Дайте определение вакуума в физике кратко

Обновлено: 30.06.2024

В большинстве случаев вакуум — это емкость, из которой максимально удалены все газы, в том числе воздух. Космическое пространство, действительно, наиболее близко к идеальному вакууму: астрономы считают, что пространство между звездами в некоторых случаях состоит не более чем из одного атома или молекулы на кубический километр .

Ни один вакуум, производимый на Земле, даже близко не подходит к этому условию

Соотношение между давлением (p), силой (F) и площадью (A) определяется следующим уравнением: p = F / A — оно применимо независимо от того, низкое ли давление, как, например, в космосе, или же очень высокое, как в гидравлических системах .

В целом, несмотря на то что определение вакуума неточно, обычно под ним понимается давление ниже, а часто и значительно ниже атмосферного. Вакуум образуется при удалении воздуха из замкнутого пространства, в результате которого возникает перепад давления между этим пространством и окружающей его атмосферой. Если пространство ограничено подвижной поверхностью, атмосферное давление будет сжимать ее стенки вместе — величина удерживающей силы зависит от площади поверхности и уровня вакуума . По мере удаления все большего количества воздуха перепад давления увеличивается, и потенциальная сила вакуума также становится больше.

Поскольку удалить все молекулы воздуха из контейнера практически невозможно, невозможно добиться и идеального вакуума

В промышленных и домашних масштабах (например, если вы решили убрать в вакуумные пакеты зимний пуховик) эффект достигается за счет вакуумных насосов или генераторов разных размеров, которые и удаляют воздух. Насос, состоящий из поршня в цилиндре, прикреплен к закрытой емкости, и с каждым ходом насоса часть газа из баллона удаляется. Чем дольше работает насос, тем лучше создается разрежение в емкости.



Каждый, кто когда-либо откачивал воздух из пакета для хранения одежды, отжимал крышку пластикового контейнера, чтобы выпустить воздух из емкости, или ставил банки (а также ходил на вакуумный массаж), сталкивался в своей жизни с вакуумом. Но, конечно, самый распространенный пример его использования — это обычный бытовой пылесос . Вентилятор пылесоса постоянно удаляет воздух из канистры, создавая частичный вакуум, а атмосферное давление снаружи пылесоса выталкивает воздух в канистру, забирая с собой пыль и грязь, взбалтываемые щеткой в ​​передней части пылесоса.

Еще один пример — это термос . Термос состоит из двух бутылок, вложенных друг в друга, и пространство между ними представляет собой вакуум. В отсутствие воздуха тепло не проходит между двумя бутылками так легко, как это было бы в нормальном состоянии. В результате горячие жидкости внутри контейнера сохраняют тепло, а холодные жидкости остаются холодными, потому что тепло не может в них проникнуть.


Итак, уровень вакуума определяется перепадом давления между внутренним пространством и окружающей атмосферой . Двумя основными ориентирами во всех этих измерениях являются стандартное атмосферное давление и идеальный вакуум. Для измерения вакуума можно использовать несколько единиц, но общепринятая метрическая единица — миллибар , или мбар . В свою очередь, атмосферное давление измеряется барометром , который в простейшем варианте состоит из откачанной вертикальной трубки с закрытым верхним концом и нижним концом, находящимся в контейнере со ртутью, открытом для атмосферы.


Уровень вакуума можно измерить несколькими типами манометров:

Манометр с трубкой Бурдона является компактным и наиболее широко используемым устройством — измерение основано на деформации изогнутой эластичной трубки при приложении вакуума к отверстию манометра.

Электронным аналогом является вакуумный датчик . Вакуум или давление отклоняют эластичную металлическую диафрагму в датчике, и это отклонение изменяет электрические характеристики взаимосвязанной схемы — в итоге мы получаем электронный сигнал, который представляет уровень вакуума.

Манометр с трубкой показывает разницу между двумя давлениями. В простейшем виде этот манометр представляет собой прозрачную U-образную трубку, наполовину заполненную ртутью. Когда оба конца трубки находятся под атмосферным давлением, уровень ртути в каждом колене одинаков. Приложение вакуума к одной стороне заставляет ртуть в ней подниматься и опускаться с другой стороны — разница в высоте между двумя уровнями и показывает уровень вакуума.

На шкалах большинства манометров ❓ Приборы для измерения давления газа и жидкостей в замкнутом пространстве. атмосферному давлению присвоено нулевое значение, следовательно, измерения вакуума всегда должны быть меньше нуля .

Вакуум понятие относительное. Учеными доказано, что абсолютного вакуума не существует. Есть несколько понятий вакуума и его интерпретаций.

Что такое вакуум

Из-за малого количество молекул, их внутренняя энергия или импульсы стремятся к нулю. Поэтому считается, что в вакууме практически отсутствуют различные процессы, такие как электрический ток, трение и прочее.

В физике ва́куум – это пространство с газом, давление которого ниже атмосферного давления. Другими словами, это разряжение.

Качество вакуума или его глубина измеряется давлением. А точнее, отношением длины свободного пробега частицы к линейным размерам емкости, в которой он создан. С увеличением степени разряжения уменьшается число столкновений молекул в пространстве. Длина свободного пробега частиц увеличивается и зависит только от размеров сосуда, со стенками которого они сталкиваются. Следовательно, вакуумом можно назвать состояние, когда частицы газа, находясь в определенном объеме, не соприкасаются друг с другом.

Основная единица измерения вакуумного давления – Па. Но паскаль достаточно большая величина для измерения разряжения, поэтому в физике часто используются другие величины, такие как бар, мм.рт.ст., торр, физическая атмосфера.

Важнейшими приборами в электронике первой половины XX в. были электронные лампы, в которых использовался электри­ческий ток в вакууме. Однако им на смену пришли полупроводниковые приборы. Но и сегодня ток в вакууме используется в электронно-лучевых трубках, при вакуумном плав­лении и сварке, в том числе в космосе, и во многих других установках. Это и опре­деляет важность изучения электрического тока в вакууме.

Когда речь идет о вакууме, то почему-то считают, что это совсем пустое пространст­во. На самом же деле это не так. Если из какого-нибудь сосуда откачивать воздух (рис. 7.5), то количество молекул в нем с течением времени будет уменьшаться, хотя из сосуда все молекулы удалить невозможно. Так когда же можно считать, что в сосуде создан вакуум?

Молекулы воздуха, двигаясь хаотически, часто сталкиваются между собой и со стен­ками сосуда. Между такими столкновениями молекулы пролетают определенные расстоя­ния, которые называются длиной свобод­ного пробега молекул. Понятно, что при откачивании воздуха концентрация молекул (их количество в единице объема) умень­шается, а длина свободного пробега — уве­личивается. И вот наступает момент, когда длина свободного пробега становится рав­ной размерам сосуда: молекула движется от стенки к стенке сосуда, практически не встре­чаясь с другими молекулами. Вот тогда-то и считают, что в сосуде создан вакуум, хотя в нем еще может быть много молекул. По­нятно, что в меньших по размерам сосудах вакуум создается при больших давлениях газа в них, чем в больших сосудах.

Если продолжать откачивание воздуха из сосуда, то говорят, что в нем создается более глубокий вакуум. При глубоком ва­кууме молекула может много раз пролететь от стенки к стенке, прежде чем встретится с другой молекулой.

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.
Попытаемся разобраться, что же это такое.

Рассмотрим на примере, что такое вакуум и как его измеряют.
На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.
Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Вакуум в картинках

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.
"Теоретически" - т.к. выловить все молекулы воздуха из сосуда практически невозможно.
По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют "остаточным давлением", то есть давление, которое осталось в сосуде после откачки из него газов.
Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.
В обычной жизни редко когда требуется вакуум глубже 0,5 - 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:
1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.
То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).
2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.
То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).
Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Вакууметры с разными шкалами

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.
И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что "вы сами ничего не знаете", "а у соседа так" и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).
Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Вакуумметры с разными шкалами

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО "Насосы Ампика", у нас в офисе:
включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.
После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Как посчитать силу прижима какой-либо детали к поверхности?
Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.
Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.
Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.
1 атмосфера равна 1 кг/см2.
Площадь поверхности детали – 100 см2 (10см х10 см).
То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.
Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.
Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.
Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.
Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?
Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.
Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.
Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?
В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.
Ниже приведена формула для вычисления этого параметра.

t = (V/S)*ln(p1/p2)*F , где

t - время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2
V - объем откачиваемой емкости, м3
S - быстрота действия вакуумного насоса, м3/час
p1 - начальное давление в откачиваемой емкости, мбар
p2 - конечное давление в откачиваемой емкости, мбар
ln - натуральный логарифм

F - поправочный коэффициент, зависит от конечного давления в емкости p2:
- p2 от 1000 до 250 мбар F=1
- p2 от 250 до 100 мбар F=1,5
- p2 от 100 до 50 мбар F=1,75
- p2 от 50 до 20 мбар F=2
- p2 от 20 до 5 мбар F=2,5
- p2 от 5 до 1 мбар F=3

В двух словах, это всё.
Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива.

Читайте также: