Замер уровня жидкости в скважине доклад

Обновлено: 17.05.2024

Одним из методов исследования глубинно-насосных скважин является эхометрия. По результатам эхометрии определяется уровень жидкости в затрубном пространстве скважины. Исследование производится с помощью эхолота – прибора для измерения положения уровня жидкости в скважине.

  • Суть процесса измерения - эхолотирования заключается в следующем. В трубное пространство с помощью датчика импульса звуковой волны (пороховой хлопушки) посылается звуковой импульс.
  • Звуковая волна, пройдя по стволу скважины, отражается от уровня жидкости, возвращается к устью скважины и улавливается кварцевым микрофоном. Микрофон соединен через усилитель с регистрирующим устройством, которое записывает все сигналы (исходящий и отраженный) на бумажной ленте в виде диаграммы. Лента перемещается с помощью лентопротяжного механизма с постоянной скоростью.

Если известно время, прошедшее с момента посылки звукового импульса в скважину до момента прихода отраженного импульса, а также скорость распространения звуковой волны в газовой среде, уровень жидкости H у можно определить по формуле:

где V з – скорость распространения звуковой волны; t у – время пробега волны от устья до уровня и обратно.

Скорость распространения звуковой волны зависит от физических свойств газа, заполняющего скважину, температуры, давления и т.д. Поэтому при каждом измерении ее определяют косвенным путем по известному расстоянию до какой-либо точки. Межтрубное пространство скважин с этой целью оснащается специальными отражателями звуковых волн - реперами, расстояние от которых до устья скважины известно. Для получения достаточно отчетливого отраженного импульса репер должен перекрывать поперечное сечение колонны на 60-70%.

Таким образом, если известно время прохождения звукового импульса от устья скважины до репера и обратно, скорость распространения волны в данной среде можно определить по формуле:

где Нр – известное расстояние от источника звукового импульса до репера; t р – время прохождения звуковой волны от устья до репера и обратно.

Зачастую для определения местоположения уровня жидкости применяют поправочные коэффициенты, учитывающие газовый фактор и затрубное давление скважины. Глубина расположения уровня жидкости в скважине определяется путем умножения поправочного коэффициента на расстояние между импульсами на эхограмме.

Коэффициенты для определения уровня жидкости в скважине при газовом факторе 87 м 3 /м 3 приведены в табл. 7.3.1.

По принципу действия существующие приборы для измерения уровня в скважинах можно разделить на поплавковые и звуко­метрические. По характеру действия - на приборы непрерывного и прерывного (дискретного) действия; по методу взятия отсчета - местной регистрацией и дистанционные. Поплавковые приборы для измерения уровня в скважинах (пъезографы). Пьезограф ПРМ-2 (рис.1) измеряет изменение уровня от исходного положения, на которое опущен прибор в начальный момент. По­этому точность измерения изменяющегося уровня не зависит от исходного расстояния поверхности жидкости в скважине до устья. Механический пьезограф ПРМ-2 представляет собой само­пишущий прибор поплавкового типа. Он выполнен в виде снаряда, спускаемого в скважину на проволоке. Прибор собран в стальной трубе, состоящей из трех камер. В верхней части прибора находится камера /, в которой разме­щены два сухих элемента 2 и звонок 3 для подачи сигнала, когда прибор достигает уровня жидкости в скважине. В камере // расположено регистрирующее устройство, состоящее из часового механизма 4, вращающего через зубчатую передачу 5—6 барабан с диаграммой 7, и зубчатой передачи 20—21, при помощи которой перемещается каретка с пе­ром 19. В измерительной камере ///


расположен поплавок 11, подвешенный на нити 9 и пере­мещающийся по направляющим струнам 14. Нить 9 перекинута через верхний 8 и нижний 12 ролики. Для компенсации ра­стяжения нити предусмотрена пружина 10, которая крепится к верхней части поплавка. Поплавок представляет собой полый цилиндрический сосуд со сфе­рическими верхней и нижней частями. Изменение уровня в сква­жине прослеживается поплавком и через нить 9 передается верх­нему ролику, который через ролики 16, 17 и 18 перемещает ка­ретку с пером вдоль оси барабана с диаграммой. Перо записывает на диаграммном бланке, который приводится в движение часовым механизмом 4, изменение уровня в определенном масштабе. Прибор опускают в скважину на проволоке, закрепленной в головке 1. При достижении прибором во время спуска его в сква­жину уровня жидкости и при дальнейшем его погружении по­плавок перемещается относительно стенок измерительной камеры вверх и касается контакта 15. При этом замыкается цепь катушки звонка, питаемая от батареи сухих элементов, и оператор слышит сигнал о необходимости прекращения дальнейшего спуска при­бора. В нижнем колпаке 13 и в боковых стенках измерительной каме­ры имеются отверстия для свободного входа жидкости. Для защиты поплавковой камеры от грязи и твердых частиц эти отверстия закрыты металлической сеткой. Диапазон измерения изменяющегося уровня 2 м. Максималь­ная погрешность измерения уровня ±10 мм.. Масштаб записи 1 : 10. Часовой механизм имеет семисуточный завод. Так же использ. дистанционный пъезограф УДП-2, звукометрический прибор – эхолот.

Общие сведения о реле

В системах автоматики и телемеханики чрезвычайно широко применяется элементы, называемые реле. Реле называют элемент, в котором при достижении известного зна­чения входной величины X выходная величина Y изменяется скачком. Характеристика реле показана на рис.


При изменении входной величины от О до Х2 выходная величина остается постоянной и равной Y1. В момент Х=Х2 выходная вели­чина скачкообразно изменяется от значения Y1 до значения Y2. При дальнейшем увеличении входной величины (т.е. при Х>X2 ) выходная величина снова остается постоянной и равной Y1. Уменьшение входной величины до Х1 (Х1

Приборы для измерения и регистрации уровня воды в скважинах

Для измерения глубины залегания уровня воды в наблюдательных гидрогеологических, эксплуатационных и других скважинах используются различные уровнемеры .

Измерение уровня можно разделить на 2 метода: контактный и бесконтактный. К первому можно отнести: емкостный, поплавковый, гидростатический, буйковый. К бесконтактным: зондирование электромагнитным излучением, зондирование звуком, а также зондирование радиационным излучением.

С постепенным развитием прогрессивных измерительных средств каждый из способов получает характерный набор в своих общих технических реализациях, которые в разных случаях обладают и преимуществами, и недостатками. Разделяя уровнемеры для жидкостей по принципу действия, можно выделить электрические, микроволновые, механические, гидростатические, акустические и рефлексные. При проведении измерений уровня в несколько сложных условиях (камни, пыль, большой угол откоса для сыпучего вещества) применяется, чаще всего, лазерные уровнемеры, являющиеся безопасными для глаз, а также обеспечивающие полное отсутствие неправильных отраженных сигналов.

На данный момент широкое распространение получили следующие уровнемеры:

Измерение уровня воды в скважине

— Гидрогеологическая рулетка. Используется для измерения уровня воды в скважинах глубиной до 30 и 50 метров.

Уровнемер конструктивно представляет собой катушку с мерным тросом (отметки по 1 м) с электродом на конце. При контакте с водой загорается светодиод и подается звуковой сигнал.

Зачастую, при отсутствии специального оборудования, на скважине используется так называемая "хлопушка", рис.41.

Рис. 41. Хлопушка.

Хлопушка представляет из себя полость с ушком, опускаемая на мерном шнуре. При контакте с хлопушки с водой раздается характерный хлопок.

— Электроконтактные уровнемеры. Могут применяться только при использовании стальных обсадных труб. Большинство уровнемеров старой конструкции (которые используются и по сей день) имеют следующий принцип работы: один провод опускается в скважину, второй подсоединяется к металлической обсадной трубе, индикатором контакта с водой служит лампочка или стрелочный прибор (электрическая цепь замыкается). Таким образом, в дождливую погоду невозможно сделать замер, так же стоит отметить, что обсадная труба должна быть только металлическая. Схема измерения представлена на рис. 42.

Измерение уровня воды в скважине

Рис. 42. Электроконтактный уровнемер.

1 – обсадная колонна; 2 – контактный стержень;

3 – одножильный кабель с мерными метками; 4 — рулетка; 5 — батарейка; 6 – лампочка.

— Электроконтактные двужильные уровнемеры. Принцип работы аналогичен. Отличие заключается в применении двужильного провода, что позволяет проводить измерения в скважинах с любыми типами обсадных труб. Так же данные уровнемеры дополнительно могут оснащаться термометром.

— Уровнемер тензометрический УрТ — это тензометрический датчик, по специальному кабелю выдающий сигналы, соответствующие гидростатическому давлению воды и температуре. Уровнемер монтируется в скважину вместе с погружным насосом. Максимальная глубина до 100м. Сверху специальный кабель присоединяется к прибору индикации уровня.

При определении нескольких параметров и наблюдении за ними во времени используются автоматизированные режимные (скважинные) комплексы.

Данные комплексы предназначены для организации схем наблюдений за уровнем, температурой и электропроводимостью подземных вод в скважинах в автономном автоматизированном или ручном режиме, практически в любых условиях и любой конфигурации.

Применяются с использованием автономных(ручных) считывающих устройств (ридеры) или программируемых многоканальных устройств снятия и накопления информации (логгеры).

— на одной линии связи устанавливается необходимое количество датчиков для определения требуемого комплекса параметров в различных интервалах по стволу скважины.

— логгеры накапливают получаемую информацию в течении длительных наблюдений, что позволяет проводить режимные наблюдения в удаленных и труднодоступных районах.

— программный комплекс позволяет задавать режим съема информации, считывать накопленную информацию, обрабатывать и систематизировать ее.

5. Измерение уровня жидкости в скважине. Звукометрический метод.

Различают уровень жидкости в скважине статически соответствующий пластовому давлению т.е. когда уровень жидкости в скважине уравновешивается пластовым давлением, и динамически соответствующий забойному давлению, т.е. уровень, устанавливающийся в затрубном пространстве скважины в процессе отбора из нее жидкости при работе глубинного насоса.

Приборы для измерения уровня в скважине применяют для решения след задач: 1. Определения изменения пластового давления с целью контроля его изменения. 2.Определение забойных давлений в глубинных насосных скважинах с целью определения режима эксплуатации. 3.Исследование скважин методами прослеживания уровня.

По принципу действия приборы для измерения уровня в скважине можно разделить на: 1. Поплавковые. 2.Звукометрические(акустические).

Звукометрический прибор для измерения уровня жидкости в скважине.

Сущность звукометрического метода заключается в определении расстояния по времени прохождения упругости волны от устья скважины до уровня жидкости. В скважину посылают звуковой импульс, мощность которого достаточна, чтобы получить надежное отражение от уровня жидкости. Затем определяют скорость распространения звука в скважине и время, необходимое для прохождения его от устья до уровня жидкости.

Скорость распространения звуковой волны в скважине зависит от физических свойств температуры, давления, состава газа, заполняющего скважину. Скорость распространения обычно составляет 250-460м/с.

Расстояние от устья до уровня жидкости в скважину определяется по формуле: Н=VT где Т-время пробега звуковой волны.

Измерение уровня воды в скважине

В качестве импульсатора в эхолоте применяется пороховая хлопушка, создающая мощную звуковую волну при мгновенном сгорании пороха. Для определения скорости звука в скважине на насосных трубах устанавливают репер на определенном расстоянии от устья. Пороховая хлопушка, герметично соединенная с устьем скважины посылает звуковой импульс, который дойдя до репера и уровня жидкости отражается и воспринимается термофоном. Звуковой импульс представляет собой взрыв порохового заряда заключенного в гильзу. Термофон представляет собой вольфрамовую нить, по которой протекает постоянный ток 0,2-0,3А нагревающий нить до температуры 100 0 C. Звуковые импульсы (колебания воздуха) воздействуют на вольфрамовую нить, если вызывает изменение ее температуры а значит и изменения электрического сопротивления. При этом сила тока в цепи уменьшается. колебания тока усиленные усилителем передаются регистратору.

Диаграмма записи звуковой волны.

Измерение уровня воды в скважине

На диаграмме выделяется 3 пика. Пик В соответствует звуковому импульсу (выстрелу хлопушки). Пик Р-отражение звуковой волны от репера. Пик У-отражение звуковой волны от уровня жидкости. По расстоянию между пиками можно определить время прохождения звука от устья до репера и до уровня.

Измерение уровня воды в скважине
Измерение уровня воды в скважине

На эхограмме записаны многочисленные колебания, получающиеся в следствии отражения звуковой волны от труб, многократных повторных отражений от репера и тд.

Измерение уровней воды в скважинах

Чем можно померить уровень воды в скважинах?

1. Тривиальной веревкой, на конец которой привязан какой-нибудь груз. Самый дешевый, но и самый трудоемкий и неточный способ. Впрочем, для частного использования, когда требуется определения уровня воды 1-2 раза за сезон (например, весной, в начале сезона и летом, когда статический уровень воды минимален), лучше и не придумаешь.

2. Скважинный уровнемер. Представляет собой катушку, на которую намотан трос или лента с датчиком на конце. Катушка специальным способом проградуирована, чтобы можно было понять, какой длины трос с нее сошел. Трос с датчиком опускается в скважину, в момент касания последнего воды на катушке загорается лампа (может также раздаваться звуковой сигнал). Выпускается множество моделей подобных уравнемеров различных производителей. Пределы измерения от 1 до 600 метров (у разных моделей), точность – 0,01 м.

3. Гидростатический датчик уровня. Предназначен для непрерывного мониторинга за уровнем воды в скважине. Представляет собой датчик на кабеле, который измеряет гидростатическое давление воды и передает сигнал, пропорциональный уровню воды в скважине, по кабелю. Возможно электронное протоколирование. Пределы измерения – до 200 м. Точность – 0,25%.

Существует еще несколько устройств для определения уровня воды в скважинах. Например, пневматический уровнемер. Но все они отличаются громоздкостью и в практическом плане не представляют интереса.

Это определение может быть произведено электрическим или звуко­метрическим (волновым) методами. Уровень жидкости, проводящей электри­ческий ток, в скважине практически определяют с помощью любого электри­ческого метода. До погружения прибора или зонда в жидкость электрическая цепь разомкнута, ток в цепи прибора от­сутствует. Момент погружения отмечают по появлению в цепи электрического тока, что фиксирует измерительный прибор. Помимо этого для определения уровня жидкости в скважине существуют специаль­ные приборы — электрические уровнемеры. Простейший уровнемер (рис. 78) пред­ставляет собой электрод 1, предохраняемый выступами 2 из изолирующего материала от соприкосновения со стенками скважины или с колонной. Если уровнемер находится выше уровня воды, цепь электроды А и В — изме­рительный прибор Г— батарея Б оказывается разомкнутой и стрелка прибора Г не откло­няется (рис. 78, а). Как только электрод схемы электрических попадает в воду, электрическая цепь замы­кается и стрелка измерительного прибора показывает отклонение.

На рис. 78, б приведена схема электрического уровнемера, который может быть использован для определения верхнего уровня как проводящей, так и не проводящей электрический ток жидкости (нефти). При погружении этого уровнемера в жидкость поплавок 3 всплывает и замыкает контакты 4. Измерительный прибор отмечает этот момент по отклонению стрелки.

Для определения уровня жидкости в межтрубном пространстве при спу­щенных в скважину насосно-компрессорных трубках разработаны звуко­метрические (волновые) методы. В частности, по методу В. В. Сныткина с помощью эхометра регистрируется время движения звуковой волны в меж­трубном пространстве.

YIII. МЕТОДЫ КОНТРОЛЯ ЗА РАЗРАБОТКОЙ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

Геофизические методы контроля

Основную информацию о процессах разработки месторождений залежей нефти получают в результате гидродинамических, геофизических и лабораторных (физико-химических) методов исследования пластов и скважин. Среди этих методов ведущее место при контроле за разработкой нефтяных месторождений занимают геофизические методы, которые являются крупным самостоятельным направлением промысловой геофизики со своей специфической методикой исследований, комплексом методов, аппаратурой и оборудованием. Кроме того, геофизические методы позволяют получить информацию о свойствах пласта-резервуара. Все более широкое применение находят для контроля разработки элементарный анализ поверхностных проб нефти, контроль процесса выработки пластов в скважинах, обсаженных стеклопластиковыми колоннами.

Задачи геофизических методов контроля разработки

Исходя из условий разработки нефтяных месторождений на современном этапе основными задачами контроля за разработкой геофизическими методами являются:

- исследование состояния заводнения и выработки продуктивных пластов.

- контроль положения ВНК и оценка изменения нефтенасыщенности.

- Определение ВНК и текущего насыщения неперфорированных нефтегазонасыщенных пластов.

- Контроль положения ГНК и оценка изменения газонасыщенности.

- Определение охвата заводнением по толщине пласта.

- Определение коэффициента остаточной нефтенасыщенности.

- Исследование продуктивности и энергетического состояния объектов эксплуатации в добывающих скважинах.

- Распределение отобранной нефти по пластам объекта разработки.

- Определение источника обводнения продукции в интервале объекта разработки.

- Определение пластовой температуры.

- Определение пластовых и забойных давлений.

- Контроль за выработкой пластов добывающих скважин.

- Контроль за работой нагнетательных скважин.

- Определение профилей поглощения, распределения закачиваемой воды по пластам.

- Оценка технического состояния скважин, целостность обсадной колонны, НКТ, герметичности затрубного пространства, состояния забоя.

- Контроль за работой технологического оборудования, определение уровня жидкости в межтрубном пространстве, определение глубины установки оборудования.

Геофизические методы контроля

Геофизические методы контроля разработки можно классифицировать по характеру исследования:

- определение характера насыщенности коллектора- различные модификации нейтронных методов, гамма-каротаж, электрометрия.

- Выделение работающих интервалов, профиля притока (поглощения) – методы потока и состава жидкости в стволе работающей скважины – плотнометрия, резистивиметрия, влагометрия, гидродинамическая и термокондуктивная расходометрия.

- Оценка качества изоляции заколонного пространства – термометрия, шумометрия.

Используются модификации стационарных и импульсных нейтронных методов, позволяющих проводить измерения в обсаженных скважинах и решать следующие задачи:

- определение положения газонефтяного контакта (ГНК), интервалов прорыва газа, перетоков, разгазирования нефти в пласте и оценке газонасыщенности (НГК-70, НК-Т-50).

- Определение положения водонефтяного контакта ВНК в пластах с высокой минерализацией пластовых вод (150-200 г/л при пористости 20 %) (НГК-50, НК-Т-25-30).

Импульсные нейтронные методы наиболее широко используются для оценки характера насыщенности коллекторов и определения положения ВНК, ГНК. Применяются две модификации импульсных методов – ИННМ – импульсный нейтрон-нейтронный метод, позволяющий изучать временное распределение тепловых нейтронов. ИНГМ – импульсный нейтронно-гамма метод, основанный на изучении временного распределения гамма-излучения, возникающего в результате радиационного захвата тепловых нейтронов ядрами атомов, слагающих горную породу. Преимуществами импульсных методов перед стационарными являются – большая глубинность исследования, более высокая чувствительность к хлорсодержанию пород, меньшее влияние скважины на измерения. Эффективность методов при исследовании пластов, не вскрытых перфорацией, составляет 95 %, при определении ВНК в частично перфорированных пластах –45-50 %, при определении обводняющихся перфорированных пластов водами высокой минерализации – 90 % и резко снижается при исследовании скважин, обводняющихся водами низкой минерализации (менее 50 г/л).

Методы состава и притока жидкости в стволе скважины

Эффективность решения отдельных задач при контроле за разработкой действующих скважин с перфорированными пластами повышается при дополнении комплекса исследований измерениями профиля притока (дебитометрией) и методами, основанными на измерении различных физических свойств поступающей жидкости из пласта. С этой целью были разработаны различные малогабаритные приборы для исследования фонтанирующих и глубиннонасосных скважин, позволяющих выделить отдающую часть перфорированной толщины (термоэлектрические индикаторы притока типа СТД-2, СТД-4), а также количественно оценить дебит отдельных пластов и прослоев (механические дебитомеры типа РГД-1М и дрг.) и определить наиболее важные параметры жидкости, поступающей из пластов в скважину – ее плотность (гамма-плотномеры типа ГГП-1М, ГГП-3), диэлектрическую проницаемость (влагомеры типа ВГД-2), вязкость (вибрационный вискозиметр ВВН-2), удельную проводимость (индукционный резистивиметр РИС-42).

Для выделения интервалов поступления воды в скважину широко применяются влагомеры, принцип действия которых основан на измерении диэлектрической проницаемости водонефтяной смеси LG – генератором, в колебательный контур которого включен измерительный конденсатор проточного типа. Материалы и теоретические расчеты показали, что верхний предел количественного определения влагосодержания ограничивается 50 %. При обводнении свыше 50 % аппаратура позволяет лишь качественно выделять водоотдающие интервалы. Существует две разновидности глубинных влагомеров, обладающих различными методическими возможностями: пакерные и беспакерные влагомеры. В беспакерном приборе через датчик проходит только часть жидкости, движущейся по колонне, поэтому беспакерные влагомеры работают на качественном уровне. В пакерном влагомере через датчик пропускается часть, движущейся по колонне жидкости, что значительно повышает эффективность прибора.

Основным недостатком всех влагомеров является зависимость их показаний от свойств нефти, воды и водонефтяных смесей, которые зависят от температуры, давления, газонасыщения и могут изменяться по площади и толщине даже одного нефтяного горизонта, что при качественной оценке компонентого состава смеси требует проведения больших тарировочных работ по построению градуировочных зависимостей с учетом всех мешающих факторов.

Влагомер локального типа (ВБСТ-2) обладает более высокой чувствительностью к радиальным притокам нефти в колонну обводненной скважины. Эти влагомеры выпускаются диаметром 25 мм и 38 мм и позволяют исследовать фонтанирующие, так и глубинно-насосные скважины через межтрубное пространство при забойных температурах до 150 0 С.

Применение резистивиметров основано на измерении электрических свойств водонефтяной смеси в стволе скважины, позволяющих выделить гидрофильную (нефть в воде) и гидрофобную (вода в нефти) составляющие и устанавливать положение водонефтяного раздела в скважинах (ВНР).

Одно из свойств, которое может быть использовано для изучения характера и состава жидкости в скважине является плотность, по величине которой можно с большой точностью судить о соотношении отдельных ее компонент жидкости (нефти, воды) в скважине. Разработанная аппаратура, гамма-плотномера ГГП обеспечивает определение плотности жидкости в стволе действующих скважин с точностью до 0.01 г/см3. Различные конструкции для исследования фонтанирующих (ГГП-1, ГГП-2 диаметром соответственно 42 и 32 мм) и глубинно-насосных скважин через межтрубное пространство (ГГП-3 диаметром 25 мм) в настоящее время применяется в комплексе (с механическими дебитомерами типа РГД-1М, ДГД-6Б, термоэлектрическими типа СТД-2, СТД-4) при определении обводненных интервалов перфорированных пластов в условиях любой минерализации пластовых вод.

Термометрия действующих скважин (высокочувствительная термометрия) отличается от традиционной термометрии (геометрия, метод закачки жидкости с контрастной температурой) тем, что измерения проводятся в процессе работы скважины и исследуются тепловые аномалии, обусловленные термодинамическими эффектами при движении флюидов в пласте и стволе скважины. Исследования сводятся к спуску термометра в продуктивный интервал и регистрации распределения температуры вдоль ствола скважины с обязательным перекрытием зумпфа и приема НКТ. Желательно, чтобы прием НКТ был поднят на 40-50 метров выше кровли верхнего перфорированного пласта. В действующей скважине с квацистационарным тепловым полем обязательно регистрируется повторная термограмма и несколько термограмм в остановленной скважине. Масштаб записи температуры 0.05 0 С/см.

Интерпретация термограмм заключается в выявлении и анализе температурных аномалий. Анализ начинают с зумпфа. При наличии участка ненарушенной геотермы (в действующей скважине обычно на расстоянии 10 м от подошвы нижнего работающего пласта) определяют градиент температуры. Корреляция градиентов температуры с разрезом свидетельствует об отсутствии движения жидкости в скважине и заколонном пространстве по данным термометрии. Заключение по результатам исследований скважины выдается по данным всего комплекса (локация муфт, плотнометрия, ГК, механическая и термокондуктивная дебитометрия, влагометрия, резистивиметрия).

- диагностика состояния насосно-подъемного оборудования.

- Выявление обводненных интервалов по эффекту охлаждения пласта закачиваемыми водами.

- Определение интрвалов разгазирования и поступления газа.

Термометрия позволяет получить информацию о пластах, перекрытых НКТ и о работе пластов, недоступных исследованию в действующей скважине (по измерениям в остановленной скважине после извлечения из нее оборудования). После регистрации термограмм, не поднимая прибор из интервала исследований проводится первичная оценка качества материала. В качестве критериев используются уровень случайных помех (не должен превышать 0.02 0 С) и качество воспроизведения аномалий на основной и повторной диаграммах (расхождение диаграмм не должно быть более 0.1 0 С по большинству точек, общий характер изменения температуры должен повторяться с высокой точностью). Может быть установлен масштаб записи термометрии в 0.02 0 С/см. Измерение температуры в интервале продуктивных пластов проводится на спуске. Скорость движения термометра зависит от постоянной времени датчика. Поскольку постоянная времени, определенная в лабораторных условиях, не всегда совпадает с реальным значением в скважине, рекомендуется писать со скоростью не более 200 м/час. Распределение температуры по стволу добывающей скважины определяется следующими факторами:

-естественное тепловое поле Земли.

- изменение температуры флюида при фильтрации в пласте (баротермический эффект).

- Эффект калориметрического смешивания восходящего по колонне потока с поступающим из пластов флюидом.

- Теплообмен между потоком жидкости в стволе скважины и окружающими породами.

Кроме них, на распределение температуры влияют расход и состав флюида, структура и направление потока. К настоящему времени определялись следующие задачи, которые могут решаться высокочувствительной термометрией:

- выделение интервалов притока (приемистости), в том числе и слабоработающих перфорированных пластов.

- Выявление заколонных перетоков из неперфорированных пластов.

- Определение притоков в скважину из мест негерметичности обсадной колонны.

Метод шумометрии предусматривает измерения уровня и спектра акустических шумов, возникающих в скважине при различных термодинамических процессах. Частотный диапазон этих шумов лежит в широком спектре от нескольких десятков герц до сотен кгерц. Шумовое поле, генерируемое турбулентным газожидкостным потоком, воздействует на чувствительный элемент пьезокерамического датчика. Реакцией датчика на звуковое излучение является электрический сигнал, поступающий в электронный блок широкополосного усилителя напряжения, где происходит усиление сигнала до необходимой величины. При средней выбранной чувствительности пьезокерамических датчиков из ЦТС-19 предварительный усилитель напряжения имеет коэффициент усиления Ку>=100, при чем для хорошего согласования входа усилителя с датчиком применена схема токового повторителя, выполненная на полевом транзисторе. Нормальный сигнал по напряжению подается на усилитель мощности. Необходимость усилителя мощности обусловлена тем, что питание глубинного прибора и снятие полезного информационного сигнала происходит по одножильному каротажному кабелю на поверхности.

Исходя из проведенных работ, можно определить область эффективного применения шумометрии для решения следующих промысловых работ:

  1. Определение герметичности труб (обсадных колонн, в том числе через НКТ, самих НКТ, для определения факта работы газлифтных клапанов и оценки утечек жидкости из НКТ в ЭЦН и ШГН скважинах).
  2. Определение герметичности заколонного пространства вблизи вскрытого фильтра (ОГЗП).
  3. Оценка профиля работы фильтра.
  4. Оценка наличия высокорасходных заколонных перетоков вне продуктивных горизонтов.

Расходометрия является одним из основных методов изучения эксплуатационных характеристик пласта. При контроле разработки нефтяных месторождений применяются две модификации метода- гидродинамическая и термокондуктивная расходометрия. Обе модификации метода входят в полный комплекс исследования действующих скважин.

Читайте также: