Условия жизни на земле доклад

Обновлено: 17.05.2024

Для существования жизни на Земле необходимы следующие ключевые условия: наличие источника световой энергии, определенная концентрация кислорода и углекислого газа, необходимый минимум минеральных веществ, достаточное количество жидкой воды, определенный интервал благоприятных температур, отсутствие загрязняющих веществ, которые по своим свойствам и концентрации превосходят допустимые для жизни уровни.

Значение и использование световой энергии

Источником энергии, необходимым для существования жизни на Земле, как вы уже знаете, является Солнце. Улавливание энергии Солнца происходит растениями, содержащими хлорофилл, в процессе фотосинтеза. В результате солнечная энергия преобразуется в энергию химических связей синтезированных органических веществ. В дальнейшем эта энергия используется для жизнедеятельности как самих растений, так и других организмов, использующих растения в качестве пищи.

Значение кислорода и углекислого газа

Кислород является побочным продуктом фотосинтеза. В настоящее время всеми зелеными растениями и фотосинтезирующими микроорганизмами планеты продуцируется около 170 млрд т кислорода в год.

Из молекулярного кислорода под действием ультрафиолетовых лучей образуется озон (О3), который на высоте 22—25 км формирует мощный экран. Озоновый экран способен задерживать основную массу ультрафиолетовых лучей, защищая организмы от их губительного действия.

Кислород играет значительную роль в обмене веществ для большинства живых организмов. Он участвует в процессе дыхания, в результате которого высвобождается энергия, необходимая для синтеза различных органических соединений, роста, развития и размножения организмов.

Дыхание является одним из основных процессов обмена веществ живого организма, в результате которого выделяется углекислый газ. Роль углекислого газа, как и кислорода, в биосфере также очень велика. Ежегодно растения поглощают из атмосферы около 250 млрд т этого газа. Он принимает участие в образовании живого органического вещества в процессе фотосинтеза.

Являясь парниковым газом, углекислый газ участвует в формировании климата на планете.

Значение минеральных веществ

Первичными источниками микроэлементов в основном являются горные породы, частично — атмосфера, воздух и почвенно-грунтовые воды. Соединения микроэлементов в породах и особенно в почвах отличаются разнообразием. Многие микроэлементы существенно влияют на процессы почвообразования и активно в них участвуют. Растения потребляют микроэлементы главным образом из почвы, в меньшей степени — из воздуха и воды. Оседающая атмосферная пыль также является источником микроэлементов, которые проникают в растения и животных непосредственно через эпидермис или эпителий. Микроэлементы важны для живых организмов: они участвуют в обменных процессах и воздействуют на развитие растений и животных. Живые организмы резко реагируют на недостаток или избыток микроэлементов. После гибели живых организмов при разложении отмершей органики происходит минерализация и в почвенном слое образуется необходимое количество минеральных веществ. Эти вещества могут участвовать в процессе почвообразования и вовлекаться растениями и микроорганизмами в круговорот веществ.

Значение и свойства воды

Немаловажным условием существования жизни является наличие на планете воды в жидком состоянии. В. И. Вернадский писал, что нет другого минерального вещества, которое могло бы оказать такое влияние на ход основных геологических процессов

Чистая вода представляет собой бесцветную прозрачную жидкость. Это единственное вещество, встречающееся на Земле в естественных условиях в трех агрегатных состояниях: твердом, жидком и газообразном.

При переходе из твердого состояния в жидкое, в отличие от других веществ, плотность воды вначале возрастает, а затем уменьшается. Увеличение ее плотности происходит в диапазоне температур от 0 до 4 о С. При 0 о С, когда вода замерзает, плотность льда скачкообразно снижается более чем на 9 %. Благодаря этому удивительному свойству при приближении зимы и охлаждении всей толщи воды в водоеме до 4 о С перемешивание ее слоев, вызываемое охлаждением, заканчивается. Поверхностный слой воды замерзает и остается на поверхности водоема в виде льда, защищая тем самым нижележащие слои от замерзания. Благодаря этим свойствам водоемы не промерзают до дна, что дает возможность сохранить разнообразные живые водные организмы.

Большое значение для обеспечения существования биосферы имеет и высокая теплоемкость воды. Мировой океан является крупнейшим накопителем и перераспределителем солнечной энергии, преобразованной в тепловую. Благодаря высокой теплоемкости воды при переходе от лета к зиме либо в ночное время вода медленно остывает, отдавая накопленную энергию. В утренние часы и при переходе от зимы к лету вода медленно прогревается. Так обеспечивается сглаживание амплитуды колебаний среднесуточной и среднегодовой температур, а также стабилизируются многие экологические факторы, такие как влажность воздуха и климат.

Для организмов вода также имеет существенное значение. В живых клетках ее содержание составляет от 60 до 98 %. Вода является средой, в которой происходят все биохимические реакции, необходимые для жизнедеятельности организма. Без воды невозможно образование растениями углеводов в процессе фотосинтеза. Вода осуществляет транспортную функцию и выводит из организма продукты распада сложных органических веществ. Она используется для поддержания температурного режима как у растений в ходе транспирации, так и у животных, выделяясь в виде пота. При испарении воды понижается температура поверхности живого организма. Водный обмен между средой и живым организмом состоит из двух противоположных процессов: первый — поступление воды в организм, второй — выделение ее в окружающую среду. Выведение воды из организма животных происходит с мочой, экскрементами и путем испарения.

Зачастую вода используется людьми крайне нерационально. Бережное отношение к воде — прямая обязанность каждого жителя Земли.

Значение температурных условий

Значение температуры в биосфере заключается в том, что она изменяет скорость протекания биохимических реакций в клетках живых организмов, что отражается на их росте, развитии, размножении, поведении и во многом определяет географическое распространение растений и животных. При выходе значений температуры за пределы выносливости организмов происходит их массовая гибель.

В. И. Вернадский определил биосферу как термодинамическую оболочку с температурой от –50 °С до +50 °С и давлением около 1 атм. Эти условия и определяют границы жизни для большинства организмов.

Распределение жизни в биосфере в зависимости от температурных условий отличается крайней неравномерностью. Она чрезвычайно обильна и разнообразна в экваториальных и тропических лесах, менее развита в пустынях, тундрах, глубинах океана и высоко в горах. Полностью лишены жизни в настоящий период лишь области обширных оледенений.

Это интересно. Крайние пределы температур, которые выносят некоторые формы жизни, — от абсолютного нуля (–273,15 °С) до +180 °С. Это крайние значения шкалы температурной толерантности земных организмов. Однако они способны выживать при таких температурах лишь в состоянии анабиоза или в виде спор.

Загрязняющие вещества и их значение

Негативные последствия на существование живых организмов оказывает воздействие загрязняющих веществ. В современных условиях таких веществ достаточно большое количество. Источниками загрязняющих веществ являются технологическое оборудование, машины, механизмы. К наиболее опасным загрязняющим веществам относятся канцерогенные вещества, воздействие которых на организм человека или животных повышает вероятность возникновения злокачественных опухолей (ионизирующее и ультрафиолетовое излучения, нитраты, нитриты, формальдегид, ароматические углеводороды). Для этих веществ не существует нижних пределов безопасности и любые их количества опасны для живых организмов. Чтобы сохранить видовое разнообразие живых организмов, необходимо знать предельно допустимые уровни содержания загрязняющих веществ, при которых возможна нормальная жизнедеятельность организмов.

Повторим главное. Жизнь обладает значительным запасом прочности и устойчивости к воздействию среды. Живые организмы могут существовать в широком диапазоне условий среды. Однако для существования жизни на Земле необходим ряд условий. Одним из них является наличие источника световой энергии. Не менее важными условиями являются наличие определенных концентраций кислорода и углекислого газа, нужного количества минеральных веществ, достаточного количества жидкой воды, определенного интервала благоприятных температур и отсутствие загрязняющих веществ, которые по своим свойствам и концентрации превосходят допустимые для жизни уровни.

Проверим знания

Ключевые вопросы

1. Перечислите ключевые условия, необходимые для существования жизни на Земле.
2. Почему для существования жизни на Земле необходима энергия Солнца?
3. Какую роль для поддержания жизни на Земле играет процесс фотосинтеза?
4. Для чего на Земле необходим процесс разложения органического вещества?
5. Какими свойствами, необходимыми для поддержания жизни, обладает вода?

Сложные вопросы

1. Где в биосфере наблюдается наибольшая плотность живого вещества? Какие условия для этого нужны?
2. За счет чего формируется температурный режим, благоприятный для жизни на Земле?
3. Какие загрязняющие вещества характерны для вашего региона? Предложите меры для уменьшения количества этих веществ.


Дэйв Брейн Будущее

Любопытно, что Земля — единственное место, где есть жизнь, 8,7 млн видов. Мы изучали другие планеты, может, не так усердно, как следовало бы, но мы искали и ничего не нашли. Земля — единственное известное нам место, где есть жизнь. Но уникальна ли Земля? Ответ на этот вопрос я хотел узнать с детства, думаю, 80% аудитории думали так же и тоже хотели узнать ответ. Чтобы понять, есть ли другие планеты в нашей Солнечной системе или вне ее, на которых возможна жизнь, во-первых, нужно понять, что нужно для жизни.

Оказалось, что для жизни всех 8,7 млн видов нужны три вещи. С одной стороны, для жизни на Земле нужна энергия. Сложные организмы, как мы, получают энергию от Солнца, а организмы глубоко под землей получают ее, например, от химических реакций. Различные источники энергии можно найти на всех планетах. С другой стороны, для жизни нужна еда или питательные вещества. С этим уже сложнее, особенно если вы любите сочные помидоры.

Тем не менее все живое на Земле получает питательные вещества всего из шести химических элементов, и эти элементы можно найти на любой планете нашей Солнечной системы. Таким образом, остается лишь одна вещь, которую сложнее всего получить. Не лось, а вода.

Хотя лось, конечно, очень круто.

Притом вода не в твердом или газообразном состоянии, а жидкая. Всякая жизнь нуждается в этом. На многих телах Солнечной системы нет воды в жидком виде, поэтому мы там не ищем. На других телах может быть жидкая вода, даже больше, чем на Земле, но она спрятана под ледяной оболочкой, до нее сложно добраться, трудно даже узнать, есть ли там жизнь.

В итоге у нас остается несколько вариантов для поиска. Так давайте облегчим себе задачу. Давайте рассматривать только воду на поверхности планеты. В нашей Солнечной системе существует только три тела, на поверхности которых есть вода. В порядке удаленности от Солнца это Венера, Земля и Марс. Чтобы вода была жидкой, нужна атмосфера. Атмосфера — очень тонкий вопрос. Атмосфера не должна быть слишком горячей или плотной, иначе планета будет слишком горячей, как Венера, и на ней не будет жидкой воды. Но если атмосфера слишком разреженная или слишком холодная, получится Марс. То есть, Венера слишком горячая, Марс — холодный, а Земля — в самый раз. Взгляните на картинки за моей спиной и сразу поймете, где в нашей Солнечной системе могут выжить организмы. Это как в сказке о трех медведях, проблема такая простая, что понятна даже ребенку.

Однако я бы хотел напомнить вам о двух вещах из сказки о трех медведях, о которых мы редко задумываемся, но которые были бы здесь уместны. Первая: если чашка мамы медведицы была слишком холодной, когда девочка зашла в дом, значит ли это, что чашка всегда была холодной? Могла ли она когда-то быть теплой? То, когда девочка попадает в дом, определяет то, что мы находим в сказке. То же самое с планетами. Они не статичны. Они меняются. Они варьируются. Они эволюционируют. То же происходит с атмосферой. Позвольте привести пример.

Это одна из моих любимых фотографий Марса. Это не самое качественное и привлекательное изображение, это не самое новое изображение, но здесь видны русла рек, врезанные в поверхность планеты. Эти русла образовало течение жидкой воды; на их формирование ушли сотни, тысячи или десятки тысяч лет. Сейчас на Марсе они не появятся. Атмосфера Марса сегодня слишком тонкая и холодная, чтобы могла образоваться жидкая вода. Одна эта фотография показывает, что атмосфера Марса изменилась и изменилась значительно. А раньше это было место, пригодное для жизни, так как когда-то давно там были все три необходимых условия для жизни. Куда делась атмосфера, позволявшая воде оставаться в жидком состоянии?

Есть мысль, что она ушла в космос. Частицы атмосферы получили энергию и освободились от гравитации планеты, вырвались в космос и не вернулись. Так случается со всеми телами в атмосфере. У комет бывают хвосты, служащие ярким напоминанием об утечке атмосферы. Но у Венеры тоже есть атмосфера, которая постепенно исчезает, как у Марса и Земли. Вопрос лишь в степени и масштабе. Нам бы хотелось узнать, как много атмосферы исчезло, чтобы мы смогли объяснить эти изменения.

Как атмосфера получает энергию для выхода? Как частицы получают достаточно энергии? Если короче, есть два пути. Первый — солнце. Солнечный свет поглощается атмосферными частицами и нагревает их. Да, я танцую, но…

Боже, я даже на своей свадьбе не…

Они получают достаточно энергии, чтобы вырваться и освободиться от гравитации планеты только благодаря теплу. Второй способ получить энергию — солнечный ветер. Эти частицы, масса, материал, покинув поверхность солнца, мчатся через Солнечную систему со скоростью 400 км в секунду, во время солнечных бурь иногда быстрее. Они движутся через межпланетное пространство к планетам и их атмосферам и могут дать энергию частичкам атмосферы, чтобы те тоже сбежали.

Я мог бы рассказать вам о множестве характеристик этих трех планет, влияющих на возможность жизни, но из эгоизма, связанного с моим исследованием, а также оттого, что не вы, а я стою здесь и держу в руках переключатель… я бы хотел посвятить минуту или две магнитным полям. У Земли оно есть, а у Венеры и Марса — нет. Магнитные поля создаются в недрах планеты потоками электропроводящего жидкого вещества, что и создает это сильное древнее магнитное поле вокруг Земли. Если у вас есть компас, он покажет, где север. На Венере и Марсе этого нет. Если вы на Венере или Марсе с компасом, поздравляю, вы потерялись.

Влияет ли это на пригодность для жизни? Как это могло бы влиять? Многие ученые считают, что магнитное поле планеты служит щитом для атмосферы, отгоняет от планеты частицы солнечного ветра, создавая как бы эффект силового поля по отношению к этим электрически заряженным частицам. Мне же это видится перегородкой, защищающей салаты от чихающих посетителей.

И да, мои коллеги, которые увидят это позже, поймут, что впервые в истории научного сообщества солнечный ветер сравнили с соплями.

Таким образом Земля могла быть защищена в течение миллиардов лет благодаря магнитному полю. Атмосфера не могла исчезнуть. Марс, с другой стороны, не был защищен из-за отсутствия магнитного поля, возможно, за миллиарды лет достаточно атмосферы покинуло планету, обусловив переход от пригодной для обитания планеты до той, которую мы видим сегодня.

Другие ученые предполагают, что магнитные поля больше схожи с парусами корабля и позволяют планете взаимодействовать с бóльшим количеством солнечной энергии, чем она смогла бы уловить самостоятельно. Паруса могут собирать энергию солнечного ветра. Магнитное поле может собирать энергию солнечного ветра, что позволяет сбежать большему числу частиц атмосферы. Эту идею еще нужно проверить, но эффект и механизм работы кажутся очевидными. Потому что мы знаем, что энергия солнечного ветра накапливается в нашей атмосфере здесь, на Земле. Эта энергия проводится по магнитным силовым линиям к полярным областям, и в результате возникает северное сияние. Если вы когда-то видели его… Это великолепно. Мы знаем, что получаем энергию. Мы пытаемся измерить, какое количество частиц теряется и влияет ли магнитное поле на этот процесс.

Итак, я обозначил проблему, но у меня еще нет решения. У нас нет решения. Но мы над ним работаем. Как мы над ним работаем? Мы отправили космические аппараты на три планеты. Некоторые еще на орбитах, включая MAVEN, который сейчас находится на орбите Марса. Я участвую в этом проекте, который ведется отсюда, прямо из Колорадского университета. Его цель — измерить выход частиц атмосферы. Такие же измерения проведены на Венере и на Земле. Когда мы получим все измерения, мы можем их все объединить и понять, как все эти планеты взаимодействуют с космическим пространством и с их окружением. И мы сможем понять, влияют магнитные поля на пригодность для жизни или нет.

Почему вас должен заботить ответ? Меня лично это волнует… в том числе с финансовой точки зрения.

Мы наблюдаем за этими планетами, но пока не знаем, которые из них пригодны для жизни. Это словно оказаться в ловушке, в красном круге… на сцене и знать, что где-то есть другие миры, и отчаянно хотеть узнать о них больше, жаждать опросить их и обнаружить, что, возможно, один или два из них немного похожи на нас. Но это невозможно сделать. Туда пока нельзя добраться. Поэтому приходится использовать инструменты, созданные для изучения Венеры, Земли и Марса, применять их для других случаев и надеяться, что ваши выводы из этих данных разумны и что вы сумеете определить наиболее вероятных претендентов на пригодные и непригодные для обитания планеты.

В конце концов, по крайней мере пока, наш красный круг именно здесь. Это единственная известная нам планета, пригодная для жизни. Хотя, возможно, очень скоро мы узнаем новые планеты, но сейчас это единственная обитаемая планета, и это наш красный круг. Я очень рад, что мы здесь.

Среда обитания, экологические факторы, гидробионты, аэробионты, эдафобионты, эндобионты.

Планируемые результаты:

  • основные среды обитания;
  • классификацию экологических факторов;
  • экологические типы живых организмов.
  • давать характеристику среды обитания, используя экологические факторы;
  • распределять живые организмы по средам обитания.
  1. Беседа, просмотр презентации, выполнение заданий с самопроверкой и взаимопроверкой.
  2. Средства обучения
  3. Компьютер, проектор, мультимедийная презентация, карточки для самопроверки.

1 ЭТАП. Актуализация знаний. Условия обитания различных видов удивительно разнообразны. Одни из них, например некоторые мелкие клещики или насекомые, всю жизнь проводят внутри листа растения, который для них – целый мир, другие осваивают огромные и разнообразные пространства, как, например, северные олени, киты в океане, перелетные птицы.

Слайд № 2, 3. Изучение данной темы в 6–7-х классах. (Презентация)

Слайд № 4. Задачи урока.

2 ЭТАП. Изучение нового материала.

Слайд № 5. Определение среды обитания.

В зависимости от того, где живут представители разных видов, на них действуют разные комплексы экологических факторов. На нашей планете можно выделить несколько основных сред обитания (сред жизни), сильно различающихся по условиям существования: водную, наземно-воздушную, почвенную. Средой обитания служат также сами организмы, в которых живут другие Окружающая среда, или среда обитания – это все то, что окружает живой организм (совокупность сил и явлений природы, ее вещество и пространство, а также деятельность человека) и прямо или косвенно влияет на его состояние, рост и развитие, выживаемость, размножение и другие процессы жизнедеятельности.

Слайд № 6. Экологические факторы.

Слайд №7. Абиотические факторы среды.

Абиотические факторы – это комплекс условий окружающей среды, влияющих на живой организм (температура, давление, радиационный фон, влажность, состав атмосферы, морских и пресных вод, донных отложений, почвы и др.).

Слайд №8. Биотические факторы среды.

Биотические факторы – это совокупность влияний жизнедеятельности одних организмов на другие (конкуренция, хищничество, паразитизм и другие).

Знаком "плюс" обозначают благоприятное действие одного вида или популяции на рост, выживание или прочие характеристики другого вида или популяции, при этом развитие вида или популяции делается возможным или облегчается.

Знаком "минус" обозначают отрицательные действия одного вида или популяции на рост или прочие характеристики другого вида или популяции; при этом развитие второго вида или популяции затрудняется или делается невозможным.

Высокая или низкая степень воздействия выражается разным количеством минусов. Самый жёсткий тип отношений определяется тремя минусами (хищничество), менее жесткий (паразитизм) – двумя минусами, так как это не обязательно приводит к гибели хозяина, один минус (конкуренция) в том случае, когда двое используют один вид корма.

Слайд № 9. Антропогенный фактор.

Антропогенные факторы – это совокупность влияний деятельности человека на окружающую среду (выбросы вредных веществ в атмосферу, разрушение почвенного слоя, нарушение природных ландшафтов и др.).

Слайд № 10. Основные среды обитания.

Слайд № 11. Наземно-воздушная среда обитания.

Наземно-воздушная среда обитания самая сложная по экологическим условиям. Жизнь на суше потребовала от обитающих здесь организмов особых приспособлений к таким важнейшим факторам, как воздух, свет, влажность, температура, давление и другим.

Обитатели наземно-воздушной среды – аэробионты.

В ней много кислорода, много света, более резкие изменения температуры во времени и в пространстве, значительно слабее перепады давления и часто возникает дефицит влаги. В такой малоплотной среде, как воздух, организмам необходима опора. Поэтому у наземных растений развиты механические ткани, а у наземных животных сильнее, чем у водных, выражен внутренний или наружный скелет. Низкая плотность воздуха облегчает передвижение в нем. Активный и пассивный полет освоили около двух третей обитателей суши. Большинство из них – насекомые и птицы. Воздух – плохой проводник тепла. Этим облегчается возможность сохранения тепла, вырабатываемого внутри организмов, и поддержание постоянной температуры у теплокровных животных. Само развитие теплокровности стало возможным в наземной среде. Предки современных водных млекопитающих – китов, дельфинов, моржей, тюленей – когда-то жили на суше. У наземных обитателей очень разнообразны приспособления, связанные с обеспечением себя водой, особенно в засушливых условиях. У растений это мощная корневая система У животных это также различные особенности строения тела и покровов, но, кроме того, поддержанию водного баланса способствует и соответствующее поведение. Они могут, например, совершать миграции к водопоям или активно избегать особо иссушающих условий. Некоторые животные могут жить всю жизнь вообще на сухом корме, как, например, тушканчики или всем известная платяная моль. В этом случае вода, необходимая организму, возникает за счет окисления составных частей пищи. В жизни наземных организмов большую роль играют и многие другие экологические факторы, например состав воздуха, ветры, рельеф земной поверхности. Особо важны погода и климат. Обитатели наземно-воздушной среды должны быть приспособлены к климату той части Земли, где они живут, и переносить изменчивость погодных условий.

Слайд № 12. Водная среда обитания.

Обитатели водной среды – гидробионты.

Все водные обитатели должны быть приспособлены к главным особенностям своей среды. Эти особенности определяются физическими свойствами воды: ее плотностью, теплопроводностью, способностью растворять соли и газы.

Плотность воды определяет ее значительную выталкивающую силу. Это значит, что в воде облегчается вес организмов и появляется возможность вести постоянную жизнь в водной толще, не опускаясь на дно. Множество видов, преимущественно мелких, неспособных к быстрому активному плаванию, как бы парят в воде, находясь в ней во взвешенном состоянии. Совокупность таких мелких водных обитателей получила название планктон. В состав планктона входят микроскопические водоросли, мелкие рачки, икра и личинки рыб, медузы и многие другие виды (рис. 1). Планктонные организмы переносятся течениями и не в силах противостоять им. Наличие в воде планктона делает возможным фильтрационный тип питания, т. е. отцеживание при помощи разных приспособлений взвешенных в воде мелких организмов и пищевых частиц. Оно развито и у плавающих, и у сидячих донных животных, таких, как морские лилии, мидии, устрицы и другие. Сидячий образ жизни водных обитателей возможен только при наличии планктона и только в среде с достаточной плотностью.

Плотность воды затрудняет активное передвижение в ней, поэтому быстро плавающие животные, такие, как рыбы, дельфины, кальмары, должны иметь сильную мускулатуру и обтекаемую форму тела (рис. 2). В связи с высокой плотностью воды давление с глубиной сильно растет. Глубоководные обитатели способны переносить давление, которое в тысячи раз выше, чем на поверхности суши.

Свет проникает в воду лишь на небольшую глубину, поэтому растительные организмы могут существовать только в верхних горизонтах водной толщи. Даже в самых чистых морях фотосинтез возможен лишь до глубин в 100–200 м. На больших глубинах растений нет, а глубоководные животные обитают в полном мраке.

Слайд № 13. Почвенная среда обитания.

Почва представляет собой тонкий слой на поверхности суши, переработанный деятельности живых существ. Это трехфазная среда (почва, влага, воздух) Воздух в почвенных полостях всегда насыщен водяными парами, а состав его обогащен углекислым газом и обеднен кислородом. С другой стороны, соотношение воды и воздуха в почвах постоянно меняется в зависимости от погодных условий. Температурные колебания очень резки у поверхности, но быстро сглаживаются с глубиной. Главная особенность почвенной среды – постоянное поступление органического вещества в основном за счет отмирающих корней растений и опадающей листвы. Это ценный источник энергии для бактерий, грибов и многих животных, поэтому почва – самая насыщенная жизнью среда. Ее скрытый от глаз мир очень богат и разнообразен.

Обитатели почвенной среды – эдафобионты.

Слайд № 14. Организменная среда.

Организмы, населяющие живые существа – эндобионты.

Паразитизм – широко распространенное в природе явление. Нет ни одного вида многоклеточных животных или растений, которые не имели бы своих паразитов. Они обнаруживаются даже у бактерий. Паразиты могут населять полости тела хозяина, проникать в ткани или внутрь отдельных клеток. Сложный организм хозяина для них – целый мир. Кроме паразитов, виды-хозяева могут иметь полезных сожителей. Например, жвачные животные не смогли бы переваривать пищу без разнообразных бактерий и инфузорий, населяющих их желудок Пищеварение человека также осуществляется с помощью полезной микрофлоры.

Паразиты, использующие хозяина и в качестве местообитания, и в качестве источника пищи, сами могут служить хозяевами для других паразитов. Иногда на вторичных паразитах поселяются третичные, а в некоторых случаях доходит и до паразитизма в четвертой стадии. Так, в кишечнике головастиков и лягушек паразитируют ресничные простейшие – опалины, на них поселяются амебы, которые, в свою очередь, поражаются микроскопическими грибками.

Задумывался ли ты когда-нибудь о том, насколько удивительно удачные условия сложились на Земле для образования жизни? Давай расскажу, как нам повезло!

В конце статьи я расскажу, какую жизнь вероятнее всего мы сможем обнаружить во Вселенной, а вероятность обнаружения какой стремится к нулю.

Зона Златовласки

Чтобы на планете была жизнь, там должна быть вода. Ну, это необходимо по крайней мере для тех видов жизни, которые нам на сегодняшний день известны.

Для известной нам жизни вода на планете должна присутствовать именно в жидком виде. Для этого планета может быть удалена от своего светила на конкретное расстояние.

Если планета находится ближе к звезде, то океаны вскипят . Если слишком далеко, то вода, наоборот, превратится в лёд.

Планету должен защищать гигант

Да, не какой-нибудь гигант из детской сказки, а планета-гигант.

Земле повезло, у неё в соседях есть Юпитер. Планета-гигант выполняет роль чистильщика. Она забирает себе все астероиды и прочие неприятные летающие камни, тем самым защищая нас.

Если бы не Юпитер, Землю бомбардировало бы метеоритами и кометами каждые 10 000 лет. А так, последняя крупная бомбардировка произошла 65 млн лет назад , что по официальным данным привело к вымиранию динозавров. Об этом я писала здесь, можешь почитать :)

Как Луна помогает жизни на Земле

Луна необходима для стабилизации наклона земной оси. Если бы не Луна, наша планета могла бы переворачиваться, что вызывало бы сильные колебания климата, несовместимые с жизнью.

Тебе, дорогой читатель, наверно тяжело существовать, если температура выходит за пределы 10-25 градусов Цельсия? Вот. А было бы ещё хуже, не будь Луны.

Планета должна находится в определённом месте Галактики

Когда мы переезжаем в крупные города, мы пытаемся выбрать оптимальное местоположение нашего жилища. В центре обычно много туристов. На окраине, наоборот, ничего кроме муравейников. Вот и думай, где жить, чтоб жизнь была сносной.

Такие же проблемы и у галактики. Живёшь близко к центру галактики – подвергаешься атаке высокой радиации. Живёшь на окраинах галактики, значит, не будет хватать тяжёлых элементов для создания ДНК и, соответственно, жизни.

Вот и ищи баланс. И Земля его нашла. Чему я рада. Не знаю, как ты.

Необходимо сильное магнитное поле

У Марса очень слабое магнитное поле. Оно в 500 раз слабее земного. Магнитное поле Марса резко ослабло 4 млрд лет назад. Причины неизвестны.

Магнитное поле необходимо для того, чтобы защищать планету от солнечного ветра, радиации и прочих космических лучей. Потому что всё перечисленное несовместимо с жизнью.

Скорость вращения планеты

Что будет, если планета вращается вокруг своей оси с бешеной скоростью ? На ней будут мощнейшие бури и ветры . Для жизни такой климат не подошёл бы. Питерские ветра уже не очень подходят для жизни, а они гораздо слабее.

Если бы планета вращалась слишком медленно, то та её часть, которая обращена к Солнцу, была бы охвачена пламенем, в то время как другую окутала бы вечная мерзлота (что почти как вечная мерзота ).

Какую жизнь вероятнее всего обнаружить

Конечно же вероятнее обнаружить простые организмы. Профессоры Питер Уорд и Дональд Браунли считают, что во Вселенной много микробов. Так что не забывай брать дезинфектор в свои межгалактические поездки!

Читайте также: