Расстояние от точки до прямой доклад

Обновлено: 13.05.2024

Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую.

При этом перпендикуляр – это наименьшее из расстояний от этой точки до точек прямой.

Расстояние от точки до прямой на плоскости, методы нахождения

Найти расстояние от точки до прямой можно двумя способами. С помощью теоремы Пифагора или прямоугольной системы координат. Рассмотрим первый метод.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Теорема Пифагора гласит, что прямоугольная система координат OXY имеет точку М1 (x1, y1). Из нее к плоскости проведена прямая а. Уравнение плоскости имеет вид:

cos ax + cos by - p = 0.

Это уравнение равно по модулю значению, которое получается в левой части уравнения прямой при x = x1, а y = y1. Это значит, что:

Доказательство

Прямой а соответствует уравнение плоскости, которое имеет вид:

cos ax + cos by - p = 0.

Тогда n → = (сos a, cos b) – это нормальный вектор прямой а с расстоянием от начала координат до прямой а с р единицами. При этом радиус вектор точки М1 - ОМ1 → = (х1, у1).

М1Н1 – прямая от точки до прямой. Проекции М2 и Н2 точек М1 и Н1 проходят через точку О с направляющим вектором n → = (cos a, cos b). Числовая проекция вектора ОМ1 → = (х1, у1) направлена к n → = (cos a, cos b) как npn → OM1 →. В итоге получаем М1Н1 = npn → ОМ → 1 - р.

Далее приводим равенство к виду М1Н1 = cos x1 + cos b1 - p. Из этого выходит npn → OM → 1 = cos ax1 + cos by1. Cкалярное произведение векторов дает формулу n → OM → 1 = n → npn → OM1 → = 1npn → OM1 → = npn → OM1 →.

Эта формула – произведение в координатной форме вида n →, OM1 → = cos ax1 + cos by1. Из этого npn → OM1 → = cos ax1 +cos by1. Отсюда следует, что M1H1 = npn → OM1 → - p = cos ax1 + cos by1 - p.

Что и следовало доказать.

Согласно теореме Пифагора, чтобы найти расстояние от точки до прямой, нужно совершить следующие шаги:

  1. Вывести уравнение прямой cos ax + cos by - p = 0, если его нет в задании.
  2. Вычислить cos ax + cos by - p, где значение принимает М1Н1.

Рассмотрим второй метод. Если у точки Н1 есть координаты (х2, у2), тогда расстояние от точки до прямой можно найти по формуле:

Найдем координаты точки Н1.

Прямая линия в ОХУ равна уравнению прямой на плоскости. Необходимо составить уравнение прямой b, проходящей через точку М1 перпендикулярно прямой а. Н1 – это точка пересечения прямых a и b. Для начала нужно найти общее уравнение прямой а, которое имеет вид А1х + В1у + С1 = 0. Либо можно воспользоваться уравнением с угловым коэффициентом у = k1x + b1.

Далее нужно вывести уравнение прямой b, которое имеет вид А2х + В2у + С2 = 0. Либо можно использовать уравнение по аналогии с прямой а: у = k2x + b2. Чтобы определить координаты точки Р1, нужно решить систему линейных уравнений:

Конечное расстояние получают с помощью формулы:

Формулы для нахождения расстояния

Длину перпендикуляра также можно найти с помощью следующей формулы:

Решение уравнений

Пример 1

Вычислить расстояние между прямой 3 x + 4 y - 6 = 0 и точкой M(-1, 3).

Решение

Пример 2

Найти расстояние между прямой 12 x + 5 y - 17 = 0 и точкой M(-3, 8).

Решение

Пример 3

Вычислить расстояние между прямой 4 x + 3 y - 3 = 0 и точкой M(-2, 5).

Решение

Примеры задач для нахождения расстояния от точки до прямой

Задача 1

Дана треугольная пирамида АВСD. Ее грани ABС и ABD представляют собой равные равнобедренные треугольники с прямыми углами при вершине A.

Найти расстояние от точки A до грани ACD, если высота пирамиды равна h и равна CD.

Решение

Так как △BCD равнобедренный, то BC ⊥ CD, K – середина CD. Так же AK ⊥ CD. Получается, перпендикуляр BH на плоскость ACD упадет на прямую AK (удовлетворяет теореме о трех перпендикулярах: HK – проекция, BK – наклонная, обе перпендикулярны CD).

По теореме Пифагора \(BK=\frac2\) .

Значит, \(BH = 2\sqrt3x\) , \(HK = 3x\) .

По теореме Пифагора из △ BHK находим \(x = \frac1h ⇒ BH = \sqrth\) .

Задача 2

Дана правильная четырехугольная пирамида ABCDE с вершиной A. Через точку пересечения диагоналей основания провели плоскость α перпендикулярно ребру AB.

Найти расстояние от точки N до плоскости α, если N – середина \(BE = 2\sqrt2\) , а высота пирамиды равна 11.

Решение

По теореме о трех перпендикулярах AB ⊥ CE как наклонная (AO ⊥ (BCD), OB ⊥ CE – проекция). Получаем две пересекающиеся прямые OK и СЕ из плоскости α. Значит, сечением является треугольник СKЕ.

Проведем MN ∥ СЕ. Тогда MN ∥ α. Так как расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одинаково, то:

где ρ — расстояние.

Т.к. по условию SA⊥α, то проведем QH∥SA⇒QH⊥α. По построению MN – средняя линия △BAD, следовательно:

ВQ = QO ⇒ QH – средняя линия △ KВO ⇒ QH = \frac12 ВK.

Рассмотрим △ АВO = 2. Из △ ВKO ∼ △ ВАO \(⇒ \frac=\frac ⇒ ВK = \frac ⇒ QH = \frac\) .

Задача 3

Дано: в цилиндре параллельно диаметру ВС = 10 в нижнем основании проведена прямая, пересекающая окружность нижнего основания в точках Р и Z, причем PZ = 6. Через отрезок PZ проведена плоскость α под углом 15 градусов к плоскости осевого сечения ВСDE.

Найти расстояние от центра нижнего основания до плоскости α.

Решение

Обозначим за OQ – ось цилиндра. Тогда OQ ⊥ BC ⇒ OQ ⊥ p (OQ ∩ p = L).

Проведем OR ⊥ PZ ⇒ по теореме о трех перпендикулярах RL ⊥ PZ ⇒ RL ⊥ p ⇒ ∠ RLO – угол между плоскостями BCDE и α.

Так как и OR⊥PZ и LR⊥PZ, то перпендикуляр из точки O на плоскость α упадет на прямую LR.

Рассмотрим △ OPR: OP = 5, PR = 3, ∠ ORP = 90° ⇒ OR = 4.

Рассмотрим △ LOR: \(∠ HOR = ∠ RLO = 15° ⇒ OH = OR ⋅ cos⁡15° = 4 ⋅ cos⁡(45° − 30°) = \sqrt6+\sqrt2\) .

Вычисление расстояния от точки до прямой является одной из часто встречающихся задач по геометрии в старших классах школ. Известна универсальная формула для их решения, однако ее использование требует умения применять операции над векторами. Разработанные способы определения расстояния между геометрическими элементами справедливы для случаев на плоскости и в трехмерном пространстве.

Геометрия

Точка и прямая

Прежде чем говорить, как найти расстояние от прямой до точки, необходимо подробно рассмотреть, о каких элементах идет речь.

Известно, что в двумерном или трехмерном пространстве в геометрии для определения места расположения того или иного объекта вводится специальная система координат. Удобнее всего использовать прямоугольную декартову систему, которая представляет собой пересекающиеся под прямым углом оси (2 для плоскости и 3 для трехмерного пространства). На каждой из них существует шкала в выбранных единицах.

Обычно она является равномерной, то есть на каждой оси единица представляет собой отрезок одинаковой длины.

Точечный объект

Или просто точка. Это нульмерный объект, который в двумерном пространстве представляет собой набор двух координат, а в трехмерном — трех. Математически точка записывается так: A (x1; y1), где x1 — ее координата по оси x, y1 — по оси y. Для определения значения координат необходимо от точки провести перпендикуляр к соответствующей оси, их пересечение укажет на искомое значение. Примеры разных точек на плоскости и пространстве:

  • P (1; 0);
  • Q (2; 3; -1);
  • M (0; 0);
  • N (-2; -1; 3).

Расстояние от точки до прямой

Точка P лежит на оси x, а M в начале координатной системы. Обе они заданы на плоскости, в отличие от Q и N, которые можно построить в пространстве. Также следует отметить, что у координатных осей имеется положительное и отрицательное направления, поэтому точки могут иметь отрицательные координаты.

Уравнения линии

Прямая линия является одним из самых распространенных объектов в геометрии. С помощью нее строятся многие симметричные фигуры, например, пирамида, призма, треугольник, прямоугольник (но не сфера). Прямая линия представляет собой бесконечный объект в одном направлении, и нульмерный в двух других, если речь идет об объемном пространстве.

Для выполнения математических операций с геометрическим элементом существуют разные виды уравнений, которые его задают. Среди них можно назвать:

  • общего типа;
  • векторное;
  • параметрическое;
  • в отрезках.

Чаще всего в задачах применяют первые 2 вида. Универсальным уравнением, которое можно с легкостью преобразовать в любые другие формы, является векторное. Задается для трехмерного случая оно следующим образом:

(x; y; z) = (x0; y0; z0) + α*(vx; vy; vz).

Математика

Здесь (x; y; z) — координаты произвольной точки, которая принадлежит заданной прямой, (x0; y0; z0) — известная точка, лежащая на объекте, v (vx; vy; vz) — вектор, параллельно которому проходит прямая, он называется направляющим, α - произвольный числовой параметр, который может иметь положительные или отрицательные значения. Очевидно, что для плоского случая количество координат для каждого элемента будет равно двум.

Векторным уравнением удобно пользоваться, поскольку его легко преобразовать в параметрическое или в отрезках. В первом случае получается следующая система:

  • x = x0 + α*vx;
  • y = y0 + α*vy;
  • z = z0 + α*vz.

Для уравнения в отрезках получается такое равенство:

(x-x0)/vx = (y-y0)/vy = (z-z0)/vz.

Чтобы получить из векторной формы уравнение общего типа для случая на плоскости, достаточно написать выражение в отрезках, а затем из него выразить y через x. В итоге получается такой вид:

y = vy/vx*(x — x0) + y0.

Для трехмерного пространства также можно использовать этот математический прием, однако придется выражать не только y через x, но и z через, например, y. Дело в том, что в объемном пространстве прямая задается в общем виде как пересечение двух плоскостей.

Способы определения расстояния

В первую очередь необходимо понять, что называется дистанцией между точкой и прямой линией. Пусть имеется прямая a и точка A. Если из нульмерного объекта провести отрезок к прямой так, чтобы ее он пересекал под прямым углом в некоторой точке A1, то AA1 будет называться перпендикуляром к a. Согласно определению, расстояние от точки до прямой равно длине перпендикулярного отрезка, опущенного из нульмерного объекта к одномерному.

Нахождение расстояния от точки до прямой

Из геометрических представлений понятно, что длина AA1 будет наименьшей среди всех возможных отрезков, которые можно провести от A к a.

Применение векторных выражений

После получения представлений, что понимают под дистанцией между геометрическими объектами, в докладе можно переходить к рассмотрению первого универсального способа решения этой задачи.

Пусть имеется прямая, заданная в векторной форме в двумерном пространстве: (x; y) = (x0; y0) + α*(vx; vy).

В этой же координатной системе задана точка P (x1; y1). В первую очередь необходимо найти вектор u (ux; uy), который будет перпендикулярен направляющему v (vx; vy). Сделать это несложно, если вспомнить, что скалярное произведение перпендикулярных векторов равно нулю. В итоге получается следующее выражение:

(u*v) = 0 = vx*ux + vy*uy =>

Подставляя в это равенство произвольное значение uy, можно получить координату ux. Если одна из координат вектора v равна нулю, например, vx=0, тогда uy=0 для любых значений ux отличных от 0.

Зная координаты направляющего вектора u для перпендикуляра, можно построить для него векторное уравнение прямой, которая будет проходить через P:

(x; y) = (x1; y1) + β *(ux; uy).

Теперь необходимо найти точку пересечения обеих прямых. Для этого можно выразить y через x для каждой из них, а затем, решить систему из двух линейных уравнений. Например, получилась точка Q (x2; y2).

Для решения задачи остается сделать последний шаг: найти длину отрезка, заключенного между точками P и Q. Искомая формула имеет вид:

PQ = ((x2-x1)^2 + (y2-y1)^2)^0,5.

Описанный способ определения дистанции от прямой до точки можно использовать для задач на плоскости. Дело в том, что в трехмерном пространстве существует бесконечное количество перпендикуляров заданной прямой, поэтому для трехмерного случая придется вводить еще одно условие на поиск перпендикулярного отрезка: он должен лежать в плоскости, проходящей через заданные прямую и точку. Этот факт усложняет решение задачи.

Использование формулы

Применение известной формулы для решения геометрических проблем является самым простым способом. Пусть имеется некоторая прямая, которая в векторной форме задается так:

(x; y; z) = (x0; y0; z0) + α*(vx; vy; vz).

Решение задач

Известна также точка P (x1; y1; z1). Теперь следует выбрать произвольную точку на прямой, пусть это будет Q (x2; y2; z2). Следует отметить, что координаты Q удовлетворяют векторному уравнению заданной прямой. Далее, нужно построить вектор PQ, его координаты определяются так:

PQ = (x2-x1; y2-y1; z2-z1).

После этого следует рассмотреть параллелограмм, который однозначно может быть построен на векторах PQ и v (vx; vy; vz) — направляющий отрезок заданной прямой линии (для наглядности фигуру можно изобразить на рисунке). Известно, что площадь параллелограмма может быть определена двумя способами:

  1. Произведение основания на опущенную на него высоту: S = |v|*h, где |v| - длина вектора v (основание параллелограмма), h — длина опущенного из P перпендикуляра к основанию v.
  2. Модуль векторного произведения задающих фигуру направленных отрезков: S = |[PQ*v]|.

Поскольку оба выражения используются для нахождения одной и той же площади S, их можно приравнять и выразить высоту h:

Поскольку высота параллелограмма является искомой дистанцией d от точки P до заданной в задаче прямой, получается следующая простая формула:

Вычисление векторного произведения проще всего выполнять с помощью матрицы и алгебраического дополнения (стандартная операция вычисления определителя). Удобство полученной формулы заключается в ее универсальности, то есть она применима как для трехмерного пространства, так и для случая на плоскости. Для двумерной задачи в координатной форме выражение примет вид:

d = ((x2-x1)*vy+(y2-y1)*vx)/ (vx 2 + vy 2 )^0,5.

Это выражение является несколько громоздким, поэтому рекомендуется запомнить только его векторную форму.

Решение задачи

Для закрепления материала необходимо решить следующую короткую задачу. Пусть заданы 3 точки на плоскости: A (1;0), B (2; -3) и C (-1; 1), то есть имеется треугольник с вершинами в них и со сторонами AB, BC и CA. Необходимо найти расстояние от точки с до прямой ав.

Математика решения задач

Для начала нужно находить направляющий вектор прямой. Его координаты будут соответствовать следующим значениям:

AB = B — A = ((2−1); (-3−0)) = (1; -3).

Теперь следует найти вектор AC:

AC = C — A = ((-1−1); (1−0)) = (-2; 1).

Прежде чем воспользоваться формулой для определения расстояния, можно заранее вычислить модуль векторного произведения [AB*AC] и длину AB:

| [AB*AC] | = 5, |AB| = 10 0 , 5.

Тогда дистанция d от точки C до прямой, проходящей через A и B будет равно:

d = 5/ 10 0 , 5 ≈ 1,58 единиц длины.

Таким образом, для определения расстояния между известными прямой и точкой в пространстве существует 2 способа.

Геометрия расстояние от точки до прямой

Первый предполагает использование ряда математических рассуждений с выкладками. Он справедлив только для задач на плоскости. Второй способ позволяет воспользоваться универсальной формулой.

Расстоянием есть такая величина, которая характеризует отдаленность объектов друг от друга. Это определение применимо для плоскости и для пространства. Рассмотрим пример. Допустим у нас есть две точки, изображенные на рисунке:


Нужно узнать расстояние от одной точки до другой. Для этого можно воспользоваться каким-либо измерительным инструментом, к примеру, линейкой. Прикладываем ее началом к одной точке и соединяем с другой, на шкале мы увидим значение, которое и будет равно расстоянию между точками.


Для определения можно применять также циркуль, при этом циркулем измеряют расстояние, его прикладывают к линейке или другому инструменту со шкалой расстояния, и получают значение.
Рассмотрим пример решения задачи по определению расстояния между точкой и прямой.

Определения расстояния между точкой и прямой

Если у нас есть прямая и точка, что не находится на ней, то согласно аксиомы геометрии мы знаем, что они образуют некую плоскость, именно поэтому мы можем решать эту задачу используя понятия планиметрии.


Теорема о создании единственной плоскости при помощи точки и прямой выводится из аксиомы о трех точках, описывающих плоскость. Ведь на прямой возможно выбрать две случайные точки, а третья у нас тоже есть.

Расстояние от точки до прямой – это перпендикулярный отрезок, соединяющий точку и прямую.

Разберем подробнее понятие о расстоянии между точкой и прямой на конкретном примере.

Определение расстояния между точкой и прямой в плоскости

Необходимо определить расстояние от точки \(X\) до прямой \(k\) .


Изобразим перпендикулярный отрезок от точки \(X\) до прямой \(k\) , получим точку \(A\) . Выберем произвольно точку на прямой \(k\) , назовем ее точкой \(B\) . Соединив точки, мы получили треугольник \(XAB\) .

Гипотенуза этого треугольника находится противоположно прямому углу, а она всегда будет самой длинной стороной треугольника, это означает, что самым кратким расстоянием между точкой \(X\) и прямой \(k\) будет перпендикулярный отрезок \(XA\) .

Расстояние \(XB\) всегда будет больше, чем \(XA\) , не зависимо от выбора расположения точки \(B\) .

Распространенными задачами на эту тему как в плоскости, так и в пространстве, есть задачи на определение расстояния при известных координатах точки и уравнении прямой.

Практически не всегда удобно графически решать данные задачи, поэтому их решают аналитическим путем.

Не нашли что искали?

Просто напиши и мы поможем

Разберем решение подобной задачи в плоскости.

Задано уравнение прямой \(a: y=3x+2\) и точка \(M\) с координатами (2;0). Необходимо определить расстояние от точки до прямой.

Рисуем перпендикуляр из точки \(M\) на прямую \(a\) , получаем точку \(D\) .

Чтобы найти координаты точки пересечения \(D\) , необходимо для начала найти уравнение перпендикуляра. Для этого приведем уравнение прямой a к общему виду: \(3x-y+2=0\) .

Имея запись в такой форме не сложно определить, что вектор нормали к этой прямой будет иметь координаты (3;-1). Этот же вектор есть направляющим для нашего перпендикуляра.

Также мы знаем, что наш перпендикуляр пересекается с прямой через точку \(M\) с координатами (2;0). Значит мы можем привести это уравнение к виду:

Для нахождения координат точки пересечения \(D\) , необходимо решить систему уравнений:


Выразив y из второго уравнения и подставив его в первое, получаем:

Решаем это уравнение:

Подставив найденное значение во второе уравнение, находим \(y\) :

В итоге, мы определили координаты точки пересечения прямой и перпендикуляра. Они равны (-0.4;0.8).
Определим длину отрезка \(MD\) :

Ответ: расстояние от точки \(M\) до прямой a равняется 0,89.

Определение расстояние от точки до прямой в пространстве

Для расчета расстояния между точкой и прямой в пространстве пользуются такой формулой:


где \(x_0, y_0, z_0\) – координаты заданной точки;
\(x_1, y_1, z_1\) – координаты вектора нормали заданной прямой;
\( l, m_1, n_1\) – координаты направляющего вектора прямой.

Эта формула аналогична уравнению для плоскости, но представляется сложнее. В расчетах нет ничего сложного, если владеть принципами решения матричных выражений.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Разберем решение задачи с применением этой формулы.

Например, прямая m задана уравнением: \(<(x-5)\over1>=<(y+1)\over2>= <(z-4)\over4>\) , точка имеет координаты \(K\) (1;2;3).

Необходимо определить расстояние в пространстве между точкой \(K\) и прямой \(m\) .

Направляющий вектор прямой m имеет координаты (1;2;4), а вектор нормали (-5;-1;4).

Подставив все значения в формулу расчета, получим:


В ответе получаем, что расстояние в пространстве между точкой \(K\) и прямой \(m\) составляет 5,080.

Не нашли нужную информацию?

Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.

Гарантия низких цен

Все работы выполняются без посредников, поэтому цены вас приятно удивят.

Доработки и консультации включены в стоимость

В рамках задания они бесплатны и выполняются в оговоренные сроки.

Вернем деньги за невыполненное задание

Если эксперт не справился – гарантируем 100% возврат средств.

Тех.поддержка 7 дней в неделю

Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.

Тысячи проверенных экспертов

computer

Гарантия возврата денег

Эксперт получил деньги, а работу не выполнил?
Только не у нас!

Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока

Гарантия возврата денег

В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы

Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую. В начертательной геометрии она определяется графическим путем по приведенному ниже алгоритму.

  1. Прямую переводят в положение, в котором она будет параллельна какой-либо плоскости проекции. Для этого применяют методы преобразования ортогональных проекций.
  2. Из точки проводят перпендикуляр к прямой. В основе данного построения лежит теорема о проецировании прямого угла.
  3. Длина перпендикуляра определяется путем преобразования его проекций или с использованием способа прямоугольного треугольника.

На следующем рисунке представлен комплексный чертеж точки M и прямой b, заданной отрезком CD. Требуется найти расстояние между ними.

Условие задачи

Согласно нашему алгоритму, первое, что необходимо сделать, это перевести прямую в положение, параллельное плоскости проекции. При этом важно понимать, что после проведенных преобразований фактическое расстояние между точкой и прямой не должно измениться. Именно поэтому здесь удобно использовать метод замены плоскостей, который не предполагает перемещение фигур в пространстве.

Результаты первого этапа построений показаны ниже. На рисунке видно, как параллельно b введена дополнительная фронтальная плоскость П4. В новой системе (П1, П4) точки C''1, D''1, M''1 находятся на том же удалении от оси X1, что и C'', D'', M'' от оси X.

Прямая параллельна новой плоскости П4

Выполняя вторую часть алгоритма, из M''1 опускаем перпендикуляр M''1N''1 на прямую b''1, поскольку прямой угол MND между b и MN проецируется на плоскость П4 в натуральную величину. По линии связи определяем положение точки N' и проводим проекцию M'N' отрезка MN.

Построение проекций перпендикуляра

На заключительном этапе нужно определить величину отрезка MN по его проекциям M'N' и M''1N''1. Для этого строим прямоугольный треугольник M''1N''1N0, у которого катет N''1N0 равен разности (YM1 – YN1) удаления точек M' и N' от оси X1. Длина гипотенузы M''1N0 треугольника M''1N''1N0 соответствует искомому расстоянию от M до b.

Читайте также: