Синхронные машины переменного тока доклад

Обновлено: 06.06.2024

Благодаря техническому прогрессу на современных производствах внедряются новые виды электропривода. Например, асинхронные двигатели с КЗ ротором с частотным преобразователем постепенно заменяют АДФР и ДПТ. Но есть машины, которые благодаря своим характеристикам продолжают эксплуатироваться — это синхронные двигатели, о них и пойдёт речь в этой статье.

Что такое синхронные машины и где их используют

В общем смысле синхронная электрическая машина — это машина, ротор которой вращается с такой же частотой, как и магнитное поле статора.

Если говорить о двигателе, то частота вращения его ротора совпадает с частотой вращения поля статора, порождаемого током питающей сети. То есть ротор вращается синхронно с этим полем отсюда и название - синхронный двигатель.

Синхронные машины обратимы — то есть могут работать и в режиме генератора, и в режиме двигателя. Поэтому в ходе статьи иногда могут проскакивать фазы не только о двигателях, но и о генераторах, их устройство почти одинаковое, а главное, отличие — в режиме работы.

Стоит отметить, что на электростанциях всех типов используются в основном синхронные генераторы. Они и вырабатывают практически всю электроэнергию в мире, а мощность таких генераторов может доходить до тысячи мегаватт, а в некоторых случаях и более.

Синхронные двигатели (СД) используются зачастую там, где нужна большая мощность (сотни и тысячи киловатт) для привода в движение различных механизмов и устройств, например, компрессоров, насосов, мельниц и другого оборудования, не требующего регулировки частоты вращения и частых пусков/остановок.

У синхронного двигателя три отличительных особенности:

1. Постоянная скорость на валу при любых нагрузках (в пределах номинальной). При этом скорость вращения ротора СД равна скорости вращения магнитного поля статора.

2. Изменяя ток возбуждения, возможно регулировать коэффициент мощности. Так в режиме перевозбуждения синхронный двигатель работает как компенсатор (генератор) реактивной мощности, улучшая общий cos Ф сети.

Из последнего ясно, почему его применяют для привода в движение устройств большой мощности, ведь использование асинхронных двигателей приведёт к ухудшению cos Ф, следовательно, и к увеличению нагрузки на сеть и счётов за электроэнергию.

Устройство

Как любой другой двигатель, синхронный состоит из статора и ротора.

Статор – это неподвижная часть машины, состоящая из корпуса и шихтованного сердечника. Шихтованный — значит, собран из тонких листов , изолированных друг от друга лаком или окалиной. В сердечнике есть пазы, в которые укладывается трёхфазная обмотка. То есть устройство статора синхронной машины такое же, как и у асинхронной.

В зависимости от габаритов машины статоры бывают разных конструкций — в виде цельного цилиндра, или набранным из сегментов, которые при сборке образуют цилиндр. Корпуса статоров мощных машин большого диаметра выполняют разъёмными из двух частей (разделяются пополам вдоль оси ротора), что облегчает транспортировку, монтаж и ремонт таких машин. У небольших машин корпуса выполняют цельными и в них запрессовывают статор.

Ротор – это вращающаяся часть электрической машины. Так как для работы любой синхронной машине нужно возбуждение, то на роторе располагается сердечник с обмоткой возбуждения или магниты. Сердечник и ротор могут быть выполнены в виде одной цельной детали или сборными.

У синхронных машин бывают роторы двух видов: неявнополюсным и явнополюсным.

Конструкция ротора: а) явнополюсный с одной парой полюсов; б) неявнополюсная; 1 — магнитопровод, 2 — полюса, 3 — обмотка возбуждения, 4 — контактные кольца, 5 — электрические;

Конструкция ротора: а) явнополюсный с одной парой полюсов; б) неявнополюсная; 1 — магнитопровод, 2 — полюса, 3 — обмотка возбуждения, 4 — контактные кольца, 5 — электрические;

Неявнополюсный ротор выполняется в виде стального цилиндра с продольно профезерованными пазами, в которые укладывается обмотка возбуждения. Может быть изготовлен в виде одной кованной детали с валом или сборным — в виде отдельной детали, напрессованной на вал. Чтобы во время работы обмотка не повредилась под действием центробежной силы, концы ротора прикрывают стальными бандажными кольцами из немагнитной стали.

У явнополюсного ротора обмотки расположены на полюсах сердечника, как бы выступающих над поверхностью ротора. В этом случае каждый полюс выполняется в виде отдельного элемента, который состоит из сердечника, катушки и полюсного наконечника. Сами полюсы крепятся, например, с помощью ласточкиного хвоста, на ободе, установленном на валу.

В зависимости от мощности машины и частоты вращения, используют один или другой тип ротора. В тихоходных машинах (до 1000 об/мин) используют явнополюсную конструкцию ротора. Поэтому у явнополюсных роторов зачастую много полюсов, подобно тому, что вы видите на рисунке выше.

При работе машин с большим числом оборотов (1500-3000 об/мин) на ротор действуют значительные центробежные силы, поэтому применяют неявнополюсный ротор. При этом неявнополюсный ротор может быть двухполюсным (при n 1=3000 об/мин) или четырёхполюсным (n 1=1500 об/мин)

Концы обмотки возбуждения выводятся на два токосъёмных кольца, а ток на них подаётся через щётки.

Возбуждение синхронных машин

Для работы синхронной машины на роторе должен быть расположен источник магнитодвижущей силы (МДС). Если это генератор, то магнитное поле ротора сцепляется с обмотками статора и наводит в них ЭДС, а у двигателя магнитные поля ротора и статора взаимодействуют друг с другом и ротор увлекается вслед за полем статора.

По способу возбуждения различают синхронные машины с обмоткой возбуждения и с постоянными магнитами.

При этом чаще встречаются машины с обмоткой возбуждением, или как его ещё называют — с электромагнитным возбуждением. Здесь при прохождении постоянного тока через обмотку и возникает МДС возбуждения, которое наводит магнитное поле в магнитной системе машины. А устройство, которое питает обмотку возбуждения, называют возбудителем (В).

Раньше для возбуждения синхронных машин использовались генераторы постоянного тока с самовозбуждением или с независимым возбуждением. Во втором случае для работы возбудителя нужно было подать ток и в его обмотку возбуждения. Для этого использовался ещё один генератор постоянного тока, но параллельного возбуждения — подвозбудитель (ПВ).

То есть ротор синхронной машины, якорь возбудителя и подвозбудитель располагаются на общем валу (или их валы соединяются непосредственно друг с другом) и вращаются одновременно, а подвозбудитель питает обмотку возбуждения возбудителя, чтобы тот мог выдавать ток в обмотку возбуждения синхронной машины. Для регулировки тока возбуждения используют регулировочные реостаты в цепи возбудителя r1 и подвозбудителя r2. Схема изображена на рисунке ниже под буквой а.

Чтобы снизить частоту обслуживания, повысить КПД и надёжность от такой системы отказались и перешли на тиристорные преобразователи, в нашей стране распространены преобразователи типа ТЕ320/45, ТЕ320/75 способные выдавать ток возбуждения до 320 ампер с напряжением 45 и 75 вольт соответственно, а также различные ВТЕ. Они подключаются к питающей сети, выпрямляют и регулируют ток, подаваемый на обмотку возбуждения, при этом возможна автоматическая или ручная регулировка тока. Способ регулировки в большей мере определяется мощностью машины и режимом её работы. КПД повышается за счёт снижения потерь при работе генераторов, отсутствии регулировочных реостатов.

Так как якорь возбудителя располагается на валу синхронной машины и вращается вместе с её обмоткой возбуждения, то возможно соединить их между собой непосредственно друг с другом без щёток.

Но возбудитель – это генератор переменного тока, а для возбуждения синхронных машин нужен постоянный. Для преобразования переменного тока в постоянный на валу располагается полупроводниковый выпрямитель (3), на вход которого подаётся ток обмотки якоря возбудителя, а его выход подключается к обмотке возбуждения синхронной машины.

На обмотку статора возбудителя подаётся постоянный ток от подвозбудителя (генератора) или от электронного преобразователя. В этом случае чтобы регулировать силу тока возбуждения синхронной машины изменяют ток статора возбудителя.

Преимущество такой системы в том, что она надёжна и её почти не нужно обслуживать, ведь при питании возбудителя от электронного преобразователя в системе полностью отсутствуют щётки. Перечисленные системы возбуждения используются как в генераторах, так и в двигателях.

Интересно, что на возбуждение затрачивается мощность в пределах 0,2…5% от полезной мощности машины, при этом у более мощных машин на возбуждение в процентном соотношении затрачивается меньшая мощность. А в машинах с постоянными магнитами мощность на возбуждение не затрачивается.

Кстати, насчёт постоянных магнитов — они используются в машинах малой мощности (до единиц киловатт), конструкция машины в этом случае упрощается и становится дешевле. Но не нашла широкого распространения в синхронных двигателях большой мощности из-за того, что мощные магниты стоят дорога, а материалы для них были в дефиците, и сложны в обработке материалов для постоянных магнитов.

Однако сейчас практически повсеместно используют мощные неодимовые магниты, они нашли применения в различных бесщёточных двигателях (BLDC ), которые используются в качестве привода в электротранспорте. Кстати, эти двигатели в целом похожи на синхронные, а одна из их разновидностей так и называется permanent magnet synchronous motor (PMSM) — синхронный двигатель с постоянными магнитами.

Особенности и принцип действия

Обмотки статора синхронного двигателя подключают к трёхфазной электросети, а на обмотку ротора подают постоянный ток от возбудителя. Но из-за большой инерционности ротор синхронного двигателя не может мгновенно развить своей скорости, он в принципе не может развернуться самостоятельно, так как пусковой момент у него отсутствует.

Поэтому для запуска двигателя используют такие способы его разгона до синхронной скорости:

1. Разгон с помощью вспомогательного двигателя.

2. Асинхронный пуск.

Один из самых распространённых способов – это асинхронный пуск. В этом случае на роторе синхронного двигателя, кроме обмотки возбуждения, должна быть расположена ещё и короткозамкнутая обмотка, как на АДКР.

Электрические машины переменного тока подразделяют на синхронные, асинхронные и коллекторные. Наиболее распространены синхронные генераторы и асинхронные двигатели; коллекторные электродвигатели переменного тока позволяют легко осуществить регулирование скорости, что в асинхронных электродвигателях затруднительно.

Содержание

Введение…………………………………………………………………………..2
1. Основные виды машин переменного тока………………………………..2
2. Устройство и принцип действия асинхронной машины……………….3
3. Устройство и принцип действия синхронной машины………………..4
3.1. Разновидности синхронных машин………………………………7

Прикрепленные файлы: 1 файл

Реферат по электротехнике. Машина переменного тока.doc

  1. Основные виды машин переменного тока………………………………..2
  2. Устройство и принцип действия асинхронной машины……………….3
  3. Устройство и принцип действия синхронной машины………………..4
    1. Разновидности синхронных машин………………………………7

    Электрические машины переменного тока подразделяют на синхронные, асинхронные и коллекторные. Наиболее распространены синхронные генераторы и асинхронные двигатели; коллекторные электродвигатели переменного тока позволяют легко осуществить регулирование скорости, что в асинхронных электродвигателях затруднительно. Однако из-за высокой стоимости и сложности конструкции коллекторные электродвигатели переменного тока широко не применяются. Электрические машины постоянного тока оборудуются механическим преобразователем - коллектором. Они бывают с последовательным, параллельным, смешанным, а также с независимым возбуждением. Электродвигатели постоянного тока применяют для привода механизмов, требующих плавной регулировки скорости.

    На практике применяются преимущественно трехфазные (т — 3) машины переменного тока. Машины с другим числом фаз (т = 2, 6) используются для специальных целей. Однако действие всех многофазных машин основано на принципе вращающегося магнитного поля, и поэтому их теория является общей.

    Однофазные машины переменного тока имеют ограниченное применение.

    Ниже прежде всего рассматриваются трехфазные машины переменного тока. Они подразделяются на три основных вида: синхронные, асинхронные и коллекторные.

    Все виды машин переменного тока рассчитываются на работу при синусоидальном переменном токе.

    В синхронных машинах нормальных типов ротор вращается с такой же скоростью и в том же направлении, как и вращающееся магнитное поле. Таким образом, вращение ротора происходит в такт, или синхронно, с вращающимся полем, откуда и происходит название этого вида машин.

    Синхронные машины используются прежде всего в качестве генераторов, и за незначительным исключением на электрических станциях переменного тока устанавливаются синхронные генераторы. Однако все более расширяется также применение синхронных машин в качестве двигателей.

    Ротор асинхронных машин вращается несинхронно, или асинхронно, по отношению к вращающемуся магнитному полю, чем и обусловлено название этих машин. На практике асинхронные машины используются главным образом в качестве двигателей, и подавляющее число применяемых в промышленности электрических двигателей являются асинхронными.

    Коллекторные машины переменного тока также вращаются несинхронно с магнитным полем, и в этом смысле они являются асинхронными машинами. Однако ввиду наличия у них коллектора и связанных с этим особенностей они выделяются в отдельный вид машин переменного тока. Наибольшее применение коллекторные машины находят в качестве двигателей. Однако их использование ограничено, и поэтому главнейшими видами машин переменного тока являются асинхронные и синхронные машины.

    Общие вопросы теории многофазных машин переменного тока целесообразно рассмотреть совместно, предварительно приведя краткое описание принципов действия и устройства основных видов машин переменного тока.

    1. Устройство и принцип действия асинхронной машины

    Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

    В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

    • Лёгкость в изготовлении.
    • Отсутствие механического контакта со статической частью машины.
    • Небольшой пусковой момент.
    • Значительный пусковой ток.

    Конструкция асинхронной машины

    Асинхронная машина имеет статор и ротор, разделенные воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

    По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

    1. Устройство и принцип действия синхронной машины

    Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

    Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

    Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

    Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

    Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.

    Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

    Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей "раскачивание" ротора при синхронизации. После выхода на скорость близкую к номинальной (>95%) индуктор запитывают постоянным током.

    В двигателях с постоянными магнитами применяется внешний разгонный двигатель.

    Часто на валу ставят небольшой генератор постоянного тока, который питает электромагниты.

    Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от 0 до номинальной величины. Или наоборот, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.

    Частота вращения ротора n [об/мин] остаётся неизменной, жёстко связанной с частотой сети f [Гц] соотношением:

    Где p — число пар полюсов ротора.

    Синхронные двигатели при изменении возбуждения меняют импеданс с емкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

    Частота индуцируемой ЭДС f [Гц] связана с частотой вращения ротора n[об/мин] соотношением:

    где p— число пар полюсов ротора.

    Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.

    • Для учеников 1-11 классов и дошкольников
    • Бесплатные сертификаты учителям и участникам

    Электрические машины переменного тока. Назначение, область применение, устройство принцип действие машин.

    Машины переменного тока бывают двух видов. Это синхронные машины и асинхронные. У синхронных машин скорость вращения ротора строго зависит от частоты переменного тока. Можно сказать скорость вращения "синхронна" с частотой тока. Не трудно догадаться, что у асинхронных машин частота вращения в общем случае зависит от нагрузки на валу, а не от частоты питающего тока. Кроме деления на синхронные и асинхронные электрические машины еще делятся по назначению. Это могут быть генераторы. То есть такая машина, которая преобразует механическую энергию вращения в переменный электрический ток. Машина, которая преобразует электрическую энергию в механическую называется двигателем. Также существует еще один класс электрических машин. Они преобразуют электрическую энергию, тоже в электрическую, но другой частоты или напряжения. Синхронной машиной переменного тока называют такую машину, в которой: основное магнитное поле то есть поле статора создается постоянным током. В частном случае это может быть даже постоянный магнит. А вращение ротора происходит с частотой изменения тока.

    Формула 1 — зависимость частоты вращения ротора синхронной машины от частоты переменного тока. где n это частота, с которой вращается ротор, измеряется в оборотах в минуту. То есть, сколько полных оборотов совершит ротор за одну минуту. f частота питающего переменного тока p количество пар полюсов у магнитной системы машины

    В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.

    Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

    За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

    Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания. Неподвижная часть машины называется статор , подвижная – ротор . Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину. На рис. 2.1 показан сердечник статора в сборе. Станина (1) выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов (2), из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже – из алюминия .

    Обмотка статора состоит из трёх отдельных частей, называемых фазами . Начала фаз обозначаются буквами c 1 , c 2 , c 3 , концы – c 4 , c 5 , c 6 .

    hello_html_30e2c40.jpg

    Начала и концы фаз выведены на клеммник , закреплённый на станине. Обмотка статора может быть соединена по схеме звезда или треугольник. Выбор схемы соединения обмотки статора зависит от линейного напряжения сети и паспортных данных двигателя. В паспорте трёхфазного двигателя задаются линейные напряжения сети и схема соединения обмотки статора. Например, 660/380, Y/∆. Данный двигатель можно включать в сеть с U л =660В по схеме звезда или в сеть с U л =380В – по схеме треугольник.

    Основное назначение обмотки статора – создание в машине вращающего магнитного поля.

    hello_html_m7d4069b1.jpg

    Сердечник ротора набирается из листов электротехнической стали, на внешней стороне которых имеются пазы, в которые закладывается обмотка ротора. Обмотка ротора бывает двух видов: короткозамкнутая и фазная . Соответственно этому асинхронные двигатели бывают с короткозамкнутым ротором и фазным ротором (с контактными кольцами).

    hello_html_m5c76bf11.jpg

    Короткозамкнутая обмотка ротора состоит из стержней 3, которые закладываются в пазы сердечника ротора. С торцов эти стержни замыкаются торцевыми кольцами 4. Такая обмотка напоминает “беличье колесо” и называют её типа “беличьей клетки”. Двигатель с короткозамкнутым ротором не имеет подвижных контактов. За счёт этого такие двигатели обладают высокой надёжностью. Обмотка ротора выполняется из меди, алюминия, латуни и других материалов.

    Доливо-Добровольский первым создал двигатель с короткозамкнутым ротором и исследовал его свойства. Он выяснил, что у таких двигателей есть очень серьёзный недостаток – ограниченный пусковой момент. Доливо-Добровольский назвал причину этого недостатка – сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором.

    Однафазные асинхронные двигатели.

    Асинхронный двигатель является простейшей из электрических машин. Как и любая электрическая машина, он имеет две основные части: статор и ротор.

    Статор (рис. 6.1) состоит из чугунной станины 1, в которой закреплен магнитопровод 2 в виде полого цилиндра. Между станиной и сердечником обычно оставляют зазор, через который проходит охлаждающий воздух. Для уменьшения потерь на вихревые токи магнитопровод набирают из тонких (0,5 мм) листов электротехнической стали, изолированных друг от друга лаком.

    Рис. 6.1 . Конструкция статора асинхронного двигателя:

    1 — станина; 2 — сердечник; 3 — обмотка;

    4 — лапа; 5 — прокладка

    В пазы, вырезанные по внутренней окружности статора, укладывают обмотку 3. У двухполюсной машины обмотка статора состоит из трех катушек, сдвинутых на углы 120°, у четырехполюсной — из шести катушек, сдвинутых на 60°, у шестиполюсной — из девяти катушек и т. д. Обмотку в пазах статора закрепляют клиньями.

    Ротор также набирают из тонких листов электротехнической стали. В пазах ротора размещают обмотку, которая может быть короткозамкнутой или фазной (рис. 6 .2 ). Короткозамкнутая обмотка типа

    Рис. 6.2 . Общий вид ротора асинхронного двигателя с коротко- замкнутой (а) и фазной (б) обмотками

    Контактные кольца 1 , изготовленные из латуни или меди, укрепляют на валу двигателя с помощью изолирующих прокладок. Щеткодержатель с угольными или медно-графитовыми щетками 2 крепят на подшипниковом щите.

    Рис. 6.4 . Схема соединения фазной обмотки ротора с регулировочными реостатами:

    1 —'контактные кольца, 2— щетки; 3 — реостаты

    Общий вид асинхронного двигателя показан на рис. 6.5 .

    hello_html_m868c39c.jpg

    Рис. 6.5 . Общий вид асинхронного двигателя с короткозамкнутой (а) и фазной (б) обмотками ротора

    Принцип действия асинхронного двигателя.

    Принцип действия асинхронного двигателя основан на использовании вращающегося магнитного поля и основных законов электротехники.

    При включении двигателя в сеть трехфазного тока в статоре образуется вращающееся магнитное поле, силовые линии которого пересекают стержни или катушки обмотки роторо. При этом, согласно закону электромагнитной индукции, в обмотке ротора индукциреутся ЭДС , пропорциональная частоте пересечения силовых линий. Под действием индуцированной ЭДС в короткозамкнутом роторе возникают значительные токи.

    В соответствии с законом Ампера на проводники с током, находящиеся в магнитном поле, действуют механические силы, которые по принципу Ленца стремятся устранить причину, вызывающую индуцированный ток, т. е. пересечение стержней обмотки ротора силовыми линиями вращающегося поля. Таким образом, возникшие механические силы будут раскручивать ротор в направлении вращения поля, уменьшая скорость пересечения стержней обмотки ротора магнитными силовыми линиями.

    Достичь частоты вращения поля в реальных условиях ротор не может, так как тогда стержни его обмотки оказались бы неподвижными относительно магнитных силовых линий и индуцированные токи в обмотке ротора исчезли бы. Поэтому ротор вращается с частотой, меньшей частоты вращения поля, т. е. несинхронно с полем, или асинхронно.

    Если силы, тормозящие вращение ротора, невелики, то ротор достигает частоты, близкой к частоте вращения поля. При увеличении механической нагрузки на валу двигателя частота вращения ротора уменьшается, токи в обмотке ротора увеличиваются, что приводит к увеличению вращающего момента двигателя. При некоторой частоте вращения ротора устанавливается равновесие между тормозным и вращающим моментами.

    Синхронный двигатель

    Устройство статора синхронного двигателя аналогично устройству статора асинхронного двигателя. Ротор синхронного двигателя представляет собой электромагнит или постоянный магнит (рис. 6.6 ).

    Принцип работы синхронного двигателя поясняется рис. 6.7 . Внутри магнита N 1 S 1 помещен магнит NS . Если магнит N 1 S 1 вращать, то он потянет за собой магнит NS . В стационарном режиме частоты вращения обоих магнитов одинаковы.

    К валу магнита NS можно приложить механическую нагрузку. Чем больше эта нагрузка, тем больше угол отставания оси магнита NS от оси магнита NiSi . При некоторой нагрузке силы притяжения между магнитами будут преодолены и ротор остановится.

    В реальном двигателе поле магнита N 1 S 1 заменено вращающимся магнитным полем статора; при этом ротор либо вращается синхронно с магнитным полем статора, отставая на угол , либо останавливается (выпадает из синхронизма) при перегрузке. Таким образом, независимо от нагрузки ротор всегда вращается с постоянной частотой, равной частоте вращения магнитного поля статора:

    hello_html_m24b5888.jpg

    Рис. 6.6. Схематическое изображение Рис. 6.7. К пояснению принципа синхронного двигателя работы синхронного двигателя

    Постоянство частоты вращения — важное достоинство синхронного двигателя. Строгое постоянство частоты вращения требуется во многих областях техники, например при записи и воспроизведении звука. Недостаток синхронного двигателя — трудность пуска: для пуска нужно раскрутить ротор в сторону вращения поля статора. Для этого чаще всего применяют специальную короткозамкнутую обмотку, вделанную в ротор. В момент пуска двигатель работает как асинхронный. Когда частота вращения ротора приближается к частоте вращения поля статора, ротор входит в синхронизм и двигатель работает как синхронный. Короткозамкнутая обмотка при этом оказывается обесточенной, так как частота вращения ротора равна частоте вращения поля статора и стержни обмотки ротора не пересекаются магнитными силовыми линиями.

    В настоящее время существует тенденция замены на подвижных объектах (корабли, самолеты, автомобили) электрических цепей постоянного тока цепями переменного тока повышенной частоты (200, 400 Гц и выше). Возможность использования бесколлекторных машин переменного тока, трансформаторов и магнитных усилителей позволяет повысить надежность работы цепи, а также уменьшить габариты и массу машин и аппаратов.

    При оборудовании объекта сетью переменного тока широкое применение находит электропривод на переменном токе. Разработаны схемы с асинхронными и синхронными двигателями, которые позволяют выполнить все операции, осуществляемые ранее двигателями постоянного тока.

    Преимущества асинхронных двигателей особенно заметны тогда, когда по условиям работы привода нет необходимости в плавном регулировании частоты вращения в широких пределах и больших пусковых моментах (привод насосов, вентиляторов и др.).

    Синхронные двигатели особенно удобны для привода роторов гироскопов. В тех случаях, когда гироскоп используют для особо точных измерений (например, в баллистических ракетах), приводом ротора гироскопа служит синхронный двигатель. При этом частота вращения ротора зависит только от конструкции двигателя и частоты питающего тока, которую можно стабилизировать с очень высокой степенью точности.

    Синхронный генератор

    Ротор синхронных машин вращается синхронно с вращающимся магнитным полем (отсюда их назва н ие). Поскольку частоты вращения ротора и магнитного п ол я одинаковы, в обмотке ротора не индуцируются токи. Поэтому обмотка ротора получает питание от источника постоянного тока.

    Устройство статора синхронной машины (рис. 6.8) практически не отличается от устройства статора асинхронной машины.

    Рис 6.8 . Общий вид статора синхронного генератора.

    Рис 6.9 . Общий вид неявнополюсного ротора синхронного генератора.

    Роторы синхронных генераторов могут быть явнополюсными (рис. 6.9) и неявнополюсными (рис. 6.10). В первом случае синхронные генераторы приводятся в действие тихоходными турбинами гидроэлектростанций, во втором — паровыми или газовыми турбинами теплоэлектростанций.

    hello_html_m59544348.jpg

    Рис. 6.10. Общий вид неявнополюсного ротора синхронного генератора

    Используют различные способы возбуждения синхронных генераторов. Широкое распространение получил синхронный генератор с машинным возбудителем, представляющим собой генератор постоянного тока, расположенный на одном валу с синхронным генератором. Машинный возбудитель приводится в действие от того же первичного двигателя, что и синхронный генератор. Выходные зажимы возбудителя через щетки и кольца подсоединены к обмотке ротора синхронного генератора. Напряжение синхронного генератора можно регулировать реостатом в цепи обмотки возбуждения возбудителя, что удобно и энергетически выгодно, так как в этой обмотке протекают сравнительно небольшие токи.

    Находят также применение генераторы с самовозбуждением через полупроводниковые или механические выпрямители.

    Из характеристик синхронного генератора наибольший практический интерес представляют внешние характеристики, выражающие зависимость напряжения на зажимах генератора от тока нагрузки при неизменных значениях тока возбуждения, частоты и коэффициента мощности.

    Синхронные машины - двигатели, генераторы и компенсаторы

    Синхронные машины

    Синхронные машины – это электрические машины переменного тока, в которых ротор и магнитное поле токов статора вращаются синхронно.

    Трехфазные синхронные генераторы – самые мощные электрические машины. Единичная мощность - синхронных генераторов на ГЭС - 640 МВт, а на ТЭС – 8 - 1200 МВт.

    У синхронной машины одна из обмоток присоединена к электрической сети переменного тока, а вторая - возбуждается постоянным током. Обмотку переменного тока называют якорной.

    Обмотка якоря преобразует всю электромагнитную мощность синхронной машины в электрическую и наоборот. Поэтому ее обычно располагают на статоре, который называют якорем. Обмотка возбуждения потребляет 0,3 - 2% от преобразуемой мощности, поэтому ее располагают обычно на вращающемся роторе, который называют индуктором и малую мощность возбуждения подводят через контактные кольца или устройства бесконтактного возбуждения.

    Синхронный генератор

    При частоте промышленной сети f1 = 50 гц, ряд синхронных скоростей при различных числах полюсов: 3000, 1500, 1000 и т.д.). Так как магнитное поле индуктора неподвижно относительно ротора, то для непрерывного взаимодействия полей индуктора и якоря ротор должен вращаться с той же синхронной скоростью.

    Монтаж генератора

    Статор синхронной машины с трехфазной обмоткой не отличается от конструкции статора асинхронной машины, а ротор с обмоткой возбуждения бывает двух видов - явнополюсный и неявнополюсный. При больших скоростях и малом числе полюсов применяют неявнополюсные роторы, как имеющие более прочную конструкцию, а при малых скоростях и большом числе полюсов применяют явнополюсные роторы сборной конструкции. Прочность таких роторов меньше, но они проще в изготовлении и в ремонте.


    Применяются в синхронных машинах с большим числом полюсов и соответственно относительно низкой n. ГЭС (гидрогенераторы). частота n от 60 до нескольких сотен об/мин. Самые мощные гидрогенераторы имеют диаметр ротора - 12 м при длине – 2,5 м, p – 42 и n= 143 об/мин.

    Неявнополюсный ротор

    Обмотка - в пазах ротора диаметр d = 1,2 – 1,3 м, активная длина ротора не более 6,5 м. ТЭС, АЭС (турбогенераторы). S=500 000 кВА в одной машине n=3000 или 1500 об/мин (1 или 2 пары полюсов).

    Кроме обмотки возбуждения на роторе располагают демпферную или успокоительную обмотку, которую в синхронных двигателях используют для запуска. Эту обмотку выполняют аналогично короткозамкнутой обмотке типа "беличья клетка", только значительно меньшего сечения, так как основной объем ротора занимает обмотка возбуждения. В неявнополюсных роторах роль демпферной обмотки выполняют поверхности сплошных зубцов ротора и токопроводящие клинья в пазах.

    Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

    Синхронная машина

    Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

    Синхронный генератор

    Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.

    Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

    Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.

    Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.

    Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение ? возникает ток, который создает постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).

    Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.

    Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.

    Учебный диафильм - "Синхронные двигатели", созданный фабрикой учебно-наглядных пособий в 1966-году.
    Посмотреть его можно здесь: Диафильм "Синхронный двигатель"


    Применение синхронных двигателей

    Массовое использование асинхронных двигателей с существенными недогрузками осложняет работу энергетических систем и станций: снижается коэффициент мощности в системе, что приводит к дополнительным потерям во всех аппаратах и линиях, а также и к их недоиспользованию по активной мощности. Поэтому возникла необходимость в применении синхронных двигателей, особенно для механизмов с приводами большой мощности.

    Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosфи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

    Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .

    Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

    С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.

    При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.

    Синхронные двигатели

    Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).

    Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

    В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

    Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

    Читайте также: