Виды поделочных материалов и их свойства 8 класс доклад

Обновлено: 06.07.2024

Разделение материалов на химической основе на основные группы (металлические, неметаллические). Практическое значение различных материалов. Аморфное и кристаллическое строение материалов. Зависимость свойств материалов от их строения и имеющихся дефектов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 06.04.2016
Размер файла 19,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Общие сведения о материалах, их строении и свойствах

Все материалы по химической основе делятся на две основные группы - металлические и неметаллические.

К металлическим относятся металлы и их сплавы. Металлы составляют более 2/3 всех известных химических элементов. Металлические материалы делятся на черные и цветные. К черным относятся железо и сплавы на его основе - стали и чугуны. Все остальные металлы относятся к цветным. Чистые металлы обладают низкими механическими свойствами по сравнению со сплавами, и поэтому их применение ограничивается теми случаями, когда необходимо использовать их специальные свойства.

К неметаллическим материалам относятся различные пластмассы (слоистые, волокнистые, порошковые, газонаполненные), резиновые материалы, древесные материалы (пиломатериалы, древесный шпон), текстильные материалы, неорганические (керамика, стекло) и композиционные материалы.

Практическое значение различных материалов не одинаково. Наибольшее применение в технике приобрели черные металлы. На основе железа изготавливают более 90% всей металлопродукции. Однако цветные металлы обладают целым рядом ценных физико-химических свойств, которые делают их незаменимыми. В промышленности занимают место и неметаллические материалы, но их использование невелико (около 10%) и предсказание тридцатилетней давности о том, что неметаллические материалы к концу века существенно потеснят металлические, не оправдалось. В других же областях применение различных неметаллических материалов развивается в настоящее время опережающими темпами по сравнению с металлическими материалами.

Строение материалов.

Все твёрдые тела делятся на аморфные и кристаллические.

В аморфных телах атомы расположены хаотично, т.е. в беспорядке, без всякой системы, поэтому тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Примерами аморфных тел могут служить стекло, клей, воск, канифоль, т.е. аморфное строение присуще в основном неметаллам.

В кристаллических телах атомы расположены в строго определённой последовательности. Тела остаются твердыми, т.е. сохраняют приданную им форму до определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Переход из одного состояния в другие протекает при определенной температуре плавления. К телам с кристаллическим строением относят поваренную соль, кварц, сахарный песок, металлы и сплавы.

Атомно-кристаллическая структура - взаимное расположение атомов в кристалле. Кристалл состоит из атомов (ионов), расположенных в определенном порядке, который периодически повторяется в трех измерениях. Наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решётку, называют элементарной ячейкой. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния между центрами атомов, находящихся в соседних узлах решетки, называют параметрами, или периодами решетки.

Идеальная кристаллическая решетка представляет собой многократное повторение элементарных кристаллических ячеек. Для реального металла характерно наличие большого количества дефектов строения, нарушающих периодичность расположения атомов в кристаллической решетке.

Различают три типа дефектов кристаллического строения: точечные, линейные и поверхностные. Точечные дефекты характеризуются малыми размерами, величина их не превышает нескольких атомных диаметров. К точечным дефектам относятся: а) свободные места в узлах кристаллической решетки - вакансии (дефекты Шоттки); б) атомы, сместившиеся из узлов кристаллической решетки в межузельные промежутки - дислоцированные атомы (дефекты Френкеля); в) атомы других элементов, находящиеся как в узлах, так и в междоузлиях кристаллической решетки - примесные атомы. Линейные дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Наиболее важный вид линейных дефектов - дислокации (лат. dislocation - смещение). Поверхностные дефекты имеют малую толщину и значительные размеры в двух других измерениях. Обычно это места стыка двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов.

От строения и дефектов напрямую зависят свойства материалов.

Свойства материалов.

Физические свойства определяют поведение материалов в в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения.

Плотностью называется отношение массы однородного материала к единице его объема. Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.

Температура плавления - это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления, сварки и тем они дешевле.

Электропроводностью называется способность материала хорошо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.

Теплопроводность - это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных афессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов - химической стойкостью.

Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность - это способность материала сопротивляться разрушающему воздействию внешних сил

Твердость - это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.

Упругость - это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость - это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.

Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания (жидкотекучестыо), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии.

К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость - это способность материала сопротивляться разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

Вопрос 2: Классификация текстильных волокон.

Текстильное волокно представляет собой протяженное тело, гибкое и прочное, с малыми поперечными размерами, ограниченной длины, пригодное для изготовления пряжи и текстильных материалов.

В основу классификации волокон положен их химический состав и происхождение.

В зависимости от происхождения текстильные волокна подразделяют на натуральные и химические.

К натуральным относят волокна растительного, животного и натурального происхождения, которые образуются в природе без непосредственного участия человека. Натуральные растительные волокна состоят из целлюлозы; их получают с поверхности семян (хлопок), плодов (койр), из стеблей (лен, рами, пенька, джут и др.) и листьев растений (абака, сизаль). Натуральные волокна животного происхождения состоят из белков - кератина (шерсть различных животных), или фиброина (шелк тутового или дубового шелкопряда).

К химическим относят волокна, созданные в заводских условиях путем формования из органических природных или синтетических полимеров или неорганических веществ. Химические волокна по составу делятся на искусственные и синтетические.

Искусственные волокна получают из высокомолекулярных соединений, встречающихся в готовом виде (целлюлоза, белки). Их получают путем химической переработки природных полимеров растительного и животного происхождения, из отходов целлюлозного производства и пищевой промышленности.

Полимер - вещество, молекулы которого состоят из большого числа повторяющихся звеньев. Сырьем для полимеров служат древесина, семена, молоко и т.п. Наибольшее применение в швейной промышленности имеют текстильные материалы на основе искусственных целлюлозных волокон, таких как вискозное, полинозное, медно-аммиачное, триацетатное, ацетатное.

Синтетические волокна получают путем химического синтеза полимеров, т.е. создания имеющих сложную молекулярную структуру веществ из более простых, чаще всего из продуктов переработки нефти и каменного угля. Это полиамидные, поли эфирные, полиуретановые волокна, а также полиакрилонитрильные (ПАН), поливинилхлоридные (ПВХ), поливинилспиртовые, полиолефиновые. Также по составу синтетические волокна делятся на карбоцепные и гетероцепные. Гетероцепные волокна образуются из полимеров, в основной молекулярной цепи которых кроме атомов углерода содержатся атомы других элементов. Карбоцепными называют волокна, которые получают из полимеров, имеющих в основной цепи макромолекул только атомы углерода.

материал свойство строение дефект

Используемая литература

1. Солнцев Ю.П. Материаловедение. Применение и выбор материалов: Учебное пособие / Солнцев Ю.П., Борзенко Е.И., Вологжанина С.А. - СПб.: ХИМИЗДАТ, 2007. - 200 с.

2. Бузов Б.А. Материаловедение в производстве изделий легкой промышленности (швейное производство): Учебник для студ. высш. учеб. заведений / Б.А. Бузов, Н.Д. Адыменкова: Под ред. Б.А. Бузова. - М.: Издательский центр "Академия", 2004 - 448 с.

3. Савостицкий Н.А. Материаловедение швейного производства: учебник для студ. учреждений сред. проф. образования / Н.А. Савостицкий, Э.К. Амирова. - 7-е изд., стер. - М.: Издательский центр "Академия", 2013. - 272 с.

4. Металлы и сплавы. Справочник / В. К Афонин и др. - НПО "Профессионал" СПб, 2003 - 200 с.

5. Солнцев Ю.П. "Материаловедение" / Ю.П. Солнцев, Е.И. Пряхин - СПб.: Химиздат, 2007, 783с.

Подобные документы

Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.

курсовая работа [43,7 K], добавлен 03.04.2010

Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

контрольная работа [318,1 K], добавлен 03.10.2014

Зависимость работоспособности машин и агрегатов от свойств материалов. Прочность, твердость, триботехнические характеристики. Внедрение в материал более твердого тела – индентора. Температурные, электрические и магнитные характеристики материалов.

реферат [56,6 K], добавлен 30.07.2009

Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.

реферат [480,5 K], добавлен 16.10.2008

Анализ методов оценки упругопластических свойств материалов для верха обуви при растяжении. Обоснование выбора методов испытаний и исследуемых материалов. Разработка автоматизированного комплекса для оценки свойств при одноосном и двухосном растяжении.


Материалы гораздо глубже входят в нашу культуру, чем многие думают. Необходимыми элементами нашей повседневной жизни являются транспорт, жилища, средства связи, отдых, производство пищи, и все они в той или иной степени зависят от выбора подходящих материалов. С исторической точки зрения развитие и успехи общественного строя неразрывно связаны с возможностями людей производить и перерабатывать материалы для удовлетворения существующих потребностей. Ранние цивилизации даже определялись по названиям материалов, которые люди научились использовать — Каменный век, Бронзовый век, Железный век.

На ранних этапах человеческого существования люди использовали крайне ограниченное число материалов. Это были, естественно, материалы, имеющиеся в природе — камни, дерево, глина, шкуры животных и т. п. Со временем люди научились производить материалы, по свойствам превосходящие природные продукты. Это были такие новые материалы, как керамика и различные металлы. В дальнейшем было обнаружено, что свойства материалов могут видоизменяться в результате термической обработки или добавления к ним различных субстанций. В то время выбор материала определялся сопоставлением очень ограниченного количества вариантов, исходя из их качества применительно для той или иной цели. Лишь сравнительно недавно ученые поняли, что существует соответствие между структурными элементами, составляющими материал, и им самим. Эти знания стали доступными примерно 100 лет назад, и в значительной степени были обусловлены тем, что люди научились оценивать характеристики материала. Все это привело к тому, что появились десятки тысяч различных материалов с весьма специфическими свойствами, что позволило удовлетворять самые сложные потребности современного общества. К числу материалов, используемых в наши дни, относятся металлы, полимеры, стекла и волокна.

Успехи современных технологий, которые сделали наше существование столь комфортным, связаны с тем, что стали доступными подходящие материалы. Успехи в понимании того, чем определяется тип материала, зачастую предшествуют развитию новых технологий. Так, например, становление автомобильной промышленности было бы невозможным без разработки сравнительно недорогих сталей или иных подходящих материалов. В наше время развитие многочисленных сложных электронных устройств основывается на использовании компонентов, производимых из так называемых полупроводниковых материалов.

Зачем мы исследуем материалы? Многие ученые и инженеры, работающие в области машиностроения, гражданского строительства, химической или электротехнической промышленности, рано или поздно сталкиваются с задачей разработки конструкции изделия. В качестве примера таких изделий можно привести передаточные шестерни, конструкции, используемые в строительстве, детали для нефтеперерабатывающего оборудования, интегральные чипы. Конечно, ученые и инженеры, занимающиеся материаловедением, являются экспертами, знакомыми с задачами изучения материалов и проблемами конструирования из них изделий.

Во многих случаях задача состоит в том, чтобы выбрать подходящий материал из многих тысяч, имеющихся на рынке. Существует несколько критериев, на основании которых следует сделать окончательный выбор. Прежде всего, необходимо четко охарактеризовать условия применения изделия, поскольку именно они определяют необходимые свойства материала. Лишь в очень редких случаях существует материал, который в максимальной степени или идеально отвечает предъявляемым требованиям. Поэтому зачастую приходится пренебрегать одними характеристиками материала по сравнению с другими более важными. Классический пример — это требования по прочности и пластичности. Обычно материал, обладающий очень высокой прочностью, оказывается недостаточно пластичным. Во всех таких случаях необходимо приходить к разумному компромиссу между двумя или большим количеством необходимых свойств.

Далее, необходимо основывать выбор на том, насколько могут снижаться свойства материала в процессе эксплуатации изделия. Например, весьма заметное снижение прочности может быть результатом действия повышенных температур или коррозии в окружающей среде. И, наконец, решающий аргумент может быть связан с экономическими соображениями. Какова будет стоимость конечного изделия? Можно найти материал, который идеально подходил бы по своим свойствам всем предъявляемым требованиям, но был бы чрезмерно дорог. И здесь опять-таки неизбежен определенный компромисс. Следует учесть, что в стоимость конечного продукта входят не только стоимость материала, но и затраты в процессе формования готового изделия.

Чем лучше ученый или инженер знаком с различными характеристиками материала и соотношением между его структурой и свойствами, равно как и с технологией получения изделий, тем более умелым и надежным будет его (или ее) выбор материала, основанный на перечисленных критериях.

Классификация материалов

Твердые материалы обычно подразделяются на три основные группы. Это металлы, керамика и полимеры. Это деление основывается, прежде всего, на особенностях химического строения и атомной структуры вещества. Большинство материалов можно вполне однозначно отнести к той или иной группе, хотя возможны и промежуточные случаи. Кроме того, следует отметить существование композитов, в которых комбинируются материалы, принадлежащие к двум или трем из перечисленных групп. Ниже будет дано краткое описание различных типов материалов и приведены их сравнительные характеристики.

Металлы

Материалы, принадлежащие к этой группе, включают в себя один или несколько металлов (таких как железо, алюминий, медь, титан, золото, никель), а также часто те или иные неметаллические элементы (например, углерод, азот или кислород) в сравнительно небольших количествах.
Атомы в металлах и сплавах располагаются в весьма совершенном порядке. Кроме того, по сравнению с керамикой и полимерными материалами плотность металлов сравнительно высока.

Что касается механических свойств, то все эти материалы относительно жесткие и прочные. Кроме того, они обладают определенной пластичностью (т.е. способностью к большим деформациям без разрушения), и сопротивляемостью разрушению, что обеспечило им широкое применение в разнообразных конструкциях.

В металлических материалах имеется множество делокализованных электронов, т. е. электронов, не связанных с определенными атомами. Именно присутствием таких электронов непосредственно объясняются многие свойства металлов. Например, металлы представляют собой исключительно хорошие проводники для электрического тока и тепла. Они непроницаемы для видимого света. Полированные поверхности металлов блестят. Кроме того, некоторые металлы (например, железо, кобальт и никель) обладают желательными для их применения магнитными свойствами.

Керамика

Керамика — это группа материалов, занимающих промежуточное положение между металлами и неметаллическими элементами. Как общее правило, к классу керамики относятся оксиды, нитриды и карбиды. Так, например, некоторые из наиболее популярных видов керамик состоят из оксида алюминия (Al2O3), диоксида кремния (SiO2), нитрида кремния (Si3N4). Кроме того, к числу тех веществ, которые многие называют традиционными керамическими материалами, относятся различные глины (в частности те, которые идут на изготовление фарфора), а также бетон и стекло. Что касается механических свойств, то керамика — это относительно жесткие и прочные материалы, сопоставимые по этим характеристикам с металлами. Кроме того, типичные виды керамики очень твердые. Однако керамика исключительно хрупкий материал (практически полное отсутствие пластичности) и плохо сопротивляется разрушению. Все типичные виды керамики не проводят тепло и электрический ток (т.е. их электропроводность очень низкая).

Для керамики характерно более высокое сопротивление высоким температурам и вредным воздействиям окружающей среды. Что касается их оптических свойств, то керамика может быть прозрачным, полупрозрачным или совсем непрозрачным материалом, а некоторые оксиды, например, оксид железа (Fe2O3) обладают магнитными свойствами.

Композиты

Композиты представляют собой комбинацию из двух (или большего числа) отдельных материалов, относящихся к различным классам веществ, перечисленным выше, т.е. металлов, керамики и полимеров. Целью создания композитов было стремление достичь такого сочетания свойств различных материалов, которые не могут быть получены для индивидуальных компонент, а также обеспечить оптимальное сочетание их характеристик. Известно большое количество различных композитов, которые получены при совмещении металлов, керамики и полимеров. Более того, некоторые природные материалы также представляют собой композиты, например, это дерево и кость. Однако большинство композитов, которые рассматриваются в настоящей книге, это материалы, полученные из синтетических материалов.

Одним из наиболее популярных и знакомых всем композиционных материалов является стеклопластик. Этот материал представляет собой короткие стеклянные волокна, помещенные в полимерную матрицу, обычно в эпоксидную или полиэфирную смолу. Стеклянные волокна обладают высокой прочностью и жесткостью, но они хрупкие. В то же время полимерная матрица пластична, но ее прочность низкая. Комбинирование указанных веществ приводит к получению относительно жесткого и высокопрочного материала, который, тем не менее, обладает достаточной пластичностью и гибкостью.

Другим примером технологически важного композита являются углепластики — полимеры, армированные углеродными волокнами (CFRP). В этих материалах в полимерную матрицу помещают углеродные волокна. Материалы этого типа более жесткие и более прочные по сравнению со стеклопластиками, но в то же время более дорогие. Углепластики используют в аэрокосмической технике, а также при изготовлении высококачественного спортивного оборудования, например велосипедов, клюшек для гольфа, теннисных ракеток, лыж и сноубордов.

Прогрессивные материалы

Полупроводники

Полупроводники по электрическим свойствам занимают промежуточное положение между электропроводящими материалами (металлами и металлическими сплавами) и изоляторами (керамикой и полимерами). Кроме того, электрические характеристики полупроводников крайне чувствительны к присутствию минимальных количеств посторонних атомов, концентрацию которых необходимо контролировать вплоть до уровня очень малых областей. Создание полупроводниковых материалов сделало возможным разработку интегральных систем, которые произвели революцию в электронике и компьютерной технике (даже если не упоминать изменения в нашей жизни) в течение трех последних десятилетий.

БИОМАТЕРИАЛЫ

Биоматериалы используют для создания имплантатов для тела человека, которые призваны заменить больные или разрушенные органы или ткани. Материалы этого типа не должны выделять токсичных веществ и должны быть совместимыми с тканями человека (т.е. не должны вызывать реакции отторжения). Все перечисленные типы веществ — металлы, керамика, полимеры и полупроводники — могут быть использованы в качестве биоматериалов. В качестве примера можно привести некоторые биоматериалы, которые применяют для изготовления искусственных тазобедренных суставов.

Материалы будущего

В качестве компонентов умных материалов (или систем) могут использоваться некоторые типы датчиков (распознающих входящие сигналы), а также исполнительные системы (активаторы), играющие роль отвечающих и адаптивных устройств. Последние могут использоваться для изменения формы, положения, собственных частот или механических характеристик как ответа на изменение температуры, интенсивности освещенности, напряженности электрического или магнитного полей.

Пьезоэлектрические виды керамики расширяются и сжимаются в ответ на изменение электрического поля (или напряжения); если же их размеры изменяются, то это приводит к возбуждению электрического сигнала. Поведение магнитострикционных материалов аналогично реакции пьезоэлектриков, но только как реакция на изменение магнитного поля. Что касается электро- и магнитореологических жидкостей, то это такие среды, которые претерпевают огромные изменения вязкости в ответ на изменение электрического или магнитного поля, соответственно.

Материалы/устройства, используемые в качестве датчиков, могут быть оптическими волокнами, пьезоэлектриками (к их числу относятся некоторые полимеры) и микроэлектромеханическими устройствами, аббревиатура MEMS.

Нанотехнологические материалы

Одним из примеров материалов рассматриваемого типа являются углеродные нанотрубки. В будущем, несомненно, нам удастся найти все больше и больше областей, в которых проявятся достоинства нанотехнологичных материалов.

Необходимость создания новых материалов

Несмотря на то, что за последние несколько лет был достигнут огромный прогресс в области материаловедения и технологии применения материалов, все же остается необходимость в создании еще более совершенных и специализированных материалов, а также в оценке взаимосвязей между производством таких материалов и его влиянием на окружающую среду. По этому вопросу необходимо дать некоторые комментарии, чтобы обрисовать возможные перспективы в этой области.

Создание ядерной энергетики предлагает определенные обещания будущего, но здесь остаются многочисленные проблемы, связанные с разработкой новых материалов, которые необходимы на всех стадиях — от системы размещения топлива в реакторе до хранения радиоактивных отходов.

Большие затраты энергии связаны с перевозками. Уменьшение веса транспортирующих устройств (автомобилей, самолетов, поездов и т.д.), также как и увеличение температуры, при которой работают двигатели, будет способствовать более эффективному потреблению энергии. Для этого требуется создать высокопрочные легкие инженерные материалы, равно как и материалы, которые могут работать в условиях повышенных температур.

Далее, существует общепризнанная необходимость в новых экономически обоснованных источниках энергии, а также в более эффективном использовании существующих источников. Несомненно, что материалы с нужными характеристиками играют огромную роль в развитии этого направления. Так, например, была продемонстрирована возможность прямого преобразования солнечной энергии в электрический ток. В настоящее время солнечные батареи представляют собой довольно сложные и дорогостоящие устройства. Несомненно, что должны быть созданы новые относительно дешевые технологические материалы, которые должны быть более эффективными в осуществлении использования солнечной энергии.

Еще одним очень привлекательным и вполне реальным примером в технологии преобразования энергии служат водородные топливные элементы, которые к тому же обладают тем преимуществом, что не загрязняют окружающую среду. В настоящее время только начинается использование этой технологии в электронных устройствах; в перспективе такие элементы могут использоваться как силовые установки в автомобилях. Для создания более эффективных топливных элементов нужны новые материалы, а для производства водорода необходимы новые катализаторы.

Для поддержания качества окружающей среды на требуемом уровне нам необходимо осуществлять контроль состава воздуха и воды. Для осуществления контроля загрязнений используют различные материалы. Кроме того, необходимо усовершенствовать методы переработки и очистки материалов с тем, чтобы снизить загрязнение окружающей среды, т.е. стоит задача создавать меньше отходов и меньше вредить окружающей нас природе при добыче полезных ископаемых. Следует также учесть, что при производстве некоторых материалов образуются токсичные вещества, так что следует учесть возможный ущерб экологии от сброса таких отходов.

Автор: Каллистер У.Д., мл. (Пер. с англ. под ред. А.Я. Малкина)

Статьи публикуются с разрешения автора и обязательным указанием ссылки на источник

Редакция оплачивает на договорной основе
технические статьи, маркетинговые отчеты, рецептуры, обзоры рынка
и другую отраслевую информацию и права не ее размещение

Приглашаем специалистов к сотрудничеству в качестве внештатных авторов и консультантов!

Презентация на тему: " Технология создания изделий из древесных и поделочных материалов на основе конструкторской и технологической документации Стирманов Василий Николаевич," — Транскрипт:

1 Технология создания изделий из древесных и поделочных материалов на основе конструкторской и технологической документации Стирманов Василий Николаевич, учитель технологии, МОУ СОШ59 г.Архангельск

3 Цель урока изучение и применение способов сборки и отделки деталей изделия

4 Сборка изделий из древесины Сборка На шурупах РазъемнаяНеразъемная На клеюНа гвоздях На винтах, болтах С удалением материала Без удаления материала Разъемная Шиповые соединения на клею Неразъемная Шиповые соединения

5 Вывод СБОРКА - образование соединений составных частей изделия, или процесс соединения деталей между собой тем или иным способом

6 Полировочные пасты Отделка изделий из древесины Отделка Лаками ПрозрачнаяНепрозрачная Красками Эмалями Олифой Декоративная Имитация под дорогие породы древесины Роспись по дереву Инкрустация Аппликация Художественное выжигание Резьба по дереву Воском

7 Технология прозрачной отделки изделия лаком

8 Технология непрозрачной отделки изделия краской

9 Разрез окрашенной поверхности

10 Виды красок Малярный клей и пигмент Олифа и пигментЛак и пигментВода и пигмент КлееваяМаслянаяЭмаль Водоэмуль- сионная Пигмент - красящее вещество – придает раствору определенный оттенок Лак - пленкообразующие вещества (смолы) в органических растворителях Олифа – льняное или конопляное масло нагретое до температуры 275 С

11 Инструменты Шпатели Валик Кисточки Шпатели

12 Отделка вешалки для верхней одежды Покраска Аппликация Выжигание Изменение текстуры древесины с помощью морилки ЛакированиеДекорирование самоклеящей пленкой

13 Вывод ОТДЕЛКА готового изделия заключается в его окончательной обработке для придания ему красивого внешнего вида и защите его поверхности от воздействия окружающей среды, что в значительной степени сохраняет его срок службы.

Поделочный материал выбирают в зависимости от назначения и вида изделия, приемлемых способов обработки и отделки. Прежде всего нужно учитывать не только механические свойства материала, но также цвет и тон древесины. Доски лучше выбирать радиального среза ( меньше подвержены короблению), с плотным расположением годовых колец, хорошо просушенные. Еще меньше подвержена короблению выдержанная древесина, например доски от старой мебели, в течение нескольких лет находившиеся в помещении с нормальной, влажностью. [2]

Поделочный материал марок ПТК , ПТ-1, ПТ ( ГОСТ 5 - 62), изготовляемый из хлопчатобумажной ткани, пропитанной резольной фенолформальде-гидной смолой. Выпускается в виде листов толщиной 0 5 - 0 8 мм и плит толщиной 8 - 70 мм. Длина и ширина листов и плит устанавливается по согласованию с заказчиком. Химически стоек ( ПТК) при температуре 20 С в средах: кислота серная ( 60 %), соляная ( 30 %), фосфорная ( 40 %), лимонная ( 59 % при 60 С), бензин, керосин. [3]

Интересным поделочным материалом в некоторых случаях могут служить шеллачно-сажевые патефонные пластинки. Обработка их сводится к резке лобзиком или раскаленным ножом, изгибанию и штамповке при нагревании и сварке с помощью горячего паяльника. [4]

Представляет прекрасный поделочный материал . Иногда образуется как вещество современных раковин. [5]

Выбор поделочного материала для любительских работ достаточно разнообразен. В распоряжении мастера могут быть доски и бруски из различных пород древесины, фанера и древесностружечная плита, паркетная дощечка. Последняя пригодна, например, для изготовления декоративных элементов конструкций и ответственных узлов и деталей, несущих механические нагрузки. Даже тарная дощечка в умелых руках мастера может обрести новую жизнь. [6]

Является ценным поделочным материалом , используется для облицовки ( напр. [7]

Применяется как поделочный материал в промышленности общего и специального машиностроения и приборостроения. [8]

Применяется как поделочный материал в машиностроении и приборостроении. [9]

Текстолит применяется как поделочный материал для подшипников прокатных станов, направляющих роликов и шестерен в тракторе - и автостроении. Текстолитовые шестерни отличаются от металлических бесшумностью. Выпускаются специальные электротехнические сорта текстолита. Из листового текстолита штампуют прокладочные шайбы. [10]

Древесина употребляется как строительный и поделочный материал , а также в качестве топлива и химического сырья. На переработку она обычно поступает в виде дров. Используются также древесные отходы ( сучья, опилки, пни и др.), составляющие более 40 % от общего количества заготовляемой древесины. [11]

Древесина употребляется как строительный и поделочный материал , а также в качестве топлива и химического сырья. При сухой перегонке древесины наряду с углем получают уксусную кислоту, древесный ( метиловый) спирт, деготь, газ и др. Из древесной смолы извлекают канифоль и скипидар. Переработкой древесины получают также целлюлозу, идущую на производство бумаги, искусственного волокна, бездымных порохов и др. В последнее время путем гидролиза из древесины стали получать этиловый спирт. [12]

Древесина употребляется как строительный и поделочный материал , а также в качестве топлива и химического сырья. На переработку она обычно поступает в виде дров. Используются также древесные отходы ( сучья, опилки, пни и др.), составляющие более 40 % от общего количества заготовляемой древесины. [13]

Применяют в качестве технического поделочного материала . [14]

Применяют в качестве технического поделочного материала главным образом в машиностроении. Текстолит толщиной до 8 м называется листовым, а свыше этой толщины-плиточным. Выпускают трех марок: ПТК, ПТ и ПТ-1, различающихся плотностью применяемого текстоля и физико-механическим свойствами. [15]

Читайте также: