Преобразование энергии в тепловых машинах доклад

Обновлено: 18.05.2024

Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается. Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.

При обратном цикле расширение происходит при меньшем давлении, а сжатие - при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.

Коэффициент полезного действия

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.

участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1
участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2
участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2
участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.
Работа, которую выполняет рабочее тело - площадь полученной фигуры 1234.

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.
2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.

  1. Что называют тепловым двигателем?
  2. Как устроены все тепловые двигатели?
  3. Что является рабочим телом двигателя?
  4. Что происходит с газом при совершении работы?
  5. Что является холодильником в двигателе?
  6. Какой величиной характеризуется работа двигателя?
  7. Что называют КПД двигателя? Формула?
  8. Может ли КПД любого теплового двигателя быть равным 100%?
  9. Кто из ученых получил новую формулу для расчета максимального КПД?
  10. Формула максимального КПД двигателя?

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего те­ла (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

1) рабочее тело (газ или пар), совершающее работу;

2) нагреватель, сообщающий энергию рабочему телу;

3) холодильник, поглощающий часть энергии от рабочего те­ла.

Тепловые двигатели: принцип действия, устройство, схема

Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.

Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.

Особенности теплового двигателя

Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.

Алгоритм действия

Тепловыми машинами называют механизмы, где наблюдается превращение внутренней энергии топлива в механический вид.

Для совершения двигателем полезной работы, должна быть создана разность давлений с обеих сторон поршня либо лопастей мощной турбины. Для достижения такой разности давлений происходит повышение температуры рабочего тела на тысячи градусов в сравнении с ее средним показателем в окружающей среде. Происходит подобное повышение температуры в процессе сгорания топлива.

Изменения температур

У всех современных тепловых машин выделяют рабочее тело. Им принято называть газ, совершающий в процессе расширения полезную работу. Начальную температуру, обозначаемую Т1, он приобретает в паровом котле машины или турбины. Называют этот показатель температурой нагревателя. В процессе совершения работы происходит постепенная потеря газом энергии. Это приводит к неизбежному охлаждению рабочего тела до некоторого показателя Т2. Значение температуры должно быть ниже показателя окружающей среды, иначе давление газа будет иметь меньший показатель, чем атмосферное давление, и работа двигателем не будет совершена.

Показатель Т2 называют температурой холодильника. В его качестве выступает атмосфера либо специальное устройство, необходимое для конденсации и охлаждения отработанного пара.

Некоторые факты

Итак, тепловые двигатели, принцип действия которых основывается на расширении рабочего тела, не способны отдавать для совершения работы всю внутреннюю энергию. В любом случае часть тепла будет передаваться атмосфере (холодильнику) вместе с отработанным паром либо выхлопными газами турбин или двигателей внутреннего сгорания.

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Изобретение тепловой машины

Первым изобретателем машины, использующей тепло, стал Сади Карно. Он разработал идеальную машину, в которой рабочим телом выступал идеальный газ. Кроме того, ученому удалось определить показатель КПД для такого устройства, используя значения температуры холодильника и нагревателя.

Карно удалось определить зависимость между реальной тепловой машиной, функционирующей на основе нагревателя, и холодильником, в качестве которого выступает воздух или конденсатор. Благодаря математической формуле, предложенной Карно для его первой идеальной тепловой машины, определяется максимальное значение КПД. Между температурой нагревателя и холодильника существует прямая связь.

Для того чтобы машина полноценно функционировала, значение температуры не должно быть меньше ее показателя в окружающем воздухе. При желании можно повышать температуру нагревателя, не забывая о том, что у каждого твердого тела есть определенная жаропрочность. По мере нагревания оно теряет свою упругость, а при достижении температуры плавления просто плавится.

Благодаря инновациям, которые достигнуты в современной инженерной промышленности, происходит постепенное повышение КПД теплового двигателя. Например, снижается трение между его отдельными частями, устраняются потери, возникающие из-за неполного сгорания топлива.

Двигатель внутреннего сгорания

Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.

Принципы действия тепловых машин

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Как работают тепловые двигатели

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Инструкция

  1. Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.
  2. К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.
  3. Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.
  4. Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и выведение отработанных газов производится через систему клапанов. Они позволяют подавать горючее в строго ограниченном количестве и в нужное время.
  5. Источник тепла в двигателях внутреннего сгорания – химическая энергия топливной смеси. Для данного типа теплового двигателя не нужен котел или нагреватель внешнего типа. В качестве рабочего тела здесь выступают самые разные горючие вещества, из которых самым распространенным являются бензин или дизельное топливо. К недостаткам двигателей внутреннего сгорания можно отнести их высокую чувствительность к качеству топливной смеси.
  6. Двигатели внутреннего сгорания по своей конструкции могут быть двух- и четырехтактными. Устройства первого вида проще в конструкции и не так массивны, но при одинаковой мощности требуют значительно больше топлива, чем четырехтактные. Двигатели, работа которых построена на двух тактах, чаще всего применяют в небольших мотоциклах или газонокосилках. Более серьезные машины оснащают тепловыми двигателями четырехтактного типа.

Видео по теме

Как устроены и как работают тепловые двигатели

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.


1. Для механических явлений при определённых условиях выполняется закон сохранения механической энергии: полная механическая энергия системы тел сохраняется, если они взаимодействуют силами тяготения или упругости. Если действуют силы трения, то полная механическая энергия тел не сохраняется, часть её (или вся) превращается в их внутреннюю энергию.

При изменении состояния тела (системы) меняется его внутренняя энергия. Состояние тела и соответственно его внутреннюю энергию можно изменить двумя способами: в процессе теплопередачи или путём совершения внешними силами работы над телом (работа, например, силы трения).

2. При решении задачи в предыдущем параграфе получено, что количество теплоты ​ \( Q_1 \) ​, отданное горячей водой, равно количеству теплоты \( Q_2 \) , полученному холодной водой, т.е.: ​ \( Q_1=Q_2 \) ​.

Записанное равенство называется уравнением теплового баланса. Оно связывает количество теплоты, полученное одним телом, и количество теплоты, отданное другим телом при теплообмене. При этом в теплообмене могут участвовать не два тела, а три и более. Например, если в стакан с горячим чаем опустить ложку, то в теплообмене будут участвовать стакан и чай (отдают энергию), и ложка и окружающий воздух (получают энергию). Как уже указывалось, в конкретных задачах мы можем пренебречь количеством теплоты, получаемым или отдаваемым некоторыми телами при теплообмене.

3. Уравнение теплового баланса даёт возможность определить те или иные величины. В частности, значения удельной теплоёмкости веществ определяют из уравнения теплового баланса.

Задача. Определите удельную теплоёмкость алюминия, если при опускании в стакан, содержащий 92 г воды при 75 °С, алюминиевой ложки массой 42 г при температуре 20 °С в стакане установилась температура 70 °С. Потерями энергии на нагревание воздуха, а также энергией, отдаваемой стаканом, пренебречь.

Анализ задачи. В теплообмене участвуют два тела: горячая вода и алюминиевая ложка. Вода отдаёт количество теплоты ​ \( Q_1 \) ​ и остывает от 75 до 70 °С. Алюминиевая ложка получает количество теплоты ​ \( Q_2 \) ​ и нагревается от 20 до 70 °С. Количество теплоты ​ \( Q_1 \) ​, отданное горячей водой, равно количеству теплоты ​ \( Q_2 \) ​, полученному ложкой.

Решение задачи в общем виде: уравнение теплового баланса: ​ \( Q_1=Q_2 \) ​; количество теплоты, отданное горячей водой: ​ \( Q_1=c_1m_1(t_1-t) \) ​; количество теплоты, полученное алюминиевой ложкой: \( Q_2=c_2m_2(t-t_2) \) . С учётом этого уравнение теплового баланса:​ \( c_1m_1(t_1-t)=c_2m_2(t-t_2) \) ​. Откуда: ​ \( c_2=c_1m_1(t_1-t)/m_2(t-t_2) \) ​.

4. Закон сохранения энергии в тепловых процессах выполняется при нагревании тел за счёт энергии, выделяющейся при сгорании топлива. Топливо — это природный газ, дрова, уголь, нефть. При его сгорании происходит химическая реакция окисления — атомы углерода соединяются с атомами кислорода, содержащимися в воздухе, и образуется молекула оксида углерода (углекислого газа) СO2. При этом выделяется энергия.

При сгорании различного топлива одинаковой массы выделяется разное количество теплоты. Например, хорошо известно, что природный газ является энергетически более выгодным топливом, чем дрова. Это значит, что для получения одного и того же количества теплоты, масса дров, которые нужно сжечь, должна быть существенно больше массы природного газа. Следовательно, различные виды топлива с энергетической точки зрения характеризуются величиной, называемой удельной теплотой сгорания топлива.

Удельная теплота сгорания топлива — физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.

Удельная теплота сгорания топлива обозначается буквой ​ \( q \) ​, её единицей является 1 Дж/кг.

Значение удельной теплоты сгорания топлива определяют экспериментально. Наибольшую удельную теплоту сгорания имеет водород, наименьшую — порох.

Удельная теплота сгорания, например, нефти — 4,4·10 7 Дж/кг. Это означает, что при полном сгорании 1 кг нефти выделяется количество теплоты 4,4·10 7 Дж.

В общем случае, если масса топлива равна ​ \( m \) ​, то количество теплоты ​ \( Q \) ​, выделяющееся при его полном сгорании, равно произведению удельной теплоты сгорания топлива ​ \( q \) ​ на его массу ​ \( m \) ​:

5. Предположим, что внутреннюю энергию тела ​ \( U \) ​ изменили, совершив над ним работу ​ \( A \) ​ и сообщив ему некоторое количество теплоты ​ \( Q \) ​. В этом случае изменение внутренней энергии ​ \( U \) ​ равно сумме работы ​ \( A \) ​, совершённой над телом, и переданного ему количества теплоты ​ \( Q \) ​:

​Записанное выражение представляет собой первый закон термодинамики 1 , который является обобщением закона сохранения энергии. Он формулируется следующим образом: изменение внутренней энергии системы при переходе из одного состояния в другое равно сумме работы, совершённой над системой внешними силами, и количества теплоты, переданного системе.

1 Термодинамика — учение о тепловых процессах.

Предположим, что работу совершают не внешние силы, а само тело. Его работа в этом случае ​ \( A^=-A \) ​ и ​ \( Q=U+A^ \) ​. Количество теплоты, переданное телу, идет на изменение его внутренней энергии и на работу тела против внешних сил.

6. Устройства, совершающие механическую работу за счёт внутренней энергии топлива, называются тепловыми двигателями.

Любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела (рис. 72). В качестве рабочего тела используются газ или пар, поскольку они хорошо сжимаются, и в зависимости от типа двигателя может быть топливо (бензин, керосин), водяной пар и пр. Нагреватель передаёт рабочему телу некоторое количество теплоты ​ \( (Q_1) \) ​, и его внутренняя энергия увеличивается, за счет этой внутренней энергии совершается механическая работа \( (A) \) , затем рабочее тело отдаёт некоторое количество теплоты холодильнику \( (Q_2) \) и охлаждается при этом до начальной температуры. Описанная схема представляет цикл работы двигателя и является общей, в реальных двигателях роль нагревателя и холодильника могут выполнять различные устройства. Холодильником может служить окружающая среда.


Поскольку в двигателе часть энергии рабочего тела передается холодильнику, то понятно, что не вся полученная им от нагревателя энергия идет на совершение работы. Соответственно, коэффициент полезного действия двигателя (КПД) равен отношению совершенной работы ​ \( (A) \) ​ к количеству теплоты, полученному им от нагревателя ​ \( (Q_1) \) ​:

Коэффициент полезного действия обычно выражают в процентах.

7. Существует два типа двигателей внутреннего сгорания (ДВС): карбюраторный и дизельный. В карбюраторном двигателе рабочая смесь (смесь топлива с воздухом) готовится вне двигателя в специальном устройстве и из него поступает в двигатель. В дизельном двигателе горючая
смесь готовится в самом двигателе.

ДВС (рис. 73) состоит из цилиндра (1), в котором перемещается поршень (5); в цилиндре имеются два клапана (2, 3), через один из которых горючая смесь впускается в цилиндр, а через другой отработавшие газы выпускаются из цилиндра. Поршень с помощью кривошипно-шатунного механизма (6, 7) соединяется с коленчатым валом, который приходит во вращение при поступательном движении поршня. Цилиндр закрыт крышкой (4).


Цикл работы ДВС включает четыре такта: впуск, сжатие, рабочий ход, выпуск. Во время впуска поршень движется вниз, давление в цилиндре уменьшается, и в него через клапан поступает горючая смесь (в карбюраторном двигателе) или воздух (в дизельном двигателе). Клапан в это время закрыт (рис. 73 а). В конце впуска горючей смеси закрывается клапан.

Во время второго такта поршень движется вверх, клапаны закрыты, и рабочая смесь или воздух сжимаются (рис. 73 б). При этом температура газа повышается: горючая смесь в карбюраторном двигателе нагревается до 300—350 °С, а воздух в дизельном двигателе — до 500—600 °С. В конце такта сжатия в карбюраторном двигателе проскакивает искра, и горючая смесь воспламеняется. В дизельном двигателе в цилиндр впрыскивается топливо, и образовавшаяся смесь самовоспламеняется.

При сгорании горючей смеси газ расширяется и толкает поршень и соединенный с ним коленчатый вал, совершая механическую работу (рис. 73 в). Это приводит к тому, что газ охлаждается.

Когда поршень придёт в нижнюю точку, давление в нём уменьшится. При движении поршня вверх открывается клапан, и происходит выпуск отработавшего газа (рис. 73 г). В конце этого такта клапан закрывается.

8. Паровая турбина представляет собой насаженный на вал диск, на котором укреплены лопасти. На лопасти поступает пар. Пар, нагретый до 600 °С, направляется в сопло и в нём расширяется, При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара. Струя пара поступает из сопла на лопасти турбины и передаёт им часть своей кинетической энергии, приводя турбину во вращение. Обычно турбины имеют несколько дисков, каждому из которых передаётся часть энергии пара. Вращение диска передаётся валу, с которым соединён генератор электрического тока.

ПРИМЕРЫ ЗАДАНИИ

Часть 1

Для определения удельной теплоты сгорания топлива необходимо знать

1) энергию, выделившуюся при полном сгорании топлива, его объём и начальную температуру
2) энергию, выделившуюся при полном сгорании топлива, и его массу
3) энергию, выделившуюся при полном сгорании топлива, и его плотность
4) удельную теплоёмкость вещества, его массу, начальную и конечную температуры

2. В сосуд налили 1 кг воды при температуре 90 °С. Чему равна масса воды, взятой при 30 °С, которую нужно налить в сосуд, чтобы в нём установилась температура воды, равная 50 °С? Потерями энергии на нагревание сосуда и окружающего воздуха пренебречь.

1) 1 кг
2) 1,8 кг
3) 2 кг
4) 3 кг

3. В воду, взятую при температуре 20 °С, добавили 1 л воды при температуре 100 °С. Температура смеси оказалась равной 40 °С. Чему равна масса холодной воды? Теплообменом с окружающей средой пренебречь.

1) 1 кг
2) 2 кг
3) 3 кг
4) 4 кг

4. В толстостенной трубке быстро сжимают воздух. При этом внутренняя энергия воздуха

1) не изменяется
2) увеличивается
3) уменьшается
4) сначала увеличивается, потом не изменяется

5. Газ получил количество теплоты 300 Дж и совершил работу 100 Дж. Внутренняя энергия газа при этом

1) увеличилась на 400 Дж
2) увеличилась на 200 Дж
3) уменьшилась на 400 Дж
4) уменьшилась на 200 Дж

6. В двигателе внутреннего сгорания

1) внутренняя энергия рабочего тела преобразуется в механическую энергию
2) поршень перемещается за счёт переданного ему количества теплоты
3) механическая энергия поршня превращается во внутреннюю энергию рабочего тела
4) механическая работа совершается за счёт энергии рабочего тела и переданного поршню количества теплоты

7. Двигатель внутреннего сгорания совершает полезную работу при

1) сжатии рабочего тела
2) выпуске отработанного газа из цилиндра
3) впуске рабочего тела в цилиндр
4) расширении рабочего тела в цилиндре

8. Рабочим телом в автомобильном двигателя внутреннего сгорания является

1) воздух
2) бензин
3) горючая смесь, состоящая из воздуха и паров бензина
4) керосин

9. Тепловой двигатель получает за цикл работы от нагревателя количество теплоты 200 Дж и передаёт холодильнику количество теплоты 80 Дж. Чему равен КПД двигателя?

10. Двигатель получает от нагревателя количество теплоты 100 Дж и совершает полезную работу 200 Дж. Чему равен КПД такого двигателя?

1) 200%
2) 50%
3) 20%
4) такой двигатель невозможен

11. Установите соответствие между физическими величинами и их единицами в СИ. К каждой позиции левого столбца подберите соответствующую позицию левого столбца и запишите выбранные цифры под соответствующими буквами

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество теплоты
Б) удельная теплоёмкость
B) удельная теплота сгорания

ЕДИНИЦА ВЕЛИЧИНЫ
1) Дж/кг
2) Дж
3) Дж/кг °С

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) температура газа
Б) концентрация
B) внутренняя энергия

ЕДИНИЦА ВЕЛИЧИНЫ
1) не изменяется
2) увеличивается
3) уменьшается

13. Ударная часть молота массой 10 т свободно падает на стальную деталь массой 200 кг. С какой высоты падает ударная часть молота, если после 32 ударов деталь нагрелась на 20 °С? На нагревание расходуется 25% энергии молота.

При теплопередаче более нагретое тело отдаёт энергию, а тело, менее нагретое, получает энергию. При переходе энергии от одного тела к другому или при превращении одного вида энергии в другой, энергия сохраняется во всех явлениях, происходящих в природе.

Количество теплоты, отданное телом, равно количеству теплоты, принятое телом.

Испарение и конденсация. Кипение жидкости

Парообразование – это процесс превращения жидкости в пар.
Испарение – это парообразование, происходящее с поверхности жидкости.
Скорость испарения зависит: от температуры, от площади поверхности, от ветра, от рода жидкости
Испарение
Происходит при любой температуре .Температура жидкости понижается
Кипение – это интенсивное парообразование, происходящее по всему объёму жидкости.
Кипение

Жидкость кипит при строго определённой температуре, называемой температурой кипения .Во время кипения температура жидкости не меняется. Вся полученная жидкостью энергия идёт на парообразование
Температура кипения зависит от величины атмосферного давления.
Q = L m
L [Дж/кг] –удельная теплота парообразования

Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры, называется удельной теплотой парообразования и конденсации.

Q>0
Конденсация – это явление превращения пара в жидкость
Q = - Lm
Q

Влажность воздуха. Способы определения влажности

Абсолютная влажность ρ показывает, сколько граммов водяного пара содержится в воздухе объемом 1м 3 при данных условиях.

Чтобы судить о влажности воздуха нужно знать насколько далек водяной пар находящийся в воздухе от состояния насыщения.

Относительной влажностью воздуха φ называют отношение абсолютной влажности воздуха к плотности насыщенного водяного пара при той же температуре, выраженной в процентах. Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы.

Используя психрометр и психрометрическую таблицу, можно определить влажность воздуха в %.

Плавление и кристаллизация

Передавая телу энергию, можно перевести его из твердого состояния в жидкое (например, расплавить лед) , а из жидкого - в газообразное (превратить воду в пар) . Отнимая энергию у газа, можно получить жидкость, а из жидкости - твердое тело.
Переход вещества из твердого состояния в жидкое называют плавлением.
Чтобы расплавить тело, нужно сначала нагреть его до определенной температуры.
Температуру, при которой вещество плавится, называют температурой плавления вещества.
Одни кристаллические тела плавятся при низкой температуре, другие - при высокой. Лед, например, плавится при температуре 0'С, свинец - при 327'С, олово - при 232'С, а сталь - при 1500'С.
Переход вещества из жидкого состояния в твердое называют отвердеванием или кристаллизацией.
Чтобы началась кристаллизация расплавленного тела, оно должно остыть до определенной температуры
Температуру, при которой вещество отвердевает (кристаллизуется) , называют температурой отвердевания или кристаллизации.
Опыт показывает, что вещества отвердевают при той же температуре, при которой плавятся. Например, вода кристаллизуется (а лед плавится) при 0'С, чистое железо плавится и кристаллизуется при температуре 1539'С.
Если нагревать какое-либо кристаллическое тело, то можно заметить, что его температура будет повышаться только до момента начала плавления тела, во время процесса плавления температура тела не изменяется.
Плавление и отвердевание кристаллических тел можно объяснить на основании атомно-молекулярной теории строения вещества.
Мы знаем, что в кристаллах молекулы (или атомы) расположены в строгом порядке. Этим объясняется, что все кристаллы одного и того же вещества имеют определенную форму. Однако и в кристаллах молекулы или атомы находятся в движении. Но в отличие, например, от газов, где частицы движутся независимо друг от друга, в твердом теле каждая из частиц влияет на движение других.
От скорости движения молекул, как мы знаем, зависит температура тела. При нагревании тела средняя скорость движения молекул возрастает, - следовательно, возрастает и их средняя кинетическая энергия. Вследствие этого размах колебаний молекул (или атомов) увеличивается, при этом силы, связывающие их, уменьшаются. Когда тело нагреется до температуры плавления, размах колебаний настолько увеличится, что нарушится порядок в расположении частиц в кристаллах. Кристаллы теряют свою форму: вещество плавится, переходя из твердого состояния в жидкое.
При отвердевании вещества все происходит в обратном порядке: средняя кинетическая энергия и скорость молекул в охлажденном расплавленном веществе уменьшаются. Силы притяжения могут снова удержать медленно движущиеся молекулы друг около друга. Вследствие этого расположение частиц становится упорядоченным.
Кристаллизация облегчается, если в жидкости с самого начала присутствуют какие-нибудь посторонние частицы, например пылинки. Они становятся центрами кристаллизации. В обычных условиях в жидкости имеется множество центров кристаллизации, около которых и происходит образование кристалликов.
Удельная теплота плавления.

Физическая величина, показывающая какое количество теплоты необходимо сообщить кристаллическому телу массой 1кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

При температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твердом состоянии.

Чтобы вычислить количество теплоты, необходимое для плавления кристаллического тела массой m, взятого при его температуре плавления и нормальном атмосферном давлении, нужно удельную теплоты плавления умножить на массу тела.

При отвердевании кристаллического вещества выделяется точно такое же количество теплоты, которое поглощается при его плавлении.

Преобразование энергии в тепловых машинах

Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.

Двигатель внутреннего сгорания.

Цикл двигателя состоит: впуска, сжатия, рабочего хода, выпуска.

Паровая турбина.

Турбины- двигатели в которых пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала.

КПД теплового двигателя.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника.

Отношение совершенной работы двигателя, к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

КПД двигателя всегда меньше единицы.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.004)

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Дата: 10.11.2016.

Тема урока: Преобразования энергии в тепловых машинах .

Образовательная : получить представление принципа работы тепловой машины - паровой турбины; сформировать понятие КПД теплового двигателя, умение объяснять физические опыты и явления.

Развивающая : установить взаимосвязь между изученным материалом и явлениями в жизни.

Воспитательная : обсудить проблемы использования тепловых двигателей в экологическом аспекте; воспитывать чувство ответственности, умение работать в коллективе, умение использовать свой интеллект, волю, эмоции.

Тип урока: С-П; С-П; С-П.

Оборудование: учебники, задачники, рабочие тетради.

Организационный момент.

Повторение пройденного материала.

Устный опрос учащихся по теме " Относительная влажность воздуха и ее измерение ". Подведение итогов контрольной работы, обсуждение ошибок.

Постановка целей и задач.

Изучение нового материала.

В современной технике наряду с ДВС так же широко применяют и другой тип теплового двигателя – турбинные двигатели. Впервые об этой машине заговорил Лаваль, французский ученый в 1889 году. Особенность данного типа тепловой машины в том, что нагретый до высокой температуры пар в нем вращает вал двигателя без помощи поршня, шатуна и коленчатого вала.

Состоит паровой двигатель из вала, на оси которого размещаются диски с лопастями.

Также как и в ДВС действие паровой машины основано на преобразование энергии: внутренняя энергия пара превращается в механическую энергию вращения ротора.

Мощность паровой машины тем больше, чем больше дисков будет насажено на общий вал.

Границы применимости паровых машин: тепловые электростанции и морские суда: на автомобильном - поршневые двигатели внутреннего сгорания, на водном - двигатели.

Паровые турбины - устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока, а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели.

Паровые внутреннего сгорания и паровые турбины, на железнодорожном - тепловозы с дизельными установками, в авиации - поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта. Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника.

Пар является рабочим телом, получает от нагревателя некоторое количество теплоты.

Рабочее тело, нагреваясь, расширяется и совершает работу за счет внутренней энергии. Часть энергии передается атмосфере – холодильнику – вместе с отработанным паром или выхлопными газами.

КПД = Ап 100%/Аз или Q=Qп 100%/Qз

Ап – полезная работа.

Аз - затраченная (полная) работа.

Qп - количество теплоты, выделяющееся при сжигании топлива в камере сгорания ДВС).

Qз - количество теплоты, которое выходит в окружающую среду.

КПД всегда меньше 100%

КПД характеризует степень экономичности тепловой машины, выражается отношением полезной работы, полученной от нагревателя к затраченной, отданной холодильнику (окружающей среде)

Закрепление изученного материала.

Решение задач на закрепление

№ 1. Двигатель внутреннего сгорания совершил полезную работу равную 28.2 кДж и израсходовал при этом 3л бензина. Вычислите КПД двигателя.

Читайте также: