Аэрофотосъемка это кратко определение

Обновлено: 04.07.2024

Аэрофотосъемка – комплекс летно-съемочных, фотографических и фотограмметрических работ, в результате которых получают аэронегативы и АС местности, а также другие вспомогательные материалы.

АФС подразделяется на:

Одинарная АФС применяется для фотографирования отдельных объектов или явлений природы, когда они засняты на одном или нескольких АС и не планируются дальнейшие стереоскопические работы.

Маршрутная АФС – фотографирование ведется вдоль какого-то направления. АС перекрывают друг друга на 60% по маршруту (продольное перекрытие). Получают непрерывный и последовательный ряд снимков.

Применяется чаще всего крупномасштабная съемка для изучения речных долин (комплекса террас), морских побережий, водоразделов, а также при инженерно-геологических и поисково-разведочных работах.

Площадная АФС – используется для изучения участков, площадь которых больше площади, фотографируемой одним маршрутом. Выполняется в виде ряда параллельных между собой маршрутов. Перекрытие снимков между маршрутами около 30 %, что необходимо для связи соседних маршрутов.

Аэрофотосъемочные работы, выполняемые для решения геологических задач, делятся на перспективную и плановую съемку.

Перспективная АФС производится АФА, оптическая ось которого отклонена от нормали на значительный угол, обычно 30-60%.

Преимущества этого вида съемки в том, что получаемое изображение местности более естественно и легче для восприятия. Кроме того, одним снимком охватывается большая площадь по сравнению со снимком плановым.

Применяется одновременно с плановыми АС при изучении горных районов со сложными формами рельефа, особенно при построении блок-диаграмм, а также в военной разведке.

Плановая АФС выполняется с помощью АФА, установленного в самолете так, чтобы его оптическая ось занимала отвесное положение при съемке. Величина отклонения оптической оси от нормали не более 3 0 , обычно не более 1,5 0 . Если аппарат установлен на гиростабилизированную платформу, то величина отклонения не более 30 ’ . Примерное положение оси определяется по положению пузырька уровня в левом верхнем углу снимка.

АФС, выполняемая с высот до 10 км называется обычной, а с высот более 10 км – высотной. Высотная АФС обеспечивает получение мелкомасштабных АС высокого качества, по генерализации изображения приближающиеся к КС.

Особенно эффективна высотная АФС для горных районов.

Стандартный формат снимков 18 х18 см или 30 х 30 см.

Если применяются аппараты с меньшим форматом кадров, то они называются малоформатными и применяются, обычно, для изучения небольших площадей.

Аэрофотоаппарат состоит из камеры, кассет и, нескольких сменных объективов. Наиболее важной частью является объектив. Он формирует изображение в плоскости прикладной рамки, которая находится в камере и служит выравнивающим устройством для получения неискаженного снимка. Основной характеристикой объектива является его фокусное расстояние. Последнее тесно связано с углом поля изоображения. Этот угол ограничен лучами, идущими из центра объектива к противоположным углам кадра. Назовем его 2β.

В зависимости от величины угла 2β различают объективы:

1. Сверхширокоугольные: 2β≥130 0 ;

2. Широкоугольные - 70 0 0 ;

3. Нормальные (среднефокусные):

4. Узкоугольные (длиннофокусные) 2β 0 .

Величиной 2β определяется ширина полосы захвата местности при фотографировании.

Разрешающая способность объектива уменьшается от центра к краям снимка и различна для разных объективов, что отражено в таблице.

Характеристика аэрофотоаппратов, наиболее часто применяемых:

Показатель Категории
Узкоугольные длиннофокусные Норма-льноу-гольные Широкоугольные короткофокусные Сверх-широкоугольные
ТЭ-500 ТЭ-200 ТЭ-140 ТЭ-55
Фокусное расстояние, мм
Угол поля изо-бражения,градус
Разрешающая способность, лин/мм
В центре
на краю

Из экономических соображений лучше широкофокусные, но при этом ухудшается качество.




Светофильтры – несколько сменных к одному объективу: ЖС-18, ОС-14, КС-14 – отсекают коротковолновую радиацию соответственно до 510, 530 и 640 нм. Эта отсечка позволяет ослабить действие атмосферной дымки, снижающей контрастность изображения. Использование того или иного светофильтра зависит от плотности дымки и высоты съемки.

При средней дымке и высоте 2-4 км используют ЖС-18.

При больших высотах –ОС-14.

При особо плотной дымке –КС-14.

Кассета –для хранения и транспортировании пленки. Вмещает до 30 м или 60 м.

АФ-пленка – по своим свойствам отличается от фото- и конопленки – ее разрешающая способность значительно выше.

Основные характеристики пленок оцениваются по действию света на нее:

1. Общая светочувствительность;

3. Фотографическая широта

Различают три группы фотопленок:

3. Спектрозональные с искаженной цветопередачей.

По характеру спектральной чувствительности черно-белые пленки делятся на:

1. Изопанхроматические – максимальная чувствительность в области 640 нм;

2. Изохроматические – максимальная чувствительность в области 570-580 нм;

3. Инфрахроматические – 440-450 нм и 740-840 нм (2 максимума).

Цветные фотопленки имеют три слоя, содержащие изображения желтого, пурпурного и голубого цветов.

Спектральные зоны эффективной светочувствительности для пленки ЦН-3:

400-480 нм; 500-580 и 600-680 нм.

После обработки в слоях пленки возникают зональные изображения из различных красителей. При прохождении света через пленку, зональные изображения суммируются и образуется негативное изображение объекта съемки в дополнительных цветах, которые при последующей обработке позитивной печати дают снимок в цветах, близких к натуральным.

Спектрозональные фотопленки характеризуются наличием 2-х слоев. При AФC эти пленки экспонируются желтым или оранжевым фильтром, что устраняет чувствительность каждого слоя в области синих лучей. Одновременно устраняется влияние атмосферной дымки.

Разрешающая способность системы (объектив+светофильтр+пленка) это способность передавать раздельно мелкие детали изображения. Характеризуется числом раздельно передаваемых пар линий на 1мм изображения.

Аэрофотосъемка – комплекс летно-съемочных, фотографических и фотограмметрических работ, в результате которых получают аэронегативы и АС местности, а также другие вспомогательные материалы.

АФС подразделяется на:

Одинарная АФС применяется для фотографирования отдельных объектов или явлений природы, когда они засняты на одном или нескольких АС и не планируются дальнейшие стереоскопические работы.

Маршрутная АФС – фотографирование ведется вдоль какого-то направления. АС перекрывают друг друга на 60% по маршруту (продольное перекрытие). Получают непрерывный и последовательный ряд снимков.

Применяется чаще всего крупномасштабная съемка для изучения речных долин (комплекса террас), морских побережий, водоразделов, а также при инженерно-геологических и поисково-разведочных работах.

Площадная АФС – используется для изучения участков, площадь которых больше площади, фотографируемой одним маршрутом. Выполняется в виде ряда параллельных между собой маршрутов. Перекрытие снимков между маршрутами около 30 %, что необходимо для связи соседних маршрутов.

Аэрофотосъемочные работы, выполняемые для решения геологических задач, делятся на перспективную и плановую съемку.

Перспективная АФС производится АФА, оптическая ось которого отклонена от нормали на значительный угол, обычно 30-60%.

Преимущества этого вида съемки в том, что получаемое изображение местности более естественно и легче для восприятия. Кроме того, одним снимком охватывается большая площадь по сравнению со снимком плановым.

Применяется одновременно с плановыми АС при изучении горных районов со сложными формами рельефа, особенно при построении блок-диаграмм, а также в военной разведке.

Плановая АФС выполняется с помощью АФА, установленного в самолете так, чтобы его оптическая ось занимала отвесное положение при съемке. Величина отклонения оптической оси от нормали не более 3 0 , обычно не более 1,5 0 . Если аппарат установлен на гиростабилизированную платформу, то величина отклонения не более 30 ’ . Примерное положение оси определяется по положению пузырька уровня в левом верхнем углу снимка.

АФС, выполняемая с высот до 10 км называется обычной, а с высот более 10 км – высотной. Высотная АФС обеспечивает получение мелкомасштабных АС высокого качества, по генерализации изображения приближающиеся к КС.

Особенно эффективна высотная АФС для горных районов.

Стандартный формат снимков 18 х18 см или 30 х 30 см.

Если применяются аппараты с меньшим форматом кадров, то они называются малоформатными и применяются, обычно, для изучения небольших площадей.

Аэрофотоаппарат состоит из камеры, кассет и, нескольких сменных объективов. Наиболее важной частью является объектив. Он формирует изображение в плоскости прикладной рамки, которая находится в камере и служит выравнивающим устройством для получения неискаженного снимка. Основной характеристикой объектива является его фокусное расстояние. Последнее тесно связано с углом поля изоображения. Этот угол ограничен лучами, идущими из центра объектива к противоположным углам кадра. Назовем его 2β.

В зависимости от величины угла 2β различают объективы:

1. Сверхширокоугольные: 2β≥130 0 ;

2. Широкоугольные - 70 0 0 ;

3. Нормальные (среднефокусные):

4. Узкоугольные (длиннофокусные) 2β 0 .

Величиной 2β определяется ширина полосы захвата местности при фотографировании.

Разрешающая способность объектива уменьшается от центра к краям снимка и различна для разных объективов, что отражено в таблице.

Характеристика аэрофотоаппратов, наиболее часто применяемых:

Показатель Категории
Узкоугольные длиннофокусные Норма-льноу-гольные Широкоугольные короткофокусные Сверх-широкоугольные
ТЭ-500 ТЭ-200 ТЭ-140 ТЭ-55
Фокусное расстояние, мм
Угол поля изо-бражения,градус
Разрешающая способность, лин/мм
В центре
на краю

Из экономических соображений лучше широкофокусные, но при этом ухудшается качество.

Светофильтры – несколько сменных к одному объективу: ЖС-18, ОС-14, КС-14 – отсекают коротковолновую радиацию соответственно до 510, 530 и 640 нм. Эта отсечка позволяет ослабить действие атмосферной дымки, снижающей контрастность изображения. Использование того или иного светофильтра зависит от плотности дымки и высоты съемки.

При средней дымке и высоте 2-4 км используют ЖС-18.

При больших высотах –ОС-14.

При особо плотной дымке –КС-14.

Кассета –для хранения и транспортировании пленки. Вмещает до 30 м или 60 м.

АФ-пленка – по своим свойствам отличается от фото- и конопленки – ее разрешающая способность значительно выше.

Основные характеристики пленок оцениваются по действию света на нее:

1. Общая светочувствительность;

3. Фотографическая широта

Различают три группы фотопленок:

3. Спектрозональные с искаженной цветопередачей.

По характеру спектральной чувствительности черно-белые пленки делятся на:

1. Изопанхроматические – максимальная чувствительность в области 640 нм;

2. Изохроматические – максимальная чувствительность в области 570-580 нм;

3. Инфрахроматические – 440-450 нм и 740-840 нм (2 максимума).

Цветные фотопленки имеют три слоя, содержащие изображения желтого, пурпурного и голубого цветов.

Спектральные зоны эффективной светочувствительности для пленки ЦН-3:

400-480 нм; 500-580 и 600-680 нм.

После обработки в слоях пленки возникают зональные изображения из различных красителей. При прохождении света через пленку, зональные изображения суммируются и образуется негативное изображение объекта съемки в дополнительных цветах, которые при последующей обработке позитивной печати дают снимок в цветах, близких к натуральным.

Спектрозональные фотопленки характеризуются наличием 2-х слоев. При AФC эти пленки экспонируются желтым или оранжевым фильтром, что устраняет чувствительность каждого слоя в области синих лучей. Одновременно устраняется влияние атмосферной дымки.

Разрешающая способность системы (объектив+светофильтр+пленка) это способность передавать раздельно мелкие детали изображения. Характеризуется числом раздельно передаваемых пар линий на 1мм изображения.

  • А̀эрофо̀тосъёмка — фотографирование территории с определённой высоты от поверхности Земли при помощи аэрофотоаппарата, установленного на атмосферном летательном аппарате (самолёте, вертолёте, дирижабле и пр. или их беспилотном аналоге) с целью получения, изучения и представления объективных пространственных данных на участках произведенной съемки.

Связанные понятия

Фотограмме́трия (от фото…, др.-греч. γράμμα — запись, изображение и … метрия) — научно-техническая дисциплина, занимающаяся определением формы, размеров, положения и иных характеристик объектов по их фотоизображениям.

Аэрофотоаппара́т — фотоаппарат специального назначения, предназначенный для аэрофотосъёмки участков земной поверхности с атмосферного летательного аппарата в хозяйственных, научных и военных целях. Состоит из съёмочной камеры, устройства её крепления к носителю (аэрофотоустановки) и командного прибора для автоматического дистанционного управления съёмочным процессом. По назначению аэрофотоаппараты делят на топографические и обзорные, по времени применения — на дневные, ночные и универсальные, по.

Видова́я разве́дка (англ. imagery intelligence, IMINT) — дисциплина сбора разведывательной информации на основе анализа большого количества изображений, полученных фотографической, оптико-электронной или радиолокационной аппаратурой. Основными методами видовой разведки являются аэросъёмка и космическая съёмка.

Радиолока́ция — область науки и техники, объединяющая методы и средства локации (обнаружения и измерения координат) и определения свойств различных объектов с помощью радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации — радиолокационная станция (РЛС, англ. radar).

Фототелевизионное устройство — разновидность телевидения с медленной развёрткой, использующая фотоматериал в качестве промежуточного носителя неподвижного изображения высокого разрешения. Наиболее широко использовались для автоматической съёмки и передачи изображения из недоступных мест или с большого расстояния, например, земной поверхности с околоземной орбиты, или поверхности других планет с борта автоматических межпланетных станций. Высокая разрешающая способность изображений, получаемых таким.

Упоминания в литературе

АЭРОФОТОСЪЁМКА , фотографирование с самолёта, вертолёта или ракеты земной поверхности и находящихся на ней объектов. Осуществляется с помощью специальных аэрофотоаппаратов. Такой фотоаппарат принципиально не отличается от обычных фотоаппаратов, но массивнее их и более сложен по конструкции. Для аэрофотоснимков характерна высокая точность изображения, что позволяет лучше рассмотреть и распознать снятые предметы. При аэрофотосъёмке фотоаппарат устанавливают так, чтобы оптическая ось его объектива была направлена вертикально вниз (плановая съёмка) либо под углом 45–50° или 10–15° к горизонту (перспективная и панорамная съёмки). При плановой съёмке местность на снимке изображается в плане и близко к нему, что очень удобно, напр., при составлении топографических карт и планов местности. Перспективное и панорамное фотографирование даёт наглядное представление о рельефе местности, форме и размерах фотографируемых объектов. Такая аэрофотосъёмка применяется, напр., для военной разведки, при поисковых и спасательных работах, прокладке трасс нефте – и газопроводов, строительстве автомобильных и железных дорог.

Помимо вылетов на аэрофотосъемку , МиГ-21Р привлекались для ведения радиотехнической разведки. Она осуществлялась средствами аппаратуры специального подвесного разведконтейнера, фиксировавшей местоположение и характеристики радиоизлучающих средств. Задачей являлось вскрытие состояния ПВО Пакистана в прилегающих к границе районах, откуда могло ожидаться противодействие зенитных средств и истребителей соседей. С января по декабрь 1980 года были выполнены 607 вылетов на радиотехническую разведку, в результате которых были выявлены РЛС в целом ряде районов Пакистана, на его аэродромах и объектах ПВО в Пешаваре, Равалпинди, Читрале, Кохате, Чоквале, Миланвали, Мирамшахе, Дерисмаилхане, Ванна, Танке, Форт-Семдимане, Чамане и Кветте.

При аэрофототопографической съемке снимки местности получают путем ее фотографирования. Называют этот этап летносъемочным процессом или аэрофотосъемкой (АФС), осуществляют – с самолёта или другого летательного аппарата. Цель: получение не только фотоснимков, удовлетворяющих заранее поставленным требованиям, но и показаний специальных приборов, характеризующих их положение в момент экспонирования. В наземной фототопографической съемке фотографируют фототеодолитом, который устанавливается на штативе.

– Дистанционное зондирование. В настоящее время имеются снимки всей поверхности Земли, полученные со спутников дистанционного зондирования (космические снимки) с метровым разрешением. Эти данные могут быть получены не только в области видимого света, но и в других в электромагнитных диапазонах (инфракрасном, радио). Для получения снимков с большим масштабом используются данные аэрофотосъемки .

б) проведения аэрофотосъемки , аэрогеофизических исследований, проводимых с помощью геофизических приборов, установленных на борту самолета.

Связанные понятия (продолжение)

Радиомая́к — передающая радиостанция, излучающая радиосигналы, используемые для определения координат различных объектов (или направления на них), в основном, самолётов и судов либо для определения местонахождения самого радиомаяка. Параметры сигнала радиомаяка зависят от направления излучения: например, его интенсивность (см. Диаграмма направленности) или момент времени пеленгации, в сигналах радиомаяка может содержаться и дополнительная информация.

Радионавига́ция — область науки и техники, охватывающая радиотехнические методы и средства вождения автомобилей, кораблей, летательных и космических аппаратов, а также других движущихся объектов.

Фотопулемёт или фотокинопулемёт — автоматическая фото- или кинокамера, устанавливаемая на боевом самолёте в качестве средства объективного контроля применения вооружения, как правило, стрелково-пушечного. Включение в работу фотокинопулемёта обычно синхронизировано с выключателями стрельбы (гашетками). В более современных летательных аппаратах вместо плёночных фотокинопулемётов применяют видеокамеры с записью видеоинформации на магнитную ленту или цифровые носители. Контроль работы телевизионных прицельных.

Теодоли́т — измерительный прибор для определения горизонтальных и вертикальных углов при топографических съёмках, геодезических и маркшейдерских работах, в строительстве и т. п. Основной рабочей мерой в теодолите являются лимбы с градусными и минутными делениями (горизонтальный и вертикальный). Теодолит может быть использован для измерения расстояний нитяным дальномером и для определения магнитных азимутов с помощью буссоли.

Радиолокационное синтезирование апертуры (РСА) — это способ, который позволяет получать радиолокационные изображения земной поверхности и находящихся на ней объектов независимо от метеорологических условий и уровня естественной освещенности местности с детальностью, сравнимой с аэрофотоснимками.

Космические снимки — собирательное название данных, получаемых посредством космических аппаратов (КА) в различных диапазонах электромагнитного спектра, визуализируемых затем по определённому алгоритму.

Воздушная разведка (авиационная разведка, авиаразведка) — один из видов военной разведки, проводимой с воздуха, с (при помощи) летательных аппаратов.

Радиолокационная станция (РЛС), рада́р (англ. radar от radio detection and ranging — радиообнаружение и измерение дальности) — система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности, скорости и геометрических параметров. Использует метод радиолокации, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин появился в 1941 году как звуковая аббревиатура (англ. RADAR), впоследствии перейдя в разряд самостоятельного слова.

Радиопеленгация — определение направления (пеленга) на источник радиоизлучения. Радиопеленгацию осуществляют при помощи радиопеленгаторов.

Топографи́ческая ка́рта — географическая карта универсального назначения, на которой подробно изображена местность. Топографическая карта содержит сведения об опорных геодезических пунктах, рельефе, гидрографии, растительности, грунтах, хозяйственных и культурных объектах, дорогах, коммуникациях, границах и других объектах местности.

Аэроста́т (от греческого аэр — воздух, стато — стоять) — летательный аппарат легче воздуха, принцип действия которого основан на законе Архимеда.

Стѐреотруба́ — оптический прибор, состоящий из двух перископов, соединённых вместе у окуляров и разведённых в стороны у объективов, для наблюдения удалённых предметов двумя глазами.

Дистанционное зондирование Земли (ДЗЗ) — наблюдение поверхности Земли наземными, авиационными и космическими средствами, оснащёнными различными видами съемочной аппаратуры. Рабочий диапазон длин волн, принимаемых съёмочной аппаратурой, составляет от долей микрометра (видимое оптическое излучение) до метров (радиоволны). Методы зондирования могут быть пассивные, то есть использующие естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной активностью.

Цифрова́я ка́рта (цифрова́я ка́рта ме́стности) — цифровая модель местности, созданная путём цифрования картографических источников, фотограмметрической обработки данных дистанционного зондирования, цифровой регистрации.

Анастигма́т — объектив, в котором исправлены практически все аберрации, в том числе астигматизм и кривизна поля изображения. Анастигматами могут считаться объективы любых конструкций и типов, удовлетворяющие этим условиям. Большинство анастигматов дают хорошее качество изображения по всему полю при больших значениях относительного отверстия, обеспечивая высокую светосилу.

Радиоэлектронная разведка (РЭР) — дисциплина сбора разведывательной информации на основе приёма и анализа электромагнитного излучения (ЭМИ). Радиоэлектронная разведка использует как перехваченные сигналы из каналов связи между людьми и техническими средствами, так и сигналы работающей РЛС, станций РЭБ и тому подобных устройств. Радиоэлектронная разведка ведётся в диапазоне длин волн от единиц микрометров до десятков тысяч километров. По своим особенностям радиоэлектронная разведка относится к техническим.

Фотоаппара́т (фотографи́ческий аппара́т, фотока́мера) — устройство для регистрации неподвижных изображений (получения фотографий). Запись изображения в фотоаппарате осуществляется фотохимическим способом при воздействии света на светочувствительный фотоматериал. Получаемое таким способом скрытое изображение преобразуется в видимое при лабораторной обработке. В цифровом фотоаппарате фотофиксация происходит путём фотоэлектрического преобразования оптического изображения в электрический сигнал, цифровые.

Уголковый отражатель — устройство в виде прямоугольного тетраэдра со взаимно перпендикулярными отражающими плоскостями. Луч, падающий на уголковый отражатель, отражается строго в обратном направлении.

Авиа́ция (фр. aviation, от лат. avis — птица) — термин охватывающий сферу научно-технической деятельности, имеющей своей целью — освоение околоземного воздушного пространства (в пределах земной атмосферы), путём создания, производства и наиболее эффективного практического использования летательных аппаратов всевозможных типов и назначения. Одна из самых молодых и наиболее интенсивно развивающихся областей техники, сосредоточившая в себе многие характерные особенности современного научно-технического.

Радиозонд — устройство для измерения различных параметров атмосферы и передачи их на фиксированные приёмники. Радиозонды работают на выделенных радиочастотах 403 МГц (±3 Мгц), 1680 МГц (± 10 МГц), 1782 (±8 МГц - до 2023 г.).

Радиоуправле́ние — метод дистанционного управления техническими объектами, при котором управляющие воздействия и обратная связь осуществляются через радиоканал с помощью радиоволн.

Телевизио́нная ка́мера, Телевизио́нная передаю́щая ка́мера, Передаю́щая ка́мера, Телека́мера, ТВ-ка́мера — устройство, предназначенное для преобразования оптического изображения, получаемого при помощи объектива на мишени вакуумной передающей трубки в телевизионный видеосигнал или цифровой поток видеоданных. Комбинация телекамеры с устройством записи видеосигнала называется видеокамерой или камкордером (англ. Camcorder).

Самолёт — воздушное судно тяжелее воздуха, предназначенное для полётов в атмосфере с помощью силовой установки, создающей тягу, и неподвижного относительно других частей аппарата крыла, создающего подъёмную силу.

Тропосферная радиосвязь — вид радиосвязи, основанный на явлении переизлучения электромагнитных импульсов в физически неоднородной тропосфере при распространении в ней радиоволн. Передача данных происходит в диапазоне дециметровых и сантиметровых радиоволн.

Разреше́ние — способность оптического прибора воспроизводить изображение близко расположенных объектов.

Астрономи́ческая навига́ция — комплекс методов определения навигационных параметров объекта, основанный на использовании электромагнитного излучения астрономических объектов. Применяется для определения курса и навигационных координат у наземных объектов, а также для определения ориентации космических летательных аппаратов в составе астроинерциальной навигационной системы.

Стереоскопи́ческий фотоаппарат (стере́офотоаппара́т, стере́ока́мера) — тип фотоаппарата с двумя или более объективами, создающими отдельные кадры на фотоплёнке или матрице.

Летательный аппарат (ЛА) — искусственный летающий объект предназначенный для совершения целевого управляемого полёта в заданных условиях (атмосферный, космический или двухсредный — воздушно-космический).Лета́тельный аппара́т (ЛА) — общее название устройства (аппарата) для полётов в атмосфере или космическом пространстве.

Топогра́фия (др.-греч. τόπος — место и γράφω — пишу) — научная дисциплина, изучающая методы изображения географических и геометрических элементов местности на основе съёмочных работ (наземных, с воздуха или из космоса) и создания на их основе топографических карт и планов.

Архитектурная фотография, архитектурная фотосъёмка — жанр фотографии, фотосъёмка архитектурных сооружений (зданий и их комплексов, мостов и т. п.). Как правило, ставит целью получение документального снимка, создающее необходимое представление о внешнем виде снимаемого объекта или его деталей.

Радиодальноме́р — средство для определения расстояний бесконтактным методом с помощью радиоволн, технически реализованное в виде автономного прибора либо в составе радиодальномерной системы. Радиодальномеры применяются в воздушной и космической навигации, геодезии, военном деле, для локального позиционирования транспортного средства и в других целях. Частным случаем радиодальномера можно считать радиовысотомер, однако, на практике, в технической классификации эти понятия разделяют.

Русса́р (а также МР) — название фотографических и киносъёмочных объективов, созданных выдающимся советским оптиком Михаилом Михайловичем Русиновым.

Навигационная система (навигационный комплекс) — это совокупность приборов, алгоритмов и программного обеспечения, позволяющих произвести ориентирование объекта в пространстве (осуществить навигацию). В навигационный комплекс могут входить как сложные навигационные системы (например, спутниковая навигационная система), так и отдельные приборы, позволяющие определить географические координаты объекта или его местоположение относительно иных объектов.

Фотоплёнка — фотоматериал на гибкой полимерной подложке, предназначенный для различных видов фотографии. Представляет собой прозрачную основу с нанесённой на неё светочувствительной фотоэмульсией. В результате экспонирования в эмульсии формируется скрытое изображение, которое при дальнейшей химической обработке преобразуется в видимое.

Оптические приборы — устройства, в которых оптическое излучение преобразуется (пропускается, отражается, преломляется, поляризуется).


Смещение оптического изображенияпри фотографировании с летательного аппарата: а 1 и а 2 – изображения точки А соответственно в начале и конце экспонирования (а 1 а 2 – смещение изображе.

АЭРОФОТОСЪЁМКА, фо­то­гра­фи­ро­ва­ние зем­ной по­верх­но­сти с воз­ду­ха спец. фо­то­ап­па­ра­том (аэ­ро­фо­то­ап­па­ра­том, АФА), смон­ти­ро­ван­ным на под­виж­ном но­си­те­ле (напр., на са­мо­лё­те, вер­то­лё­те, ди­ри­жаб­ле). Ши­ро­ко при­ме­ня­ет­ся для кар­то­гра­фи­ро­ва­ния, раз­вед­ки ме­ст­но­сти (ис­сле­до­ва­ния при­род­ных ре­сур­сов), эко­ло­гич. кон­тро­ля, в ар­хео­ло­гии и др. Обыч­но А. вы­пол­ня­ют од­но­объ­ек­тив­ным АФА для по­кад­ро­вой фо­то­ре­ги­ст­ра­ции, ко­то­рый от­ли­ча­ет­ся от обыч­но­го фо­то­ап­па­ра­та мак­си­маль­но пол­ной ав­то­ма­ти­за­ци­ей съё­моч­но­го про­цес­са, при­ме­не­ни­ем дис­танц. управ­ле­ния и кон­тро­ля, боль­шим фор­ма­том кад­ра. А. осу­ще­ст­в­ля­ют по оп­ре­де­лён­но­му на­прав­ле­нию (мар­шрут­ная А.) или по пло­ща­ди (пло­щад­ная А.); диа­па­зон длин волн от 380 до 1300 нм. На ка­че­ст­во по­лу­чае­мых фо­то­сним­ков (по­ми­мо не­со­вер­шен­ст­ва съё­моч­ной ап­па­ра­ту­ры) ока­зы­ва­ют влия­ние та­кие фак­то­ры, как рас­сея­ние све­та в ат­мо­сфе­ре, тур­бу­лент­ность ат­мо­сфе­ры, тер­мо­ба­рич. ус­ло­вия, сме­ще­ние оп­тич. изо­бра­же­ния от­но­си­тель­но фо­то­слоя в про­цес­се экс­по­ни­ро­ва­ния (рис.). Для умень­ше­ния сме­ще­ния изо­бра­же­ния А. вы­пол­ня­ют с ми­ни­маль­ны­ми по дли­тель­но­сти вы­держ­ка­ми, а так­же ис­поль­зу­ют оп­тич. или ме­ха­нич. ком­пен­са­цию. При ис­поль­зо­ва­нии оп­тич. (зер­каль­ных или кли­но­вых) ком­пен­са­то­ров оп­тич. изо­бра­же­ние сме­ща­ет­ся на фо­то­слое в на­прав­ле­нии, про­ти­во­по­лож­ном дви­же­нию са­молё­та или др. но­си­теля. При ме­ха­нич. ком­пен­са­ции фо­то­плён­ку пе­ре­ме­ща­ют в на­прав­ле­нии сме­ще­ния оп­тич. изо­бра­же­ния со ско­ро­стью, близ­кой к ско­ро­сти но­си­те­ля; экс­по­ни­ро­ва­ние осу­ще­ст­в­ля­ет­ся че­рез уз­кую щель, по­это­му та­кие АФА на­зы­ва­ют­ся ще­ле­вы­ми.

Беспилотная съемка: в чем разница между аэрофотосъемкой и фотограмметрией?

Каждый любитель-фотограф знает, что беспилотные летательные аппараты отлично подходят для фотосъемки. Съемка с высоты птичьего полета всегда притягивает взгляды, она необычно, она загадочна и привлекательна. Сегодня беспилотная фотография доступна почти каждому, и в свою очередь она послужила расширению возможностей летательных аппаратов, а также сферу их применения. Кроме коммерческой съемки, возникли потребности использования дронов для картографии, 3D-моделирования и геодезических работ. Но остается вопрос - достаточно ли использовать любительский беспилотник для ведения промышленных работ?

И ответим сразу, истина заключается в том, что аэрофотоснимки сами по себе не могут быть использованы для получения измеримых цифровых изображений, необходимых для съемки. Для этого вам понадобится фотограмметрия.

Что такое аэрофотосъемка?

Аэрофотосъёмка — это фотографирование территории или объекта с определенной высоты от поверхности Земли при помощи беспилотного летательного аппарата или съемки с управляемого судна. Это также вид работы, при помощи которой получают планы местности с высокой точностью, имеющие привязку к любой сети координат. Кроме того, это одна из самых распространенных форм дистанционного зондирования или измерения данных местности на расстоянии.

В связи с этим беспилотный летательный аппарат является оптимальным прибором для выполнения данных работ. Он собирает и передает данные на специальные приборы, которые находятся на земле у оператора БПЛА. Конечным результатом работы является готовая карта местности в деталях заданного масштаба, представленная в цифровом формате.


Виды аэрофотосъемки

Фотографирование земной поверхности с воздуха может происходить при различных положениях главной оптической оси камеры. В зависимости от этого существуют следующие виды аэрофотосъемки: вертикальная высотная, горизонтальная маловысотная, плановая (картографическая) и перспективная (высотная или маловысотная).

Вертикальные аэрофотоснимки делаются непосредственно над целевым объектом. Это вид съемки, при которой “ось зрения” камеры образует угол 90° к поверхности земли, иначе говоря, носом вниз. Такие изображения могут быть сняты с различной высоты, но они не будут передавать точных данных о масштабе местности. В свою очередь именно вертикальная высотная съемка позволяет проводить сравнения областей и зон, снятых с одной и той же высоты.

Горизонтальная маловысотная аэросъемка ведется на небольшой высоте (до 150 метров над землей) параллельно земле или под совсем незначительным углом. В случае незначительного отклонения угла съемка переходит в разряд наклонной (перспективной).

Плановой аэрофотосъемкой принято считать вертикальную, но на бОльшой высоте. Используют такой вид для составления плана местности, поселков, жилых комплексов, для картографии и др.

Аэрофотосъемка и спутниковые снимки

Зачастую эти термины путают, хотя по значению это два совершенно разных вида съемки с высоты. Аэрофотосъемка — это получение фотографических изображений с беспилотных летательных аппаратов, воздушных шаров, вертолетов или самолетов; она используется главным образом для картографирования. Термин “спутниковые снимки” подразумевает получение цифровых изображений, полученных с помощью спутников, вращающихся вокруг Земли. Чаще всего такие снимки используются для научных исследований и мониторинга окружающей среды и прогнозирования погоды, археологических исследований.

Преимущества спутниковых снимков

Съемка со спутника имеет ряд преимуществ. Она может быть использована для прогнозирования, например, погодных условий. Спутники вращаются вокруг Земли, поэтому данные, полученные со спутников можно проанализировать и составить план на те или иные погодные и иные климатические изменения. Такая съемка значительно расширяет зону охвата и она может быть интегрирована с программным обеспечением, что упрощает дальнейшую ее обработку.

Преимущества аэрофотосъемки

Аэрофотосъемка — это лучший выбор для большинства производств и бизнеса. Она стоит дешевле, информация, снятая на беспилотные летательные аппараты, приходит быстрее и обрабатывать ее в разы проще. Зачастую она более актуальна за счет того, что отснять необходимые данные вы можете, что называется, здесь и сейчас. Кроме того, благодаря возможностям современных моделей дронов, снимки обладают более высоким разрешением, что упрощает процесс анализа данных.

Недостатки у аэрофотосъемки также присутствуют. Если до недавнего времени данный вид съемки являлся составляющим для многочисленных исследований, а коммерческое применение возросло с развитием технологий и снижением цен на высококачественные камеры и беспилотники, то сегодня ограничения на использование беспилотных летательных аппаратов дают о себе знать.

А кроме того, аэрофотосъемка отлично подходит для создания визуального представления местности, но этого не хватает для анализа местности и построения планов. Так, даже при плановой съемке данные могут быть искажены. Вы не получите полной информации о топографии местности, о глубине, что затруднит дальнейший анализ. Чтобы достичь точности, необходимо использования стороннего оборудования — лидарных или мультиспектральных датчиков. Из этого следует, что обычный любительский беспилотник не справится со сложными техническими задачами. Но минимальные данные о местности или об объекте вы все же получите.


Что такое аэрофотограмметрия?

Если аэрофотосъемка может быть использована для получения красивых кадров с высоты и получения общего представления о местности, то для выполнения геодезических работ и картографии необходима фотограмметрия. Еще проще, фотограмметрия — это наука определения размеров по фотографиям. Фотограмметрия служит, как правило, для получения карт, чертежей или трехмерного изображения какого-либо реального объекта или участка местности.

Фотограмметрия включает в себя получение нескольких изображений объекта и использование их для создания оцифрованных 2D-или 3D-моделей высокого разрешения, из которых можно вывести точные измерения. В зависимости от масштаба проекта, модель, сделанная с помощью фотограмметрии, может потребовать от нескольких сотен до нескольких тысяч отдельных изображений.

Согласно данным GIS Lounge, основные принципы фотограмметрии, такие как использование нескольких перспектив или “линий визирования” для определения координат, были впервые разработаны более 150 лет назад. Однако форма моделирования достигла новых уровней доступности и использования с цифровыми изображениями и воздушными технологиями, такими как беспилотные летательные аппараты. До появления аэрофотосъемки геодезисты использовали такое оборудование, как магнитные компасы, барометры, чертежные таблицы и ленту для определения топографии.

Сегодня фотограмметрию можно проводить с помощью различных устройств, в том числе беспилотных летательных аппаратов, самолетов и вертолетов. Однако благодаря технологическому прогрессу и более низкой цене беспилотные летательные аппараты стали более предпочтительным оборудованием для многих геодезистов.

Виды аэрофотограмметрии

Методы аэрофотограмметрии можно разделить на две основные группы: метрическую фотограмметрию и интерпретирующую фотограмметрию. Первая подразумевает использование точек координат на объектах для их визуализации с почти точными измерениями. Ко второй группе относится метод, при котором используются снимки местности (два и более), полученные с различных точек пространства и с добавлением топографии местности, включая индикаторы форм, теней, узоров.

Каждый метод аэрофотограмметрии может использоваться для топографической съемки, в зависимости от специфики работы и необходимого внимания к деталям. Наиболее же точной остается метрическая фотограмметрия; она же рекомендуется для геодезических работ, требующих точности сантиметрового уровня. Равно как и метрическая фотограмметрия, так и интерпретирующая фотограмметрия, точность выполнения методов зависит от специализированного картографического программного обеспечения для объединения изображений в фотограмметрическую карту и создания точных 3D-моделей.


Применение аэрофотограмметрии

Создание карт с применением лидаров и фотограмметрических систем, установленных на беспилотные летательные аппараты, становится все более распространенным. Сферы применения ширятся, вместе с тем растет экономия за счет роста эффективности использования передовых методов фотограмметрического и лидарного картографирования.

1. Технологии и инженерия. Беспилотная фотограмметрия может быть использована для создания трехмерных моделей зданий и оборудования.

2. Строительство. Включает в себя градостроительное планирование, создание моделей будущего объекта строительства, изучается информация о земле, на которой ведется строительство.

3. Землеустройство. Геодезисты во многих различных отраслях промышленности полагаются на фотограмметрию, когда необходимо понять топографию участка земли.

4. Недвижимость. Риэлторы используют дроны для создания точных трехмерных моделей домов для рекламы и продажи, а также организации виртуальных туров.

5. Энергетика. Нефтегазовые компании используют беспилотные летательные аппараты для мониторинга территорий вокруг трубопроводов на предмет изменений окружающей среды с течением времени. Землемерные работы также широко используются в этом секторе.

В конечном счете аэрофотограмметрия выгодна геодезистам по сравнению с наземными методами, независимо от их отрасли. Аэрофотограмметрия дает больше данных за меньшее время и позволяет геодезистам держаться подальше от опасных зон, собирая быстро необходимую информацию. Результатом часто является улучшение сбережений для компаний. Кроме того, поскольку фотограмметрия зависит от цифровых изображений, ее можно использовать для создания 3D-моделей, которые являются реалистичными и легко узнаваемыми для удобного использования с различными заинтересованными сторонами. А кроме того, играет немаловажную роль экономия времени и ресурсов в то время, как использование самолетов и ручного труда невыгодно и малоэффективно.


Фотограмметрия против ЛиДАР

Чтобы сравнить эти методы, сперва стоит определиться в терминах. LiDAR — это сокращение от "обнаружение света и дальности". Датчики LiDAR работают, испуская импульсы света и измеряя время, необходимое им для отражения от Земли, а также интенсивность, с которой они это делают. На лидаре для БПЛА устанавливается лазерный дальномер для измерения высоты точек местности или объекта. В чем, собственно, и состоит суть лидара (используется активный дальномер оптического диапазона). Лидарные дальномеры могут покрывать сотни квадратных километров в день. При измерении 10-80 точек на квадратный метр, можно создать очень подробную цифровую модель местности.

Важно понимать, что в то время как фотограмметрия опирается на определение координат для создания точного 3D-изображения, лидар строит топографию, измеряя время, за которое световая волна отражается от земли и возвращается к дрону. Этот геодезический метод невероятно точен, но и является более затратным.

Имеет ли смысл для вас фотограмметрия или лидар, зависит от конкретной задачи, навыков оператора БПЛА и бюджета. Лидар идеально подходит для рабочих мест с низким освещением, которое может повлиять на качество фотографического изображения. Топографические осложнения возникают не только в виде низкой освещенности или волнистости рельефа. Растительность также может блокировать методы съемки на основе фотограмметрии от получения детализированных данных на уровне земли. Световые импульсы LiDAR проникают в промежутки лесного покрова и растительности, достигая земли внизу и повышая точность измерений. Наконец, LiDAR позволяет захватывать детали небольшого диаметра. Отличный пример тому — линии электропередач. Благодаря высокой плотности точечной выборки и прямому измерительному подходу вы можете использовать LiDAR для точного картирования кабельной сети.

Вы должны понимать, что LiDAR — это безусловная детализация и точность, но это также более высокая стоимость. Для съемки с помощью лидарного датчика необходимо иметь соответствующие навыки оператора БПЛА, который будет способен не только управлять дроном, но и уметь извлекать и обрабатывать данные. В то же время основным преимуществом работы с фотограмметрией является ее доступность. Планирование полета и построение наземных контрольных точек, выполнение картографической миссий и обработка данных занимает меньше времени; результаты доступны и интуитивно понятны за счет привычных изображений с узнаваемыми цветами и данными о местности или об объекте.

Как беспилотные летательные аппараты поддерживают аэрофотограмметрию?

Использование беспилотной фотограмметрии может сэкономить время и деньги по сравнению с классическими наземными методами съемки или использованием управляемых воздушных судов. Это означает, что картографические беспилотники — стоящая инвестиция как для геодезистов, так и для людей, которые их нанимают. Чтобы беспилотник был способен к фотограмметрии, он также должен уметь делать аэрофотоснимки, поскольку фотографические изображения являются основой этой техники.

Одним из готовых решений может стать система Matrice 300 RTK + P1. Эта комбинация является флагманским решением DJI для фотограмметрии. P1 — это новейшая, усовершенствованная камера для фотограмметрии с полнокадровым датчиком и сменными объективами с фиксированным фокусом. Глобальный механический затвор и программные функции, включая интеллектуальный косой захват, делают его идеальным для крупномасштабных фотограмметрических полетов. Благодаря использованию модуля RTK, DJI M300 позволяет геодезистам покрыть от 3 до 5 квадратных километров за один полет и получить результаты сантиметровой точности без GCPs. Сам беспилотник сочетает в себе интеллект и производительность, включая шесть датчиков направления и позиционирования, а также способность удерживать до трех полезных нагрузок одновременно.

Другим решением выступает связка Matrice 300 RTK + L1. Она сочетает в себе модуль LiDAR halifax, высокоточный IMU и камеру с 1-дюймовым CMOS на 3-осевом стабилизаторе. С точностью 5 см по вертикали и 10 см по горизонтали, а также способностью покрыть до 3 квадратных километров за один полет, M300 RTK, L1 и DJI Terra вместе образуют комплексное геодезическое решение, которое предлагает 3D-данные, детали сложных структур и точные визуальные реконструкции.

Интуитивно понятное программное обеспечение для картографирования дронов DJI Terra — это универсальное картографическое решение для беспилотных летательных аппаратов, которое объединяет изображения и облегчает процессы съемки и обработки данных. Независимо от того, нужна ли вам 2D- или 3D-карта, это программное обеспечение может обрабатывать ваши данные и визуализировать точные изображения.

Современные беспилотные летательные аппараты равно как и аэрофотосъемка произвели революцию в научных исследованиях и картографии; они послужили чрезвычайно ценным дополнением к инструментам геодезистов и все чаще дополняют или заменяют вовсе методы наземной съемки и использования управляемой авиации. Но если же вы рассчитываете на получение максимально точных данных, необходимых для проведения работ, важно не только использовать правильные методы съемки с помощью дронов, но и самое лучшее программное обеспечение. С пониманием этих процессов, использования технологий, беспилотных летательных аппаратов и программного обеспечения, никакая работа не будет для вас сложной.

Читайте также: