Выполнить доклад на тему ионизирующее излучение понятие природа виды методы измерения

Обновлено: 04.05.2024

Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Вопрос о действии радиации на человека и окружающую среду, всегда приковывают к себе постоянное внимание общественности и вызывал много споров.

Чаще всего аргументация противников атомной энергетики опирается исключительно на чувства и эмоции, столь же часто выступления сторонников ее развития сводятся к мало обоснованным успокоительным заверениям.

Между тем, радиация действительно смертельно опасна. При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты, которые, возможно, проявятся у детей и внуков человека, подвергшегося облучению, или у его более отдаленных потомков.

Целью настоящей работы является рассмотрение различных видов излучений, как от естественных, так и от техногенных источников, их основных свойств, а также их воздействия на человека и окружающую среду.

Наиболее значимы следующие типы ионизирующего излучения: коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения), потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов [1][2][6][7] .

В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение) [8][6][7] .

http://wreferat.baza-referat.ru/1_268990564-12969.wpic

Альфа-излучение представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги.

Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров.

Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т.д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 10 15 — 10 20 и выше электрон-вольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

В зависимости от типа частиц и их энергии сильно различаются длина пробега и проникающая способность ионизирующего излучения — от долей миллиметра в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (Гр), численно равный отношению 1 Дж к 1 кг. Ранее широко применялась также экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Наиболее часто применяющейся единицей экспозиционной дозы был рентген (Р), численно равный 1 СГСЭ-единицы заряда к 1 см³ воздуха [1][2][3][4] .

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации) [9] .

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9%. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил. [10]

  • персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Ионизирующие излучения применяются в различных отраслях тяжёлой (интроскопия) и пищевой (стерилизация медицинских инструментов, расходных материалов и продуктов питания) промышленности, а также в медицине (лучевая терапия, ПЭТ-томография).

Для лечения опухолей используют тяжёлые ядерные частицы такие как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий. Создаваемые на ускорителях пучки тяжёлых заряженных частиц имеют малое боковое рассеяние, что дает возможность формировать дозные поля с чётким контуром по границам опухоли.

Таким образом, изучая различную литературу о радиационной безопасности, можно прийти к выводу о том, что малые дозы облучения не представляют серьезной опасности для населения.

Многие легко мирятся с факторами, связанными с гораздо большим риском для жизни и здоровья, такими, например, как курение или езда на автомобиле. Для гражданина какой-либо промышленно развитой страны, получающего сполна всю среднюю индивидуальную дозу облучения как от естественных, так и от техногенных источников радиации, вероятность погибнуть в автомобильной катастрофе в пять раз, а вероятность преждевременной смерти из-за курения (при выкуривании 20 сигарет в день) более чем в 100 раз превышает вероятность умереть от рака вследствие облучения.

Мало кто обращает внимание на естественную радиацию, вклад от которой в среднегодовую эффективную эквивалентную дозу облучения населения земного шара составляет примерно 4/5. Много ли людей переселяется, к примеру, из мест с повышенным естественным радиационным фоном в места с более низким уровнем естественной радиации с целью уменьшения риска заболевания раком? Почти не привлекают к себе внимания и такие аспекты, как последствия экономии энергии и чрезмерного облучения при рентгенологических обследованиях, - два основных фактора, ведущие к неоправданному облучению населения. Создается впечатление, что все внимание общественности и все опасения по поводу радиационной опасности сосредоточились главным образом на атомной энергетике, вклад от которой в суммарную дозу облучения населения один из самых скромных.

При этом атомная энергетика является той экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и ледоколы, системы пожарной охраны и g-дефектоскопы. вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить.

Данная работа посвящена детальному описанию различных видов излучения, их предельно допустимых уровней воздействия на человека. По моему мнению, именно такой информацией должен обладать каждый человек, живущий в современном мире и не безразличный к своему здоровью.

1. Гусев Н. Г., Климанов В. А., Машкович В. П., Суворов А. П. Защита от ионизирующих излучений. В 2-х томах. M., Энергоатомиздат, 1989

2. Ионизирующие излучения и их измерения. Термины и понятия. М.: Стандартинформ, 2006.

3. Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене. 2-е изд., перераб. и доп. М., Атомиздат, 1974

4. Нормы радиационной безопасности (НРБ-99/2009) Минздрав России, 2009.

6. Зигбан К., ред. Альфа-, бета- и гамма-спектроскопия. Пер. с англ. М., Атомиздат, 1969.

7. Волков Н. Г., Христофоров В. А., Ушакова Н. П. Методы ядерной спектрометрии. М. Энергоатомиздат, 1990.

8. Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. 3-е изд., перераб. и доп. М., Энергоатомиздат, 1985

9. International Commission on Radiological Protection. Publication 60: Recommendations of the International Commission on Radiological Protection.

Двадцатый век – век научно-технического прогресса – ознаменовался многими открытиями в областях, о которых человек ранее не имел ни малейшего представления. Следствием изучения влияния полупроводников на импульсы электрического тока явилось изобретение вычислительных машин. Итогом проведения учёными исследований в различных отраслях науки и техники стало появление телевидения, радио, средств телефонии и т.д. Изучение свойств некоторых химических элементов привело открытию радиоактивности.

В последние годы большое внимание уделяется изучению характера воздействия ионизирующих излучений на радиотехническую аппаратуру, приборы, элементы электроники и радиотехнические материалы. Сейчас особенное значение имеют разработки в области атомной энергетики. Как известно радиоэлектронная аппаратура является неотъемлемой частью разного рода устройств и приборов, эксплуатация которых производится в полях ядерного излучения. Объект в таком случае подвергается действию импульса проникающей радиации. Такого рода воздействие может явиться следствием, например, ядерного взрыва. Облучённый материал меняет свою структуру, степень ионизации, разогревается. Кроме того, облучение приводит к появлению наведённой радиоактивности и многим другим явлениям, нарушающим физические и химические процессы в технических устройствах. Следовательно, неконтролируемое излучение в большинстве случаев приводит к обратимым или необратимым изменениям параметров радиоэлементов и, в конечном счёте, к полной или частичной потере работоспособности аппаратуры. Таким образом, своевременное предсказание реакции материала, из которого сделан тот или иной прибор, на выброс радиации является необходимым условием успешного контроля над ходом экспериментов в местах ядерного заражения.

Ионизирующие излучения ядерных установок, ядерных взрывов и космической радиации различаются по своему составу (нейтроны, γ-кванты, электроны, протоны, α-, β- и другие частицы), энергетическому спектру, плотности потоков, длительности воздействия и др.

В своей работе я хотел бы раскрыть всю важность и необходимость изучения ионизирующих излучений и показать перспективы их практического применения.

Виды ионизирующих излучений

Ионизирующее излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. Они возникают в результате естественных или искусственных радиоактивных распадов веществ, ядерных реакций деления в реакторах, ядерных взрывов и некоторых физических процессов в космосе.

Ионизирующие излучения состоят из прямо или косвенно ионизирующих частиц или смеси тех и других. К прямо ионизирующим частицам относятся частицы (электроны, α-частицы, протоны и др.), которые обладают достаточной кинетической энергией, чтобы осуществить ионизацию атомов путём непосредственного столкновения. К косвенно ионизирующим частицам относятся незаряженные частицы (нейтроны, кванты и т.д.), которые вызывают ионизацию через вторичные объекты.

В настоящее время известно около 40 естественных и более 200 искусственных α-активных ядер. α-распад характерен для тяжелых элементов (урана, тория, полония, плутония и др.). α-частицы - это положительно заряженные ядра гелия. Они обладают большой ионизирующей и малой проникающей способностью и двигаются со скоростью 20000 км/с.

β-излучение - это поток отрицательно заряженных частиц (электронов), которые выпускаются при β -распаде радиоактивных изотопов. Их скорость приближается к скорости света. Бета-частицы при взаимодействии с атомами среды отклоняются от своего первоначального направления. Поэтому путь, проходимый β -частицей в веществе, представляет собой не прямую линию, как у α-частиц, а ломаную. Наиболее высокоэнергетические β-частицы могут пройти слой алюминия до 5 мм, однако ионизирующая способность их меньше, чем у α-частицы.

γ-излучение, испускаемое атомными ядрами при радиоактивных превращениях, обладает энергией от нескольких тысяч до нескольких миллионов электрон-вольт. Распространяется оно, как и рентгеновское излучение, в воздухе со скоростью света. Ионизирующая способность γ -излучения значительно меньше, чем у α- и β -частиц. γ -излучение - это электромагнитные излучения высокой энергии. Оно обладает большой проникающей способностью, изменяющейся в широких пределах.

Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Нейтронное и гамма излучение принято называть проникающеё радиацией или проникающим излучением.

Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.

Элементарные частицы

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек.

Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен.

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц.

Исторически первыми экспериментально обнаруженными элементарными частицами были электрон, протон, а затем нейтрон. Казалось, что этих частиц и фотона (кванта электромагнитного поля) достаточно для построения известных форм вещества - атомов и молекул. Вещество при таком подходе строилось из протонов, нейтронов и электронов, а фотоны осуществляли взаимодействие между ними. Однако, вскоре выяснилось, что мир устроен значительно сложнее. Было установлено, что каждой частице соответствует своя античастица, отличающаяся от нее лишь знаком заряда. Для частиц с нулевыми значениями всех зарядов античастица совпадает с частицей (пример - фотон). Далее, по мере развития экспериментальной ядерной физики к этим частицам добавилось еще свыше 300 частиц

Характеристиками субатомных частиц являются масса, электрический заряд, спин (собственный момент количества движения), время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др.

Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку эта масса не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света (фотон). Нет двух частиц с одинаковыми массами. Электрон - самая легкая частица с ненулевой массой покоя. Протон и нейтрон тяжелее электрона почти в 2000 раз. А самая тяжелая из известных элементарных частиц (Z -частицы) обладает массой в 200 000 раз больше массы электрона.

Электрический заряд меняется в довольно узком диапазоне и всегда кратен фундаментальной единице заряда - заряду электрона(-1). Некоторые частицы (фотон, нейтрино) вовсе не имеют заряда.

Важная характеристика частицы - спин. Он также всегда кратен некоторой фундаментальной единице, которая выбрана равной Ѕ .Так, протон, нейтрон и электрон имеют спин Ѕ , а спин фотона равен 1. Известны частицы со спином 0, 3 / 2 , 2. Частица со спином 0 при любом угле поворота выглядит одинаково. Частицы со спином 1 принимают тот же вид после полного оборота на 360° . Частица со спином 1/2 приобретает прежний вид после оборота на 720° и т.д. Частица со спином 2 принимает прежнее положение через пол-оборота (180° ). Частиц со спином более 2 не обнаружено, и возможно их вообще не существует. В зависимости от спина, все частицы делятся на две группы:

- бозоны - частицы со спинами 0,1 и 2;

- фермионы - частицы с полуцелыми спинами (Ѕ ,3 / 2 )

Частицы характеризуются и временем их жизни. По этому признаку частицы делятся на стабильные и нестабильные. Стабильные частицы- это электрон, протон, фотон и нейтрино. Нейтрон стабилен, когда находится в ядре атома, но свободный нейтрон распадается примерно за 15 минут. Все остальные известные частицы - нестабильны; время их жизни колеблется от нескольких микросекунд до 1 0 n сек (где n = - 2 3 ).

Большую роль в физике элементарных частиц играют законы сохранения, устанавливающие равенство между определенными комбинациями величин, характеризующих начальное и конечное состояние системы. Арсенал законов сохранения в квантовой физике больше, чем в классической. Он пополнился законами сохранения различных четностей (пространственной, зарядовой), зарядов (лептонного, барионного и др.), внутренних симметрий, свойственных тому или иному типу взаимодействия.

Выделение характеристик отдельных субатомных частиц - важный, но только начальный этап познания их мира. На следующем этапе нужно еще понять, какова роль каждой отдельной частицы, каковы ее функции в и структуре материи.

Физики выяснили, что прежде всего свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами. Кроме того, существуют частицы - переносчики взаимодействий.

Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

Нейтрон был открыт английским физиком Джеймсом Чедвиком в 1932г. Масса нейтрона равна 1,675·10-27кг, что в 1839 раз больше массы электрона. Нейтрон не имеет электрического заряда.

Среди химиков принято пользоваться единицей атомной массы, или дальтоном (d), приблизительно равной массе протона. Масса протона и масса нейтрона приблизительно равны единице атомной массы.

При реакции деления ядра элемента кроме новых ядер могут появляться g-кванты, b-частицы распада, g-кванты распада, нейтроны деления и нейтрино. С точки зрения цепной ядерной реакции наиболее важным является образование нейтронов. Среднее число появившихся в результате реакции деления нейтронов обозначают uf . Эта величина зависит от массового числа делящегося ядра и энергии взаимодействующего с ним нейтрона. образовавшиеся нейтроны обладают различной энергией (обычно от 0,5 до 15 МэВ), что характеризуется спектром нейтронов деления. Для U235 среднее значение энергии нейтронов деления равно 1.93 МэВ.

В процессе ядерной реакции могут появляться как ядра способствующие поддержанию цепной реакции (те которые испускают запаздывающий нейтрон), так и ядра, оказывающие неблагоприятное воздействие на ее ход (если они обладают большим сечением радиационного захвата).

Заканчивая рассмотрение реакции деления, нельзя не упомянуть о таком важном явлении как запаздывающие нейтроны. Те нейтроны, которые образуются не непосредственно при делении тяжелых нуклидов (мгновенные нейтроны), а в результате распада осколков называются запаздывающими нейтронами. Характеристики запаздывающих нейтронов зависят от природы осколков. Обычно запаздывающие нейтроны делят на 6 групп по следующим параметрам: T - среднее время жизни осколков, bi - доля запаздывающих нейтронов среди всех нейтронов деления, bi/b - относительная доля запаздывающих нейтронов данной группы, E - кинетическая энергия запаздывающих нейтронов.

В следующей таблице приведены характеристики запаздывающих нейтронов при делении U235

Нажмите, чтобы узнать подробности

В работе описаны виды ионизирующих излучений и степень их воздействия на организм.

1. Радиация и ее разновидности. Ионизирующие излучения. стр.4

2. Источники ионизирующих излучений. стр.7

3. Пути проникновения излучения в организм человека. стр. 8

4. Воздействие ионизирующих излучений на организм человека. стр.10

Список литературы стр.14

Увидев знак, предупреждающий о повышенной радиоактивности, человек старается поскорее покинуть опасное место. Случившееся в Чернобыле, Хиросиме и Нагасаки, научило людей остерегаться радиации. И не зря. После произошедших трагедий человечество столкнулось с серьезными проблемами в состоянии здоровья, которые до сих пор дают о себе знать. Радиация губительно влияет на организм, иногда приводя к смерти. Поэтому важно знать о ее действии, свойствах и допустимых дозах. Человек сталкивается с радиацией на протяжении всей жизни. Его организм, в первую очередь, подвержен естественной радиоактивности, которая наблюдается в природных процессах. Радиоактивностью называют такие явления в природе, при которых ядра атомов распадаются произвольно, что становится причиной возникновения излучений. Обладая выраженной энергией, эти излучения характеризуются тем, что способны ионизировать среду, в которой распространяются. Ионизация приводит к изменениям физических и химических свойств вещества. Такая способность несет поражающее влияние на живой организм, так как в биологических тканях нарушается жизнедеятельность.

В данном реферате рассматривается сущность ионизирующего излучения, её проникновение в организм человека, последствия и обеспечение безопасности в условиях ионизирующего излучения.

Основная часть.

Радиация и ее разновидности. Ионизирующие излучения.

Радиация – это все виды электромагнитного излучения: свет, радиоволны, энергия солнца и множество иных излучений вокруг нас. Источниками проникающей радиации, создающими природный фон облучения, являются галактическое и солнечное излучение, наличие радиоактивных элементов в почве, воздухе и материалах, используемых в хозяйственной деятельности, а также изотопов в тканях живого организма. Одним из наиболее весомых естественных источников радиации является радон – газ, не имеющий вкуса и запаха.

Остановимся на ионизирующей радиации, которая, проходя сквозь ткани и клетки живых организмов, способна передавать им свою энергию, разрывая химические связи внутри молекул и вызывая серьёзные изменения в их структуре. Ионизирующее излучение возникает при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.

Все ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному ионизирующему излучению относятся:

а) Y-излучение, испускаемое при распаде радиоактивных изотопов или аннигиляции частиц. Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, то есть потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний. Не имея массы, Y-кванты двигаются со скоростью света, не теряя ее в окружающей среде. Они могут лишь поглощаться ею или отклоняться в сторону, порождая пары ионов: частица- античастица, причём последнее наиболее значительно при поглощении Y- квантов в среде. Таким образом, Y- кванты при прохождении через вещество передают энергию электронам и, следовательно, вызывают ионизацию среды. Благодаря отсутствию массы, Y- кванты обладают большой проникающей способностью (до 4- 5 км в воздушной среде);

б) рентгеновское излучение, возникающее при уменьшении кинетической энергии заряженных частиц и (или) при изменении энергетического состояния электронов атома.

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-частиц, бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят:

а) нейтроны – единственные незаряженные частицы, образующиеся при некоторых реакциях деления ядер атомов урана или плутония. Поскольку эти частицы электронейтральны, они глубоко проникают во всякое вещество, включая живые ткани. Отличительной особенностью нейтронного излучения является его способность превращать атомы стабильных элементов в их радиоактивные изотопы, то есть создавать наведенную радиацию, что резко повышает опасность нейтронного излучения. Проникающая способность нейтронов сравнима с Y- излучением. В зависимости от уровня носимой энергии условно различают нейтроны быстрые ( обладающие энергией от 0,2 до 20 Мэ В ) и тепловые ( от 0,25 до 0,5 Мэ В ). Это различие учитывается при проведении защитных мероприятий. Быстрые нейтроны замедляются, теряя энергию ионизации, веществами с малым атомным весом ( так называемыми водородосодержащими: парафин, вода, пластмассы и др.). Тепловые нейтроны поглощаются материалами, содержащими бор и кадмий (борная сталь, борный графит, сплав кадмия со свинцом).

Альфа, бета-частицы и гамма - кванты обладают энергией всего в несколько мегаэлектронвольт, и создавать наведенную радиацию не могут;

б) бета частицы - электроны, испускаемые во время радиоактивного распада ядерных элементов с промежуточной ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).

в) альфа частицы - положительно заряженные ядра атомов гелия, а в космическом пространстве и атомов других элементов, испускаемые при радиоактивном распаде изотопов тяжёлых элементов – урана или радия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), даже человеческая кожа является для них непреодолимым препятствием. Опасны они лишь при попадании внутрь организма, так как способны выбивать электроны из оболочки нейтрального атома любого вещества, в том числе и тела человека, и превращать его в положительно заряженный ион со всеми вытекающими последствиями, о которых будет сказано далее. Так, альфа частица с энергией 5 МэВ образует 150 000 пар ионов.



Рис. 1. Характеристика проникающей способности различных видов ионизирующего излучения

Источники ионизирующих излучений.

Источник ионизирующего излучения - объект, содержащий радиоактивный материал (радионуклид), или техническое устройство, испускающее или способное в определенных условиях испускать ионизирующее излучение. Предназначен для получения (генерации, индуцирования) потока ионизирующих частиц с определенными свойствами.

Источники излучений применяются в таких приборах, как медицинские гамма- терапевтические аппараты, гамма-дефектоскопы, плотномеры, толщиномеры, нейтрализаторы статического электричества, радиоизотопные релейные приборы, измерители зольности угля, сигнализаторы обледенения, дозиметрическая аппаратура со встроенными источниками и т.п.

По физической основе генерации излучения разделяют радионуклидные источники на основе естественных и искусственных радиоактивных изотопов, и физико-технические источники (нейтронные и рентгеновские трубки, ускорители заряженных частиц и пр.).

Для радионуклидных источников различают открытые и закрытые источники излучения.

Открытый источник ионизирующего излучения (unsealed source) - при использовании которого возможно поступление содержащихся в нём радиоактивных веществ в окружающую среду.

Закрытый источник ионизирующего излучения (sealed source) - в котором радиоактивный материал заключён в оболочку (ампула или защитное покрытие), предотвращающую контакт персонала с радиоактивным материалом и его поступление в окружающую среду свыше допустимых уровней в условиях применения и износа, на которые он рассчитан.

По видам излучения выделяют источники гамма-излучения, источники заряженных частиц и источники нейтронов. Для радионуклидных источников такое разделение не является абсолютным, т.к. при ядерных реакциях, индуцирующих излучение, основной вид излучения источника может сопровождаться существенным вкладом сопутствующих видов излучения.

По назначению выделяют калибровочные (образцовые), контрольные (рабочие) и промышленные (технологические) источники.

Промышленные источники излучения применяют в различных производственных процессах и установках производственного назначения (ядерные методы каротажа, бесконтактные методы контроля технологических процессов, методы анализа вещества, дефектоскопия и т.п.).

Контрольные источники используются для проверки и настройки ядерно-физических приборов и установок (спектрометров, радиометров, дозиметров и пр.) путем контроля за стабильностью и повторяемостью показаний приборов в определенной геометрии положения источника относительно детектора излучения.

Калибровочные источники используются при калибровке и метрологической поверке ядерно-физической аппаратуры.

Пути проникновения излучения в организм человека.

Основную часть ионизирующего облучения человек получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения попадают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Это облучение может быть связано с рентгеновскими и гамма лучами, а также некоторыми высокоэнергетическими бета частицами, способными проникать в поверхностные слои кожи. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним. Можно выделить следующие способы:

- в первые дни после радиационной аварии наиболее опасны радиоактивные изотопы йода, поступающие в организм с пищей и водой. Весьма много их в молоке, что особенно опасно для детей. Радиоактивный йод накапливается главным образом в щитовидной железе. Концентрация радионуклидов в этом органе может быть в 200 раз выше, чем в других частях человеческого организма;

- через повреждения и порезы на коже; - абсорбция через здоровую кожу при длительном воздействии радиоактивных веществ (РВ). В присутствии органических растворителей (эфир, бензол, толуол, спирт) проницаемость кожи для РВ увеличивается. Причем некоторые РВ, поступившие в организм через кожу, попадают в кровеносное русло и, в зависимости от их химических свойств, поглощаются и накапливаются в критических органах, что приводит к получению высоких локальных доз радиации. Например, растущие кости конечностей хорошо усваивают радиоактивный кальций, стронций, радий, почки – уран. Другие химические элементы, такие как натрий и калий, будут распространяться по всему телу более или менее равномерно, так как они содержатся во всех клетках организма;

- через лёгкие при дыхании. Попадание твердых радиоактивных веществ в лёгкие зависит от степени дисперсности этих частиц. Частицы пыли размером менее 0.1 микрона ведут себя так же как и молекулы газов. При вдохе они попадают с воздухом в лёгкие, а при выдохе вместе с воздухом удаляются. В лёгких может оставаться лишь незначительная часть твёрдых частиц. Крупные частицы размером более 5 микрон задерживаются носовой полостью. Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через лёгкие в кровь, не являются соединениями, входящими в состав тканей, и со временем удаляются из организма.

Внутреннее облучение является более опасным, а его последствия более тяжёлыми по следующим причинам: резко увеличивается доза облучения, определяемая временем пребывания радионуклида в организме , практически бесконечно мало расстояние до ионизируемой ткани (так называемое, контактное облучение), в облучении участвуют альфа частицы, самые активные и поэтому самые опасные, радиоактивные вещества распространяются не равномерно по всему организму, а избирательно, концентрируются в отдельных (критических) органах, усиливая локальное облучение.

4. Воздействие ионизирующих излучений на организм человека.

Степень воздействия ионизирующих излучений на организм человека зависит от дозы излучения, ее мощности, плотности ионизации излучения, вида облучения, продолжительности воздействия, индивидуальной чувствительности, физиологического состояния организма и других. Под влиянием ионизирующих излучений в живой ткани, как и в любой среде, поглощается энергия и возникают возбуждение и ионизация атомов облучаемого вещества. В результате возникают первичные физико-химические процессы в молекулах живых клеток и окружающего их субстрата и как следствие - нарушение функций целого организма. Первичные эффекты на клеточном уровне проявляются в виде расщепления молекулы белка, окисления их радикалами ОН и Н, разрыва наименее прочных связей, а также повреждения механизма митоза и хромосомного аппарата, блокирования процессов обновления и дифференцировки клеток.

Наиболее чувствительными к действию радиации являются клетки постоянно обновляющихся тканей и органов (костный мозг, половые железы, селезенка и др.).

Эти изменения на клеточном уровне и гибель клеток могут приводить к нарушению функций отдельных органов и систем, межорганных связей, нарушению нормальной жизнедеятельности организма и к его гибели.

Облучение организма может быть внешним, когда источник излучения находится вне организма, и внутренним - при попадании радиоактивного вещества (радионуклидов) внутрь организма через пищеварительный тракт, органы дыхания и через кожу.

При внешнем облучении наиболее опасными являются гамма-, нейтронное и рентгеновское излучение. Альфа- и бета-частицы из-за их незначительной проникающей способности вызывают в основном кожные поражения.

Внутреннее облучение опасно тем, что оно вызывает на различных органах долго незаживающие язвы.

Облучение людей ионизирующими излучениями может привести к соматическим, сомато-стохастическим и генетическим последствиям.

Соматические эффекты проявляются в виде острой или хронической лучевой болезни всего организма, а также в виде локальных лучевых повреждений.

Сомато-стохастические эффекты проявляются в виде сокращения продолжительности жизни, злокачественные изменения кровообразующих клеток (лейкозы), опухоли различных органов и клеток. Это отдаленные последствия.

Генетические эффекты проявляются в последующих поколениях в виде генных мутаций как результат действия облучения на половые клетки при уровнях дозы, не опасных данному индивиду.

Острая лучевая болезнь характеризуется цикличностью протекания со следующими периодами:

период первичной реакции;

скрытый период; период формирования болезни; восстановительный период; период отдаленных последствий и исходов заболевания.

Хроническая лучевая болезнь формируется постепенно при длительном и систематическом облучении дозами, превышающими допустимые при внешнем и внутреннем облучении. Хроническая болезнь может быть легкой (I ступень), средней (II ступень) и тяжелой (III ступень). Первая ступень лучевой болезни проявляется в виде незначительной головной боли, вялости, слабости, нарушения сна и аппетита и др. Средняя или вторая ступень характеризуется усилением указанных симптомов и нервно-регуляторных нарушений с появлением функциональной недостаточности пищеварительных желез, сердечно-сосудистой и нервной систем, нарушением некоторых обменных процессов, стойкой лейко- и тромбоцитопенией. При тяжелой степени, кроме того, развивается анемия, появляется резкая лейко- и тромбопения, возникают атрофические процессы в слизистой желудочно-кишечного тракта и др. (изменения в центральной нервной системе, выпадение волос).

Отдаленные последствия лучевой болезни проявляются в повышенной предрасположенности организма к злокачественным опухолям и болезням кроветворной системы.

Опасность радионуклидов, попавших внутрь организма, обусловливается рядом причин, - способностью некоторых из них избирательно накапливаться в отдельных органах, увеличением времени облучения до выведения нуклида из органа и его радиоактивною распада, ростом опасности высокоионизирующих альфа-и бета-частиц, которые малоэффективны при внешнем облучении.

Критические органы подразделяют на три группы:

I- все тело, репродуктивные органы (гонады), красный костный мозг;

II - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза;

III- костная ткань, кожный покров, руки, предплечья, ступни ног

5. Заключение.

Источники ионизирующих излучений широко используются в повседневной жизни. Однако они представляют огромную угрозу здоровью и жизни использующих их людей. В работе описаны виды ионизирующих излучений и степень их воздействия на организм. Поэтому обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Рекомендую обратить внимание на следующие меры защиты:

- защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала.

- защита расстоянием - достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

- защита экранами - наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью и излучением.

Список литературы

Булдаков Л.А. Радиоактивные вещества и человек. - М.: Энергоатомиздат, 1990.- 160с.

Радиация. Дозы, эффекты, риск: Пер. с англ. - М.: Мир, 1990.-79 с

Навратил Д.Д., Хала И., Радиоактивность, ионизирующее излучение и ядерная энергетика, 2013.

Виды, источники и влияние ионизирующего излучения на человека

Ионизирующее излучение – это электромагнитное излучение (рентгеновское, гамма) и излучение частиц (альфа, бета), сопровождающиеся выделением энергии. Ионизирующее излучение появляется только при наличии источника излучения (изотопа радиоактивного элемента или рентгеновской трубки). Оно известно в медицине в форме рентгеновского излучения. Используется при диагностике заболеваний сердца и легких, а также при диагностике травм.

Виды ионизирующего излучения

Виды ионизирующего излучения

Ионизирующее излучение можно разделить на два вида:

  1. Искусственное – радиоактивные изотопы не встречаются в природе, их генерируют рентгеновские аппараты;
  2. Естественное – встречается в природе, например, в почве, растениях и в космосе.

Электромагнитное ионизирующее излучение используется при проведении радиологических исследований (в просторечии рентгеновских исследований), таких как рентген или КТ (компьютерная томография). С его помощью врач может:

  • осмотреть тело и увидеть структуры органов и тканей;
  • обнаружить множество серьезных заболеваний костей, легких, сердца и других органов.

Ионизирующее излучение частиц можно разделить на:

  • ядерное;
  • космическое;
  • излучение, производимое в ускорителях.

По типу частиц ионизирующее излучение может быть альфа, бета, нейтронное и протонное.

Источники ионизирующего излучения

Источники ионизирующего излучения

Источниками ионизирующих излучений являются искусственные и естественные явления, объекты:

  1. Естественные источники – это в первую очередь радиоактивные элементы, присутствующие в земной коре и атмосфере, а также космические лучи;
  2. Искусственные источники – это радиоактивные элементы, производимые в ядерных реакторах (например, плутоний) или устройствах, генерирующих ионизирующее излучение (рентгеновские аппараты, кобальтовые бомбы).

Рассматриваемое излучение всегда сопровождало человека. Каждый день население поглощает радиацию, которая приходит из космоса и исходит от камней и почвы. Источником естественного ионизирующего излучения, среди прочего, является космическое пространство.

Космические лучи, которые состоят из ядер высокоэнергетических атомов (в основном протонов), были открыты в начале 20 века. Человечество и все живое на планете частично защищены от космических лучей атмосферой Земли, которая поглощает энергию падающих частиц. В результате столкновений молекул с ядрами газа (азота, кислорода) в атмосферу испускается вторичное излучение.

Чем толще слой атмосферы, через который проходит излучение, тем слабее оно становится. Следовательно, люди получают гораздо меньшую дозу радиации на уровне моря, чем люди, поднимающиеся в высокие горы.

Важно знать! Люди, летающие по трансконтинентальным маршрутам, получат дозу радиации, примерно равную дозе, связанной с рентгеновским снимком легких.

Источником ионизирующего излучения также являются поверхность и внутренние части Земли, которые содержат богатые ресурсы радиоактивных элементов. В частности, во второй половине XX века в разных регионах планеты началась добыча урановых руд.

Помимо естественных источников ионизирующего излучения, существуют также искусственные источники. Техногенное ионизирующее излучение возникает в результате изменений, происходящих внутри атомных ядер. Эти изменения сопровождаются изменением энергии ядер, а часто и числа нуклонов. Этому особенно подвержены изотопы элементов, содержащие несоответствующее количество нейтронов.

Источники искусственного ионизирующего излучения:

  • медицинское оборудование (рентгеновские аппараты, кобальтовые бомбы);
  • атомные электростанции (реакторы);
  • исследовательские устройства, например, ускорители частиц.

Для справки! Искусственные радиоактивные изотопы, являющиеся источником радиации, широко используются в медицине, промышленности и науке.

Другие источники ионизирующего излучения – испытания ядерных бомб и аварии атомных электростанций. При определенных условиях они могут стать причиной смерти всего живого на планете. Но и без этого рассматриваемое явление может стать причиной серьезных негативных последствий.

Влияние ионизирующего излучения на организм человека

Влияние ионизирующего излучения на организм человека

Эффект зависит в основном от нескольких факторов:

  • размер и интенсивность принятой дозы;
  • вид излучения;
  • размер и тип области, обработанной ионизирующим агентом;
  • возраст и пол облученного человека;
  • индивидуальная чувствительность;
  • масса тела;
  • время года (температура окружающей среды).

Действие ионизирующего излучения на организм человека становится причиной специфических биологических эффектов. В силу основных механизмов образования их можно разделить на детерминированные и стохастические.

Детерминированные эффекты являются следствием поглощения человеческим организмом такой большой дозы ионизирующего излучения, что оно вызывает разрушение или необратимое повреждение определенного количества клеток. Проявление детерминированных эффектов – лучевая болезнь.

Стохастические (случайные) эффекты возникают в результате повреждения генетического материала отдельной клетки и проявляются в виде рака или наследственных заболеваний. Доза, вызывающая эти заболевания, может быть сколь угодно низкой, и их начало определяется случайностью.

Если ионизирующее излучение поражает живую ткань, оно может вызвать:

  • молекулярно-липидное повреждение, разрыв цепей ДНК;
  • клеточные изменения – повреждение мембранных структур, ядра и клеточных органелл (нарушение клеточного метаболизма, деградация компонентов клетки и повреждение ее генетического материала).

Естественные и искусственные источники ионизирующего излучения могут привести к прямой или косвенной ионизации материальной среды. Чтобы снизить вред, ученные разрабатывают и внедряют разные способы защиты от ионизирующего излучения – от защитных костюмов, правил использования специальной техники, до восстановления озонового слоя. Последний естественным образом защищает планету от космических лучей.

Читайте также: