Аффинная система координат кратко

Обновлено: 05.07.2024

прямолинейная система координат в аффинном пространстве. А. с. к. на плоскости задается упорядоченной парой неколлинеарных векторов и (аффинный базис) и точкой О (начало координат). Прямые, проходящие через точку Опараллельно векторам базиса, наз. осями координат. Векторы и задают на осях координат положительное направление.Ось, параллельная вектору , наз. осью абсцисс, а параллельная вектору , - осью ординат. Аффинными координатами точки Мназ. упорядоченная пара чисел , к-рые являются коэффициентами разложения вектора ОМ по векторам базиса:

Первое из этих чисел хназ. абсциссой, а второе у - ординатой точки М.

А. с. к. в трехмерном пространстве задается упорядоченной тройкой линейно независимых векторов е 3 и нек-рой точкой О. Аналогично случаю плоскости определяются оси координат: ось абсцисс, ось ординат, ось аппликат, и координаты точки: абсцисса, ордината и аппликата. Плоскости, проходящие через пары осей координат, наз. координатными плоскостям и. А. С. Пархоменко.

В случае прямой базис состоит из одного ненулевого вектора V = (V) и система координат (О, V) изображена на рис. 4.1. В системе координат на прямой каждая точка A прямой имеет одну координату A(X), определяему разложением вектора По базису, = XV. Тогда A(0), E(1), где V = .


Систему координат на прямой можно задать еще следующими способами:



Двумя различными точками О и E данной прямой. Тогда одну из точек, например О, берем в качестве начала системы координат, а в качестве базисного вектора возьмем вектор V = (см. рис. 4.2).

Точкой О, единичным отрезком ОE и положительным направлением данной прямой, которое отмечается стрелкой.

2Аффинная система координат на плоскости. В случае плоскости базис состоит из двух неколлинеарных векторов плоскости, V = (V1, V2), и система координат (О, V1, V2) изображена на рис. 4.3. В системе координат на плоскости каждая точка A плоскости имеет две координаты A(X, Y), определяемые разложением вектора По базису, = XV1+ YV2. Тогда A(0, 0), E1(1, 0), E2(0, 1), где V1 = , V2 = . Координаты точки называются соответственно Абсциссой и Ординатой.

Систему координат на плоскости можно задать еще следующими способами:

Тремя точками О, E1, E2 плоскости, не лежащими на одной прямой. Тогда одну из точек, например О, берем в качестве начала системы координат, а в качестве базисного вектора возьмем векторы V1 = , V2 = .

Двумя пересекающимися числовыми осями ОX, ОY данной плоскости с общим началом О. Ось ОX называется Осью абсцисс, ось ОY - Осью ординат.

Аффинная система координат (О, V1, V2) называется Правой (Левой), если поворот от вектора к вектору по кратчайшему направлению совершается против часовой стрелки (по часовой стрелке). На рис. 4.3 и 4.4 представлены правые системы координат.

3. Аффинная система координат в пространстве. В случае пространства базис состоит из двух некомпланарных векторов пространства, V = (V1,V2, V3), и система координат (О, V1, V2, V3) изображена на рис. 4.5. В этой системе координат каждая точка A пространства имеет три координаты A(X,Y,Z), определяемые разложением вектора по базису, = XV1+ YV2 + ZV3. Тогда A(0, 0, 0), E1(1, 0, 0), E2(0, 1, 0), E3(0, 0, 1), где V1 = , V2 = , V3 = . Координаты точки называются соответственно Абсциссой, ординатой и Аппликатой.


Истему координат в пространстве можно задать еще следующими способами:

Четверкой точек О, E1, E2, E3 пространства, не лежащими на одной плоскости. Тогда одну из точек, например О, берем в качестве начала системы координат, а в качестве базисного вектора возьмем векторы V1 = , V2 = , V3 = .

Тремя числовыми осями ОX, ОY, ОZ, не лежащими в одной плоскости с общим началом О. Ось ОX называется Осью абсцисс, ось ОY - Осью ординат, ось ОZ - Осью аппликат.

Аффинная система координат (О, V1, V2, V3) называется Правой (Левой), если тройка векторов V1, V2, V3 правая (левая) На рис. 4.5 и 4.6 представлены правые системы координат, а на рис. 4.7 левая система координат.


О п р е д е л е н и е. Аффинной системой координат в пространстве (аффинным репером) называется точка и три некомпланарных вектора: .

Прямые , , , определяемые точкой и векторами называются соответственно осью абсцисс, осью ординат и осью аппликат.

Частным случаем аффинной системы координат является прямоугольная система координат , определяемая точкой и ортогональными ортами .

О п р е д е л е н и е. Вектор называется радиус-вектором точки .

О п р е д е л е н и е. Координатами точки называются координаты её радиус-вектора:


.

У п р а ж н е н и е. Построить точку по координатам в заданном аффинном репере в пространстве.

Аналогично тому, как это делалось на плоскости, с помощью координат решаются простейшие задачи


  1. Определение координат вектора по координатам начала и конца в аффинной системе координат.
  2. Определение координат точки по заданному простому отношению трех точек прямой и координатам двух из них в аффинной системе координат.
  3. Вычисление расстояния между точками по координатам относительно прямоугольной системы координат .

Задавая в пространстве аффинную систему координат, мы устанавливаем взаимно однозначное соответствие между точками и упорядоченными тройками действительных чисел. Это позволяет находить условие, определяющее геометрическую фигуру.

Под условием, определяющим геометрическую фигуру, понимаем упорядоченные тройки действительных чисел, уравнения, неравенства или их системы, которым удовлетворяют координаты любой точки, принадлежащей фигуре, и не удовлетворяют координаты точек, не принадлежащих фигуре.

Тогда геометрическую задачу можно перевести на язык алгебры, решить методами алгебры и полученный результат интерпретировать геометрически.

Уравнение плоскости

Через данную точку проходит единственная плоскость , параллельная двум данным неколлинеарным векторам и .

Пусть в пространстве задан аффинный репер и , . Точка принадлежит плоскости тогда и только тогда, когда векторы компланарны, то есть вектор можно выразить через векторы и :


.


Переходя к координатам, найдем уравнения, которым должны удовлетворять координаты точки, принадлежащей плоскости:


– параметрические уравнения плоскости.


Условием компланарности векторов является равенство нулю определителя, составленного из координат этих векторов:


– общее уравнение плоскости.

Общее уравнение плоскости приводится к виду

, где .

Пусть плоскость пересекает все три оси координат в точках . Имеем два неколлинеарных вектора и , параллельных плоскости . Тогда получаем уравнение плоскости

или – уравнение плоскости в отрезках.

Через данную точку проходит единственная плоскость , перпендикулярная данному ненулевому вектору . Вектор , как и любой другой ненулевой вектор, перпендикулярный плоскости , называется нормальным вектором плоскости.

Точка принадлежит плоскости тогда и только тогда, когда векторы и ортогональны, то есть их скалярное произведение равно нулю. Чтобы выразить условие ортогональности векторов через координаты, необходим ортонормированный базис, а значит, в пространстве должна быть задана прямоугольная система координат . Пусть , . Выразив условие ортогональности векторов и через координаты, получим уравнение плоскости : .

1. Чтобы составить уравнение плоскости, надо знать точку и два неколлинеарных вектора, параллельных этой плоскости, либо точку и нормальный вектор.

2. Уравнение плоскости приводится к виду

, где ,

то есть плоскость является алгебраической поверхностью первого порядка.

Т е о р е м а. Любая алгебраическая поверхность первого порядка является плоскостью.

Д о к а з а т е л ь с т в о. Для алгебраической поверхности первого порядка существует аффинная система координат, относительно которой поверхность задается уравнением , где .

Пусть . Приведя уравнение поверхности к виду , получим равносильное уравнение


.

Это есть уравнение плоскости, проходящей через точку параллельно векторам и .


О п р е д е л е н и е. Аффинной системой координат в пространстве (аффинным репером) называется точка и три некомпланарных вектора: .

Прямые , , , определяемые точкой и векторами называются соответственно осью абсцисс, осью ординат и осью аппликат.




Частным случаем аффинной системы координат является прямоугольная система координат , определяемая точкой и ортогональными ортами .

О п р е д е л е н и е. Вектор называется радиус-вектором точки .

О п р е д е л е н и е. Координатами точки называются координаты её радиус-вектора:


.

У п р а ж н е н и е. Построить точку по координатам в заданном аффинном репере в пространстве.

Аналогично тому, как это делалось на плоскости, с помощью координат решаются простейшие задачи


  1. Определение координат вектора по координатам начала и конца в аффинной системе координат.
  2. Определение координат точки по заданному простому отношению трех точек прямой и координатам двух из них в аффинной системе координат.
  3. Вычисление расстояния между точками по координатам относительно прямоугольной системы координат .

Задавая в пространстве аффинную систему координат, мы устанавливаем взаимно однозначное соответствие между точками и упорядоченными тройками действительных чисел. Это позволяет находить условие, определяющее геометрическую фигуру.

Под условием, определяющим геометрическую фигуру, понимаем упорядоченные тройки действительных чисел, уравнения, неравенства или их системы, которым удовлетворяют координаты любой точки, принадлежащей фигуре, и не удовлетворяют координаты точек, не принадлежащих фигуре.

Тогда геометрическую задачу можно перевести на язык алгебры, решить методами алгебры и полученный результат интерпретировать геометрически.

Уравнение плоскости

Через данную точку проходит единственная плоскость , параллельная двум данным неколлинеарным векторам и .

Пусть в пространстве задан аффинный репер и , . Точка принадлежит плоскости тогда и только тогда, когда векторы компланарны, то есть вектор можно выразить через векторы и :


.


Переходя к координатам, найдем уравнения, которым должны удовлетворять координаты точки, принадлежащей плоскости:


– параметрические уравнения плоскости.


Условием компланарности векторов является равенство нулю определителя, составленного из координат этих векторов:


– общее уравнение плоскости.

Общее уравнение плоскости приводится к виду

, где .

Пусть плоскость пересекает все три оси координат в точках . Имеем два неколлинеарных вектора и , параллельных плоскости . Тогда получаем уравнение плоскости

или – уравнение плоскости в отрезках.

Через данную точку проходит единственная плоскость , перпендикулярная данному ненулевому вектору . Вектор , как и любой другой ненулевой вектор, перпендикулярный плоскости , называется нормальным вектором плоскости.

Точка принадлежит плоскости тогда и только тогда, когда векторы и ортогональны, то есть их скалярное произведение равно нулю. Чтобы выразить условие ортогональности векторов через координаты, необходим ортонормированный базис, а значит, в пространстве должна быть задана прямоугольная система координат . Пусть , . Выразив условие ортогональности векторов и через координаты, получим уравнение плоскости : .

1. Чтобы составить уравнение плоскости, надо знать точку и два неколлинеарных вектора, параллельных этой плоскости, либо точку и нормальный вектор.

2. Уравнение плоскости приводится к виду

, где ,

то есть плоскость является алгебраической поверхностью первого порядка.

Т е о р е м а. Любая алгебраическая поверхность первого порядка является плоскостью.

Д о к а з а т е л ь с т в о. Для алгебраической поверхности первого порядка существует аффинная система координат, относительно которой поверхность задается уравнением , где .

Пусть . Приведя уравнение поверхности к виду , получим равносильное уравнение


.

Это есть уравнение плоскости, проходящей через точку параллельно векторам и .

Аффинная система координат (косоугольная система координат) — прямолинейная система координат в аффинном пространстве.

В -мерном пространстве она задаётся упорядоченной системой линейно независимых векторов _1,\;\ldots,\;\vec_n" width="" height="" />
, выходящих из одной точки . Аффинными координатами точки называют такие числа , что

\vec<OM></p>
<p>=x_1\vec_1+\ldots+x_n\vec_n.

Tочку и систему векторов _1,\;\ldots,\;\vec_n" width="" height="" />
называют репером или аффинным базисом; прямые, проходящие через вектора _1,\;\ldots,\;\vec_n" width="" height="" />
— координатными осями.

На аффинной плоскости координату называют абсциссой, а — ординатой точки . В пространстве же координаты точки называют её абсциссой, ординатой и аппликатой. Аналогичным образом именуют и координатные оси.

  • Системы координат
  • Аффинная геометрия
  • Линейная алгебра

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Аффинная система координат" в других словарях:

АФФИННАЯ СИСТЕМА КООРДИНАТ — прямолинейная система координат в аффинном пространстве. А. с. к. на плоскости задается упорядоченной парой неколлинеарных векторов и (аффинный базис) и точкой О (начало координат). Прямые, проходящие через точку Опараллельно векторам базиса, наз … Математическая энциклопедия

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В… … Википедия

Косоугольная система координат — Точка М на аффинной плоскости. Аффинная система координат[1] прямолинейная система координат в аффинном пространстве. В n мерном пространстве задаётся упорядоченной системой линейно независимых векторов , выходящих из одной точки O. Аффинными… … Википедия

ОБЪЕМ — трехмерного тела числовая характеристика тела, равная в простейшем случае, когда тело можно разбить на конечное множество единичных кубов (т. е. кубов с ребрами длины единица), числу этих кубов. О. трехмерных тел (т. е. множеств трехмерного… … Математическая энциклопедия

Вектор (математика) — Вектор У этого термина существуют и другие значения, см. Вектор … Википедия

ЭЛЛИПТИЧЕСКАЯ КРИВАЯ — неособая полная алгебраическая кривая рода 1. Теория Э. к. является истоком большей части современной алгебраич. геометрии. Но исторически теория Э. к. возникла как часть анализа, как теория эллиптических интегралов и эллиптических функций.… … Математическая энциклопедия

АФФИННЫЙ РЕПЕР — совокупность плинейно независимых векторов n мерного аф финного пространства и точки О. Точка Оназ. начальной точкой, а векторы масштабными векторами. По отношению к А. р. каждая точка Мопределяется пчислами координатами , входящими в разложение… … Математическая энциклопедия

Аффинное подпространство — ― подмножество векторного пространства , являющееся сдвигом какого либо его линейного подпространства , то есть множество вида при некотором . Множество определяет … Википедия

Цилиндрические параболические координаты — Координатные поверхности в координатах параболического цилиндра. Цилиндрические параболические координаты (координаты параболи … Википедия

Читайте также: