыщение атмосферы кислородом кардинально изменило Землю, создав условия для дальнейшей эволюции живых существ от микроба до человека.

Ученые, занимающиеся биологией, уверены, что за 3 миллиарда лет в ходе эволюции бактерий были усовершенствованы следующие факторы:

  • морфология и химический состав клеток;
  • принципы обменных процессов;
  • механизмы наследственности;
  • взаимодействие микроорганизмов между собой и с объектами неживой природы.

Эволюция микробов сыграла ведущую роль в формировании биосферы Земли и создании экологического баланса.

Эволюция бактерий

Пытаясь объяснить, как шла эволюция бактерий, ученые выдвигали многочисленные версии. Вероятнее всего, процесс развития начался с анаэробных микроорганизмов, разделившихся впоследствии на факультативных анаэробов, аэробов, хемосинтезирующих аутотрофов. Эти формы дошли до наших дней, получив широкое распространение в современных экосистемах.

Холерный вибрион

Разнообразие видов, форм и способов приспособления микроорганизмов указывает на сложный путь, пройденный ими от сгустка вещества до живой клетки.

Необходимые условия для появления живой клетки

Приспособившись в процессе эволюции к развитию при низкой температуре, они стали обосабливаться, формировать так называемые коацерватные капли в форме коллоидных частиц.

Теории происхождения прокариот

Сформированные коацерватные капли представляли собой высокомолекулярные протеиновые образования, адсорбирующие из окружающей среды отдельные химические элементы. Эта способность положила начало обмену веществ, который является одним из признаков жизни.

Растворенные в воде органические вещества, которые затем попадали внутрь коацерватов, увеличивали их массу. Когда она доходила до критической точки, связи, удерживающие молекулы вместе, разрывались, и коллоид распадался на более мелкие частицы. Так зарождался процесс размножения.

Незначительные размеры и отсутствие твердых компонентов не позволили большинству примитивных живых организмов сохраниться до наших дней. Однако учеными были обнаружены породы возрастом 3.1 млрд лет, из которых выделены структуры, интерпретируемые как останки бактерий.

Строение безъядерных микроорганизмов

Основной характеристикой прокариотов является отсутствие ядра. Их ДНК, являющаяся носителем генетической информации, заключена в нуклеоид, заменяющий хромосомы. Отсутствие других мембранных органоидов (митохондрий, эндоплазматической сети и других) компенсируется мезосомами, выполняющих аналогичные функции. Имеется небольшое количество мелких рибосом.

В процессе эволюции некоторые бактерии утратили клеточную стенку и перешли в L-форму. Таким способом им удалось пережить возникшие неблагоприятные условия, а затем вернуться к исходному состоянию.

Бактерии, у которых в естественном состоянии отсутствует клеточная стенка, называются микоплазмами.

Появление в ходе эволюции жгутиковых форм бактерий определило способность микроорганизмов к передвижению. Впоследствии количество и расположение жгутиков на теле прокариот стало одним из признаков видовой принадлежности.

3d модель бактерии

Микробы приобрели самые разные формы и органоиды, чтобы приспособиться к изменяющимся условиям.

Чем питались и дышали древнейшие бактерии

Одними из старейших микроорганизмов считаются бактерии, восстанавливающие сульфаты. Они способны поглощать ионы водорода и переносить их на сульфаты, восстанавливая те до сульфидов. Усовершенствованный в процессе эволюции метод переноса электронов, используемый бактериями, происходит с участием цитохромов (крупных белков). Благодаря механизму фосфорилирования, протекающему в анаэробных (бескислородных) условиях, накапливается энергия.

Другими представителями микромира были:

  • бактерии, обладавшие способностью фиксировать углеводородные соединения и аммиак;
  • водородные бактерии, окислявшие молекулярный водород;
  • микроскопические сине-зеленые водоросли, использовавшие углеводород для строительства своего тела и выделявшие кислород.

Их жизнедеятельность привела к обогащению биосферы Земли кислородом с одновременным снижением концентрации в ней углекислого газа. Такая эволюция фотосинтеза привела к массовой гибели анаэробных микроорганизмов и дала возможность развиваться аэробам.

Таким образом, произошло четкое разделение между прокариотами и эукариотами. Безъядерные бактерии продолжали использовать сульфатное дыхание, формировать и потреблять метан, фиксировать азот и выполнять другие важные для экологии функции. Жизнедеятельность ядерных микроорганизмов базировалась в основном на фотосинтезе и существовании в присутствии кислорода.

Как передается генетическая информация

Отсутствие полового размножения у бактерий привело к возможности не только воспроизводить потомство путем простого деления, но и делиться генетическим материалом с другими микроорганизмами. Данное явление получило название горизонтального переноса. Оно создает значительные трудности для ученых в отслеживании развития определенного вида бактерий и архей.

Изучение подвижных генетических элементов и их роли в эволюции бактерий позволило установить, что они могут оказывать влияние на процесс преобразования наследственной информации в РНК или протеин. В результате этого происходит блокировка определенных действующих и активизация неактивных генов, вызывая мутации и создавая этим определенные эволюционные преимущества.

Эволюция вирусов

Вирусы представляют собой микроскопические частицы, которые состоят из молекул нуклеиновых кислот, заключенных в протеиновую оболочку (капсид). Особенностями вирусных микроорганизмов является наличие только одного типа нуклеиновых кислот (РНК или ДНК), а также неспособность размножаться, находясь вне клетки хозяина.

Так как вирусы не имеют общего предка и не образуют окаменелостей, то не существует единой теории их возникновения. Однако выделение вирусных элементов из геномов останков древних существ позволяет проследить их распространение и изменение.

Откуда взялись бесклеточные организмы

В настоящее время выдвинуты следующие теории происхождения вирусов в ходе эволюции:

  • регрессия одноклеточных микроорганизмов;
  • переход доклеточных форм к паразитическому способу жизни;
  • отсоединение отдельных участков ДНК или РНК клеточных организмов с сохранением зависимости.

У каждой теории существуют недостатки, не позволяющие ее принять за единую правильную версию.

Строение клетки вируса

Изменчивость и наследственность вирусов

Эволюцию вирусов ученые пытаются проследить, проводя анализ геномов современных микроорганизмов.

Выяснено, что развитие вирусов происходит в результате изменения последовательностей соединения участков ДНК или РНК под воздействием различных внешних факторов. Это приводит к возникновению более адаптированных к создавшимся условиям мутантов, способным сразу же воспроизводить себе подобных. Такая быстрота генетических изменений ускоряет эволюцию данных микроорганизмов, способствует появлению новых заболеваний, повышает устойчивость вирусов к неблагоприятным воздействиям.

Особенности эволюции вирусов на современном этапе

Возникающие штаммы обладают большей вирулентностью, способностью противостоять антимикробным препаратам и дезинфицирующим средствам, а также заражать другие виды макроорганизмов.

Почему вирусы называют двигателями эволюции

Изучение роли вирусов в эволюции жизни на Земле привело ученых к выводу, что их жизнедеятельность спровоцировала треть всех изменений, оказывающих влияние на геном животных и человека. Постоянное противостояние этим микроорганизмам привело к формированию всех органов и тканей, выполняющих различные функции. Поэтому вирусы еще называют стихийным злом эволюции. Однако считается, что живой мир планеты не был бы таким, какой он есть сейчас, если бы не вирусы.

Влияние вирусов на эволюцию человека происходило во время инфицирования клеток, участвующих в процессе размножения. Образовавшиеся провирусы внедрялись в геном, становясь частью наследственной информации. Подобные мутации повлияли на изменения геномов даже в большей степени, чем это было возможно в ходе естественной эволюционной изменчивости.

Исследуя роль вирусов в эволюции эукариотических клеток, ученые обнаружили вирусное происхождение некоторых структурных элементов. Также существует теория вирусного возникновения ядра. В ее основу положено происхождение клеточного ядра от большого ДНК-содержащего вируса. Проникнув в архею и начав размножаться, микроорганизм стал полностью ее контролировать.

Как повлияло появление многоклеточных организмов на ход эволюции

Первыми прокариотами, которые могли появиться в водной среде, считаются анаэробные микроорганизмы, осуществлявшие свою жизнедеятельность за счет брожения. Через 1 млрд лет после того, как появился кислород, все эукариоты, большинство которых является аэробами, начали активно заселять водные пространства планеты.

Размножаясь, одноклеточные микроорганизмы образовывали многочисленные колонии. Большая скученность привела к появлению у них специализации и определенных клеточных структур. У одних сохранились жгутики и ворсинки, другие их потеряли, сохранив взамен ложноножку. Таким образом, происходит расслоение колоний, где каждый устойчивый слой выполняет определенные функции. Это можно считать началом эволюции одноклеточных форм до наиболее высокоразвитых животных.

К первым многоклеточным животным относятся губки, кишечнополостные и членистоногие. Дальнейшее развитие было направлено на усовершенствование способов передвижения, дыхания и координации функций клеток организма.

По мере того, как шла эволюция бактерий, грибов, растений и животных, произошел их выход на сушу. Это привело к быстрому появлению высокоорганизованных форм жизни.

Salmonella typhosa

Одноклеточные микробы сыграли основную роль в образовании многоклеточных организмов.

Эволюция микробного паразитизма и происхождение патогенных микроорганизмов

Эволюция паразитизма у сапрофитных бактерий и простейших базируется на расширении мест обитания, а также борьбе за новые сферы распространения.

Усовершенствование паразитизма за счет увеличения зависимости от хозяина привело к появлению патогенных микроорганизмов, ставших возбудителями инфекционных заболеваний. Утратив сапрофитную форму, они стали неспособны жить самостоятельно во внешней среде.

В дальнейшем появились факультативные (шигеллы, менингококки, микобактерии), а затем облигатные (патогенные простейшие, хламидии, риккетсии) внутриклеточные паразиты.

По мере увеличения количества патогенных микроорганизмов, усовершенствования их вирулентных и токсических характеристик, развивались специфические и неспецифические способы иммунной защиты хозяев. Это стало одним из основных факторов естественного отбора.

Основные определения

Экология вирусов — это область вирусологии, изучающая взаимосвязь вирусов с объектами внешней среды.

Микроэволюция – это эволюционный процесс в популяции, приводящий к видообразованию новых разновидностей микроорганизмов за короткий период времени.

Фотолиз — это реакция разложения химического вещества под воздействием световой энергии.

Гетеротрофы — это микроорганизмы, которые питаются готовыми органическими веществами. Хемосинтезирующие автотрофы – это бактерии, источником энергии для которых служит реакция соединения железа и серы.

Коацерватные капли — это высокомолекулярные протеиновые структуры, которые появились из раствора с коллоидными частицами.

Подвижные генетические элементы — это автономные образования, содержащие информацию о структуре определенных протеинов и обеспечивающие возможность их перемещения из одной части генома в другую.

Сапрофитные бактерии — это микробы, использующие для питания органические вещества. Они являются антиподами паразитов.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Описание презентации по отдельным слайдам:

Эволюция микроорганизмов
Эволюция жизни – процесс, стартовавший на планете около 4 млрд. лет назад, который привел к возникновению первых протоклеток. Современная геномика подтверждает предположение Дарвина (1859 г.) о наличии одного предка для всех клеточных форм. Его принято обозначать LUCA (Last Universal Common Ancestor), однако сейчас не существует единого мнения о его природе.

Эволюция микроорганизмов
Главная проблема – Эволюция 3 доменов жизни: Бактерий, Археев и Эукариот и создание универсального дерева жизни.

Археи и Эукариоты возможно имеют общего предка, отличного от Бактерий.

Первой самореплицирующаяся молекула – РНК – основа первых примитивных клеток

Эволюция микроорганизмов
Клеточное ядро эукариот, митохондрии и гидрогеносомы, а также хлоропласты, согласно эндосимбиотической теории, произошли от протеобактерий и цианобактерий.

Разнообразие микробных форм жизни огромно, метаболическая пластичность микробов позволила им занять огромное число экологических ниш.

Происхождение общего предка (попытки реконструкции LUCA)
Главное доказательство существования LUCA – универсальность системы экспрессии генов.
Один код, одинаковые рибосомы, состоящие из 3 консервативных молекул РНК. Универсально сохраняются компоненты системы трансляции: около 30 транспортных РНК, несколько факторов трансляции, 18 аминоацил-тРНК-синтетаз и несколько тРНК модифицирующих ферментов.

Для объяснения различий между археями и бактериями в механизмах репликации ДНК и химическом составе мембран предлагаются 2 возможных сценария:
LUCA содержал признаки архей и бактерий, далее в эволюции каждой их групп была утеряна часть признаков.
LUCA содержал один из вариантов, впоследствии замененный на другой у архей или бактерий.

Сценарий доклеточной эволюции
Неорганические ячейки для развития доклеточной жизни, (согласно М. Расселу и его коллегам), сети микроячеек в гидротермальных источниках, состоящие в основном из сульфида железа [Russell, 2007].
Градиенты температуры и рН, способствующие биохимическим реакциям. Генетические элементы: сегменты РНК на первой стадии, затем более сложными молекулами РНК и далее всё более крупными молекулами ДНК

Различные стратегии репликации генетического материала и генетические элементы, эволюционировали совместно в соседних ячейках.
Для обозначения этого состояния предложено обозначение LUCAS (Last Ancestrial Universal Common State – последнее универсальное предковое состояние).

Опарин и Холдейн (1929)
Синтез биологических мономеров из газов первичной атмосферы.
Образование биологических полимеров.
Формирование фазообособленных систем, отделенных от внешней среды мембранами (протобионтов).
Возникновение простейших клеток.

Опыты Миллера, Оро, Шрамма
Опыты Миллера (аминокислоты, органические кислоты, альдегиды, углеводороды) из формальдегида – сахара, из метана и воды – жирные кислоты.
Оро – синтез АТФ,
Фокс – протеиноидные микросферы,
Шрамм – полинуклеотиды.

Оптическая активность. В составе белков L-форма, полисахариды – D-формы.

Матричный синтез. Экспериментально показана возможность комплементарного связывания мононуклеотидов с полинуклеотидной матрицей и образование ковалентных связей.

Кислород
2 млрд. лет первые цианеи, выделяющие кислород, 1,5 млрд., первые эукариоты.
Кислород. Для осуществления процессов дыхания достаточно 0,2% кислорода. О2 высокотоксичен для анаэробных клеток, семейство радикальных частиц.

Первые самореплицирующиеся молекулы – РНК
Для жизни необходимы молекулы способные реплицироваться и выполнять клеточную работу.

Живая структура должна содержать ДНК, РНК и белки.

ДНК может реплицироваться, но не выполняет работы, белки напротив.

РНК-мир
Почти полмиллиарда лет шел статистический перебор, пока не появилось образование подобное современной молекуле РНК, заключенной в липидный пузырек.
Сам образ функционирования РНК указывает на ее древнее происхождение. (рибосомы, рРНК, тРНК, иРНК, АТФ).

3 домена жизни
В 1977 Карл Войес и Джордж Фокс, исследуя малые субъединицы рРНК, разделили живое на три домена: Археи, Бактерии и Эукариоты.
Скорее всего, Археи и Эукариоты эволюционировали независимо от Бактерий, имея одного на 3 группы общего предка
Гипотеза слияния геномов предполагает слияние древней архейной клетки с клеткой примитивной грамотрицательной протеобактерии. Слияние геномов объясняет происхождение ядра и присутствие у Эукариотов генов Архей и Бактерий одновременно.

В геноме Археев точка Ori фланкирована последовательностями, кодирующими белок, инициирующий репликацию, схожий с белком Эукариот. Позже были обнаружены белки, аналогичные белкам бактерий, и некоторые не имеющие аналогов архейные белки. Бактериальные хромосомы некоторых археев снабжены гистоноподобными белками, схожими с белками Эукариот.
Транскрипция Археев также имеет черты Эукариот и Эубактерий. Как и у Эубактерий, мРНК Археев полицистронна и не проходит сплайсинга. Механизм трансляции уникален, имеются особенности в строении тРНК, первая тРНК переносит метионин, подобно Эукариотам, рибосомы также отличаются от бактериальных и эукариотных.

Эндосимбиотическая теория
Эндосимбиотическая гипотеза: происхождение хлоропластов и митохондрий.
Оба органоида имеют бактериальные рибосомы и кольцевую хромосому.
Альфа-протеобактерия Rickettsia prowazekii облигатный внутриклеточный паразит, геном которого очень близок к геному митохондрий.
Происхождение хлоропластов: эндосимбиоз цианобактерий Prochloron, единственный прокариот, имеющий хлорофилл а и б.
Анаэробные альфа-протеобактерии продуцирующие водород и СО2 в процессе брожения образовали гидрогеносомы.

Последовательная эндосимбиотическая теория
Эволюция Эукариот как серия эндосимбиотических слияний.
Развитие подвижности в результате слияния анаэробной спирохеты и другого анаэроба.
Формирование ядра в результате развития внутренних мембран, далее эволюция митохондрий.
Развитие клеток предковых форм грибов и животных, далее с развитием хлоропластов и растений.

Классификация и таксономия микроорганизмов
Характеристики МО (классические): морфология, физиология и метаболизм, экологические, генетические (трансформация, конъюгация внутри рода и даже семейства, плазмиды), молекулярные.
Метод гибридизации ДНК. Более 70% -- вид.

Классификация и таксономия микроорганизмов
Сиквенс малых субъединиц РНК 16S и 18S. Консервативные участки, не подверженные горизонтальному переносу генов, изменяются очень медленно.
Геномный фингерпринт, ПДРФ, повторы.
Полногеномный сиквенс.
Молекулярные часы. Изменение последовательности рРНК и белков пропорционально времени эволюции.

Царства (Уиттакер)
Животные (многоклеточные, гетеротрофы без клеточной стенки),
Растения (многоклеточные, с клеточной стенкой, фотоавтотрофы),
Эубактерии
Архебактерии
Протисты (без истинных тканей),
Грибы (эукариоты, многоядерные, мицелиальные).

Классификация Берджи (1926)
Современное издание
(2001-2007) описывает
25 типов
прокариот.

К ним можно отнести следующие:



  • Эмпирический период (до изобретения микроскопов и их применения для изучения микромира). Дж. Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний- contagium vivum .


  • Морфологический период занял около двухсот лет. Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

  • Физиологический период (с 1875г.) - эпоха Л.Пастера и Р.Коха. Заслугами Луи Пастера были: изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления ( аттенуации) вирулентности и получения вакцин (вакцинных штаммов). Р. Кох разработал метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открыл возбудителей сибирской язвы, холеры ( запятой Коха ), туберкулеза (палочки Коха), усовершенствовал технику микроскопии, экспериментально обосновал критерии Хенле, известные как постулаты (триада) Хенле - Коха.


Биохимическое единство, мысль о котором еще несколько десятилетий назад казалась столь невероятной, в настоящее время-твердо установленный факт. Клетки всех живых существ, от самых примитивных форм до наиболее высокоразвитых животных и растений, состоят из од них и тех же структурных элементов и используют одни и те же механизмы для получения энергии и для роста. По сравнению с этим фунда ментальным единством существующие различия и отклонения кажутся незначительными. Можно считать, что все ныне живущие организмы проделали вместе длинный путь развития. Из простейших форм посте пенно развились формы более сложные и специализированные, а потом, наконец, и те, которые населяют нашу планету сегодня. Этот процесс эволюционного развития организмов - одна из центральных проблем биологии.

Первичная атмосфера Земли. Наша Земля кардинальным образом отличается от других планет Солнечной системы. По сравнению с Юпитером и Солнцем она содержит лишь незначительные количества инертных газов. По-видимому, она образовалась в результате объединения множества метеоритов; вследствие нагрева и расплавления внутреннего ядра Земли вода и газы были вытеснены к ее поверхности. Первичная атмосфера, вероятно, содержала много водорода, метана, азота и С02, но в ней не было кислорода. При фотолизе водяных паров, разумеется, освобождался кислород, но он вновь переходил в связанное состояние. Химическая эволюция могла происходить только в бескислородной атмосфере.

Химическая эволюция. Гипотеза, согласно которой жизнь была зане сена на нашу планету извне, вряд ли заслуживает в настоящее время серьезного обсуждения. Самовоспроизводящиеся биологические единицы должны были возникнуть на самой Земле в ранний период ее существования. Согласно представлению, выдвинутому Холдейном и Опариным, в то время на Земле накопились большие количества ор­ганических веществ, но еще не было организмов, способных их использовать и минерализовать. Когда после первых попыток Миллера уда лось неоднократно подтвердить в эксперименте, что из неорганических веществ (Н2, С02, NH3, Н20) и метана при подходящих условиях могут синтезироваться простые органические молекулы, сомнения в реальности химической эволюции полностью отпали. Как полагают, в восстановительной первичной атмосфере (в которой не было кислорода) под действием солнечной радиации и в результате электрических разрядов образовывались органические вещества, которые затем попадали в воду и в ней накапливались. Когда они накопились в большом количестве, видимо, возникли условия, при которых мог совершиться переход от химической эволюции к возникновению первых самовоспроизводящихся живых существ.

Биологическая эволюция. Переход от неживой органической материи к живой клетке потребовал длительного времени (от 3,1 до 4,5 млрд. лет). Появившиеся клеточные организмы получили, очевидно, столь большое селективное преимущество, что все предшествующие формы организации оказались вытесненными. Поскольку доклеточные формы жизни (если они существовали) не сохранились даже в ископаемом виде, переход от неживого к живому представляется нам чрезвычайно быстрым.

Эволюция прокариот. Согласно распространенному, хотя и весьма гипотетическому представлению, в восстановительной первичной атмосфере происходило развитие прокариотических организмов (рис. 17.5). Первыми прокариотами, которые могли появиться в водоемах, богатых органическими веществами, были организмы, существовавшие за счет брожения и обладавшие основными функциями анаэробного обмена (фруктозобисфосфатный и пентозофосфатный пути). Если предположить, что в водоемах имелись тогда и сульфаты, то следующим достижением органической эволюции мог быть эффективный транспорт электронов с созданием протонного потенциала как источника энергии для регенерации АТР. На этом этапе эволюции, вероятно, возникли производные тетрапиррола, содержащие железо или никель, а также автотрофный способ ассимиляции углерода (путь ацетил-СоА). Как реликты тех времен могут рассматриваться метанобразующие и ацетогенные бактерии, а также бактерии, восстанавливающие сульфаты до сульфида, которые, за рядом исключений, могут использовать Н2, СО2 и некоторые продукты брожения.

Переход от первичной восстановительной атмосфры к атмосфере, содержащей кислород, несомненно, был величайшим событием как в эволюции живых существ, так и в преобразовании минералов. В результате превращения цитохромов в терминальные оксидазы и использования молекулярного кислорода в качестве акцептора электронов у бактерий стал возможным новый тип метаболизма - аэробное дыхание.

Как полагают, 2,1 млрд. лет назад уже существовали все фототрофные дышащие прокариоты, известные в настоящее время. Согласно геологическим данным, уже 2,7 млрд. лет назад имелся в небольшом количестве кислород. На протяжении последних 1,2 млрд. лет вся жизнь на Земле зависит от биологического фотосинтеза и от кислорода, выделяемого растениями. Вызвав накопление кислорода в атмосфере, развитие жизни тем самым - через окисление металлов и минералов повлияло и на неживую природу.

В период до 0,6 млрд. лет назад содержание кислорода в атмосфере увеличилось, вероятно, всего лишь до 2%. И только после того, как растения завоевали сушу и покрыли ее густым зеленым ковром, концентрация кислорода в воздухе резко повысилась и достигла современного уровня (21%). Накопление О2 сопровождалось образованием отложений углерода в форме каменного угля, нефти, природного газа и углеродсодержащих осадочных пород.

Ископаемые остатки, относящиеся к раннему докембрию, чрезвычайно редки. Из-за малой величины примитивных организмов и отсутствия у них каких-либо твердых компонентов остатки их могли сохраниться лишь при исключительных обстоятельствах. В штате Миннесота (США) в отложениях, возраст которых оценивают в 2,7 млрд. лет, были обнаружены структуры, интерпретируемые как остатки бактерий (в том числе цианобактерий). Возраст южноафриканских отложений, в которых тоже были найдены структуры, напоминающие бактерии, достигает 3,1 млрд. лет. Это самые древние из всех известных следов жизни.

Бактерии - это сохранившиеся до наших дней живые свидетели ран ней эволюции жизни. Многие в прошлом широко распространенные и господствовавшие бактерии в настоящее время ведут весьма скромное существование. В экологических нишах, обеспечивающих им подходящие условия жизни, сохранились также и анаэробные бактерии.

Эволюция эукариот. Эукариотические клетки, видимо, возникли лишь тогда, когда в атмосфере появился кислород. Все эукариоты, за очень малым исключением, -аэробные организмы. Прокариоты занимали много различных экологических ниш. Выработка разнообразных типов метаболизма у прокариот была, по-видимому, обусловлена простой структурой клетки, высокоразвитыми системами регуляции, быстрым ростом и наличием нескольких механизмов переноса генов. На пути дальнейшей эволюции прокариот стояли непреодолимые трудности, связанные прежде всего с малыми размерами генома, его гаплоидным состоянием и малой величиной клеток. Новая окружающая среда с аэробными условиями позволяла получать больше энергии, но для ее использования нужны были более крупные клетки, широкие возможности структурной дифференцировки и соответственно во много раз больший геном, который обеспечивал бы хранение большого объема информации. Величина генома 5-10 9 Да была, вероятно, верхним пределом мо­лекулярной массы бактериальной хромосомы, состоящей из одной-единственной двойной цепи. Для дальнейшей эволюции требовалось создание новой модели.

Различия между прокариотической и эукариотической клетками (эуцитом и протоцитом) огромны. Еще раз перечислим важнейшие особенности клеток эукариот:

2. Вследствие этого транскрипция (в ядре) отделена от трансляции (в цитоплазме).

3. Геном разделен на части, имеется несколько (часто много) линейных хромосом вместо одной кольцевой.

4. Репликация ДНК происходит только в интерфазе; каждая хромосома имеет по нескольку репликонов; дочерние хромосомы распределяются путем митоза.

6. В генах имеются некодирующие вставки - интроны.

7. ДНК образует комплекс с гистонами, по структуре напоминающий нитку жемчуга (цепь из нуклеосом).

8. Жизненный цикл включает мейоз, при котором из диплоидных клеток образуются гаплоидные. Это позволяет осуществить половой процесс с перекомбинированием генов и смену гаплофазы и диплофазы.

9. Экзоцитоз: внеклеточные ферменты синтезируются не прямо на плазматической мембране (с одновременным выведением их из клетки), а на внутренних мембранах, после чего в цистернах доставляются на поверхность.

10. Эндоцитоз (в форме фагоцитоза и пиноцитоза), позволяющий приобретать внутриклеточных симбионтов.

11. Наличие митохондрий и хлоропластов, которые служат для получения энергии (ресинтеза АТР).

12. Жгутики (или реснички) типа 9 + 2.

Итак, эуцит отличается от протоцита многими функциями и структурами. Хотя и известны отдельные эукариоты, у которых тот или иной признак отсутствует, нет таких примитивных форм, по которым можно было бы определить, в какой последовательности появлялись новые признаки. По-видимому, каждый этап эволюции приносил с собой лишь очень небольшое селективное преимущество, по крайней мере по сравнению с ближайшей предшествующей ступенью. Таким образом, проме­жуточные формы не сохранялись и, вероятно, были такими нестойкими, что сейчас нет даже ископаемых остатков, которые позволяли бы судить об их функциональных особенностях. В настоящее время имеется лишь небольшое число организмов, которые можно считать развившимися из промежуточных форм. Возможность когда-либо установить последовательность появления перечисленных выше новых признаков следует оценить пессимистически. Но все же можно предположить, что на ранних этапах эволюции эукариотической клетки возникали различные модели ее организации, прежде чем появились многоклеточные организмы.

Если прокариоты в течение миллиардов лет развивались сами по себе, то эукариоты никогда не оставались одни. Им приходилось все время противостоять прокариотам. Они предоставляли последним новые экологические ниши, защиту и были их жертвами. Многоклеточные организмы своими высокоразвитыми защитными и иными приспособлениями отчасти обязаны агрессивности прокариот. С другой стороны, эукариоты научились извлекать пользу из тесной ассоциации с прокариотами и поставили их себе на службу в качестве эктосимбионтов (в кишечном тракте, на коже, у жвачных в рубце) и эндосимбионтов (для фиксации азота, продукции биомассы путем фотосинтеза, использова ния H2S, удаления Н2).

Эволюция живых организмов предлагает для решения массу увлекательных проблем. Их исследование только начинается.

Читайте также: