Понятие о телевидении физика 11 класс доклад

Обновлено: 05.07.2024


Передача на расстояние изображений объектов и звука называется телевидением. Сущность телевизионной передачи состоит в последовательном преобразовании отдельных элементов оптического изображения объекта в видеосигналы, а звукового сопровождения в аудиосигналы, передаче этих сигналов по каналам связи (радиоканалу или кабельному каналу) в пункт приема и их обратном преобразовании в видимое телевизионное изображение и звук. Для передачи движения используется принцип кино: немного отличающиеся друг от друга изображения движущегося объекта (кадры) передаются десятки раз в секунду (в нашем телевидении 50 раз). Изображение кадра преобразуется с помощью передающей вакуумной электронной трубки — иконоскопа (рис. 7.24) — в серию электрических сигналов. Кроме иконоскопа существуют и другие передающие устройства. Внутри иконоскопа расположен мозаичный экран, на который с помощью оптической системы проецируется изображение объекта. Каждая ячейка мозаики заряжается, причем ее заряд зависит от интенсивности падающего на ячейку света. Этот заряд меняется при попадании на ячейку электронного пучка, создаваемого электронной пушкой. Электронный пучок последовательно попадает на все элементы сначала одной строчки мозаики, затем другой строчки и т. д. (всего 625 строк). От того, насколько сильно меняется заряд ячейки, зависит сила тока в резисторе R. Поэтому напряжение на резисторе изменяется пропорционально изменению освещенности вдоль строк кадра. Высокочастотные сигналы, полученные на выходе трубки, попадают на антенну, излучающую соответствующие электромагнитные волны. Эти сигналы формируются в телевизионном приемнике после детектирования. Это видеосигналы. Они преобразуются в видимое изображение на экране при помощи кинескопа. Кинескоп - приемная вакуумная электронная трубка, преобразующая электрические сигналы в видимое изображение. Электронная пушка такой трубки снабжена электродом, управляющим числом электронов в пучке и, следовательно, свечением экрана в месте попадания луча. Системы катушек горизонтального и вертикального отклонения заставляют электронный луч обегать весь экран точно таким же образом как электронный луч обегал мозаичный экран в передающей трубке. Синхронность движения лучей в передающей и приемной трубках достигается посылкой специальных синхронизирующих сигналов. Телевизионные радиосигналы могут быть переданы только в диапазоне ультракоротких (метровых) волн. Этот вид электромагнитных волн хорошо распространяется только в непосредственной видимости приемной антенны. Поэтому возникает проблема телевизионного вещания на большие расстояния. Чтобы ее решить, во-первых, передатчики телевизионного сигнала необходимо располагать как можно ближе друг к другу.
Во-вторых, их антенны следует поднимать как можно выше. Башня Останкинского телецентра в Москве высотой более 510 м обеспечивает надежный прием телепередач в радиусе 120 км. В настоящее время телевизионная сеть в нашей стране насчитывает несколько тысяч вещательных станций; их передачи принимают около 100 млн телевизоров.
22 мая 2012 года состоялось торжественное открытие самой высокой в мире телевизионной башни под названием "Небесное дерево Токио". Высота телевизионной башни вместе с антенной составляет 634 метра, а это на 24 метра выше телебашни Гуанчжоу в Китае, которая была предыдущим рекордсменом по высоте. Наряду с "эфирным" телевидением широко используется передача телевизионных сигналов по кабельным сетям. Для кабельного телевидения используются диапазоны, получившие название S-диапазон (Sonderkanal) и Н-диапазон (Hyperband). Использование кабеля позволяет уменьшить влияние внешних помех на полезный сигнал и, следовательно, передать его более качественно. В настоящее время широкое распространение получили локальные сети кабельного телевидения, функционирующие чаще всего в пределах небольшого населенного пункта, микрорайона, а иногда и одного здания, например многоквартирного дома или гостиницы. По этой сети с небольшой приемной телевизионной станции за абонентскую плату передаются программы "эфирного" и спутникового телевидения. Спутниковое телевидение является на сегодняшний день самым динамично развивающимся способом передачи телевизионных сигналов на большие расстояния. Частоты, на которых передаются спутниковые программы гораздо выше частот наземного телевидения, поэтому для их приема необходима специальная антенна и ресивер (receiver). Спутниковый ресивер предназначен для преобразования спутникового сигнала в сигнал воспринимаемый обычным телевизором. В последние годы развивается новый способ "эфирной" трансляции телевизионных программ — сотовое телевидение. Свое название он получил из-за принципа покрытия сигналом территории обслуживания, аналогичного принципу, положенному в основу сотовой телефонной связи. Абонентское оборудование состоит из антенны со сверхвысокочастотным (СВЧ) приемником (конвертором), объединенными в единый компактный блок, и традиционного спутникового тюнера, работающего в диапазоне частот 950-2050 МГц. По каналам сотового телевидения можно передавать как аналоговые сигналы систем PAL, SECAM, NTSC, так и цифровые нового стандарта DVB. Радиус распространения сигналов достигает до 3-6 км. Поэтому для покрытия сигналом больших площадей используют сеть маломощных передатчиков. Наличие множества ячеек сети позволяет предлагать пользователям в каждой из них свой набор телевизионных программ, что выгодно отличает сеть сотового телевидения от существующих "эфирных систем".
В настоящее время телевидение является наиболее массовым средством донесения информации до потребителя.

Какие же физические процессы лежат в основе передачи и воспроизведения телевизионного изображения? Кому мы обязаны рождению телевизора?

Как рождалось телевидение

Над созданием дальновидения трудились ученые разных стран на протяжении многих десятилетий. Но телевизор изобрели российские ученые: Б. Л. Розинг, В. К. Зворыкин и Григорий Оглоблинский.

Борис Розинг — один из изобретателей телевидения.

Первыми шагами, приблизившими мир к передаче изображения на расстояние, было разложение изображения на отдельные элементы с помощью диска немецкого инженера Пауля Нипкова, а также открытие фотоэффекта немецким учёным Генрихом Герцем. Первые телевизоры, работавшие на основе диска Нипкова, были механическими.

В 1895 году человечество обогатилось двумя великими изобретениями — радио и кино. Это послужило толчком для поисков способа передачи изображения на расстояние.

…Эра электронного телевидения началась с 1911 года, когда российский инженер Борис Розинг получает патент на передачу изображения на расстояние с помощью сконструированной им электронно-лучевой трубки.

Переданное изображение представляло собой четыре белых полосы на черном фоне.

В 1925 году ученик Розинга Владимир Зворыкин демонстрирует созданный им полноценный электронный телевизор.

Владимир Зворыкин.

Но на дальнейшие исследования и выпуск телевизионных приёмников нужны были огромные деньги. Известный американский предприниматель российского происхождения Дэвид Сорнов сумел оценить это великое изобретение. Он вложил необходимую сумму для продолжения работ.

В 1929 году совместно с инженером Григорием Оглоблинским Зворыкин создает первую передающую трубку — иконоскоп.

А в 1936 году в лаборатории В. Зворыкина получил путёвку в жизнь первый электронный телевизор на лампах. Это был массивный деревянный ящик с экраном в 5 дюймов (12,7) см. Регулярное телевещание в России началось в 1939 году.

Постепенно ламповые модели вытеснялись полупроводниковыми, а затем всего одна микросхема стала заменять всю электронную начинку телевизора

Очень кратко об основных этапах работы телевидения

В современной телевизионной системе можно выделить 3 этапа, каждый из которых выполняет свою задачу:

  • преобразование изображения объекта в серию электрических импульсов, называемых видеосигналом (сигналом изображения);
  • передача видеосигнала к месту его приёма;
  • преобразование принятых электрических сигналов в оптическое изображение.

Как работает видеокамера

Производство телепрограмм начинается с работы передающей телевизионной камеры. Рассмотрим устройство и принцип работы такого устройства, разработанного Владимиром Зворыкиным еще в 1931 году.

Основной частью камеры (иконоскопа) является светочувствительная, мозаичная мишень. Именно на неё и проецируется изображение создаваемое объективом. Мишень покрыта мозаикой из нескольких миллионов изолированных серебряных крупинок, покрытых цезием.

Принцип работы иконоскопа основан на явлении внешнего фотоэффекта — выбивании электронов из вещества под действием падающего света. Падающий на экран свет, выбивает из этих крупинок электроны, количество которых зависит от яркости светового потока в данной точке экрана. Таким образом, на экране возникает невидимое для глаза электрическое изображение.

Принцип работы иконоскопа.

В современных камерах изображение фиксируется не на светочувствительной плёнке, а на цифровой матрице, состоящей из миллионов светочувствительных ячеек — пикселей. Свет, попадающий на ячейки, вырабатывает электрический сигнал. Причем, его величина пропорциональна интенсивности светового луча.

Для получения цветного изображения пиксели покрываются красным, синим и зеленым светофильтрами. В результате матрица фиксирует три изображения — красное, синее и зелёное. Их наложение и дает нам цветное изображение, фотографируемого объекта.

Как видеосигнал доходит до телевизора

Полученный видеосигнал имеет низкую частоту и не может распространяться на значительные расстояния. Поэтому в качестве несущей частоты используют высокочастотные э-м волны, модулированные (изменённые) видеосигналом. Они распространяются в эфире со скоростью 300 000 км/сек.

Телевидение работает на волнах метрового и дециметрового диапазона, которые могут распространяться только в пределах прямой видимости, т. е. не могут огибать земной шар. Поэтому для расширения зоны телевещания используют высокие телебашни с передающими антеннами, Так, Останкинская телебашня имеет высоту 540 метров.

Телевизионная Останския башня.

С развитием спутникового и кабельного телевидения практическая значимость телебашен постепенно снижается.

Спутниковое телевидение осуществляется за счёт целого ряда спутников, расположенных над экватором. Наземная станция передает свои сигналы на спутник, который ретранслирует их на землю, охватывая достаточно обширную зону. Сеть таких спутников позволяет охватить телевещанием всю территорию Земли.

Кабельное телевидение предусматривает одну приёмную антенну, от которой телевизионные сигналы передаются к отдельным потребителям по специальному кабелю.

Как работает телевизор

Итак, в 1936 году в лаборатории В. Зворыкина был создан первый электронный телевизор с электроннолучевой трубкой (кинескопом). Конечно, с тех пор он претерпел много изменений, но все же рассмотрим, как происходит воспроизведение изображения в телевизоре с электроннолучевой трубкой.

Схема работы кинескопа.

Именно в этой стеклянной колбе и происходит превращение невидимого электронного сигнала в видимое изображение. В его узкой части расположена электронная пушка, а с противоположной стороны — экран, внутренняя поверхность которого покрыта люминофором. Пушка обстреливает это покрытие электронами. Количеством электронов управляет поступивший в приёмное устройство видеосигнал. Электроны, попадая на люминофор, вызывают его свечение. Яркость свечения зависит от количества электронов, попавших в данную точку. Совокупность точек разной светимости и создают картинку. Электронный луч обстреливает экран слева направо, строчка за строчкой, постепенно спускаясь вниз, всего 625 строк. Все это происходит с огромной скоростью. За 1 секунду электронный луч успевает нарисовать 25 статических картинок, которые мы воспринимаем как движущееся изображение.

Цветное телевидение появилось в 1954 году. Для создания всей гаммы цветов понадобилось 3 пушки — красная, синяя и зеленая. Экран, соответственно, снабдили тремя слоями люминофора соответствующих цветов. Обстрел красного люминофора из красной пушки создает красное изображение, из синей — синее и т. д. Их наложение создает всё многообразие цветов, соответствующих передаваемой картинке.

Описанные телевизионные приёмники с ЭЛ трубкой — это наше недавнее прошлое. На смену им пришли более изящные, плоские жидкокристаллические и плазменные модели. В ЖК телевизорах экраном служит тонкая матрица с огромной плотностью светящихся элементов (пикселей), позволяющих получить изображение хорошей чёткости.

Жидкокристаллический экран.

Пиксели плазменного телевизора состоят из микроламп, заполненных газами 3-х видов. Их свечение и создает цветную картинку.

Цифровое и аналоговое телевидение

До недавних пор основным форматом телевидения был аналоговый формат. Однако телевидение всегда быстро реагировало на новые технологии. Поэтому последние годы видеотехника перешла на цифровой формат. Он обеспечивает более устойчивое и качественное изображение, а также чёткий звук. Появилась возможность передавать огромное количество телеканалов одновременно.

Полный переход на новый формат будет осуществлен к 2018 году. А пока можно пользоваться специальными приставками к старым телевизорам, и наслаждаться услугами цифрового телевидения.

Телевизионная аудитория самая многочисленная в мире. Ведь это не только способ развлечь себя, но и возможность обогащения кругозора, не выходя из дома. Особенное значение в этом плане играет интернет-телевидение, позволяющее пользователям выбирать пакет каналов по своим интересам и просматривать прошлые телевизионные программы.


Категория: Физика

Понятие о телевидении

Радиоволны используются для передачи не только звука, но и изображения в телевидении.

Принцип передачи изображения

На передающей станции производится преобразование изображения в последовательность электрических сигналов.
Этими сигналами модулируются колебания, вырабатываемые генератором высокой частоты.
Модулированная электромагнитная волна переносит информацию на большие расстояния.
В приемнике производится обратное преобразование.
Высокочастотные модулированные колебания детектируются, а полученный сигнал преобразуется в видимое изображение.


Для передачи движения немного отличающиеся друг от друга изображения движущегося объекта (кадры) передаются десятки раз в секунду (в России - 50 раз в секунду).
Изображение кадра преобразуется с помощью передающей вакуумной электронной трубки-иконоскопа в серию электрических сигналов.
Кроме иконоскопа существуют и другие передающие устройства.

Внутри иконоскопа расположен мозаичный экран, на который с помощью оптической системы проецируется изображение объекта.
Каждая ячейка мозаики заряжается, причем ее заряд зависит от интенсивности падающего на ячейку света.
Этот заряд меняется при попадании на ячейку электронного пучка, создаваемого электронной пушкой.
Электронный пучок последовательно попадает на все элементы сначала одной строчки мозаики, затем другой строчки и т. д. (всего 625 строк).
От того, насколько сильно меняется заряд ячейки, зависит сила тока в резисторе R.
Поэтому напряжение на резисторе изменяется пропорционально изменению освещенности вдоль строк кадра.

Принцип приема изображений

Высокочастотные сигналы, полученные на выходе трубки, попадают на антенну, излучающую соответствующие электромагнитные волны.

Эти сигналы формируются в телевизионном приемнике после детектирования.
Это видеосигналы.
Они преобразуются в видимое изображение на экране приемной вакуумной электронной трубки — кинескопа.
Электронная пушка такой трубки снабжена электродом, управляющим числом электронов в пучке и, следовательно, свечением экрана в месте попадания луча.
Системы катушек горизонтального и вертикального отклонения заставляют электронный луч обегать весь экран точно таким же образом, как электронный луч обегает мозаичный экран в передающей трубке.
Синхронность движения лучей в передающей и приемной трубках достигается посылкой специальных синхронизирующих сигналов.

Телевизионные радиосигналы могут быть переданы только в диапазоне ультракоротких (метровых) волн.
Такие волны распространяются обычно лишь в пределах прямой видимости антенны.
Поэтому для охвата телевизионным вещанием большой территории необходимо размещать телепередатчики как можно ближе друг к другу и поднимать их антенны как можно выше.

Башня Останкинского телецентра в Москве высотой 540 м обеспечивает надежный прием телепередач в радиусе 120 км.
В настоящее время телевизионная сеть в нашей стране насчитывает несколько тысяч вещательных станций; их передачи принимают около 100 млн телевизоров.

Для получения цветного изображения осуществляется передача трех видеосигналов, несущих компоненты изображения, соответствующие основным цветам (красному, зеленому, синему).

Зона надежного приема телевидения непрерывно увеличивается, в основном за счет использования ретрансляционных спутников.

Развитие средств связи

Еще сравнительно недавно междугородная телефонная связь осуществлялась исключительно по проводам.
В настоящее время все шире применяются кабельные и радиорелейные линии, повышается уровень автоматизации связи.

В радиорелейных линиях связи используются ультракороткие (дециметровые и сантиметровые) волны.
Эти волны распространяются в пределах прямой видимости, поэтому линии состоят из цепочки маломощных радиостанций, каждая из которых передает сигналы к соседней как бы по эстафете.
Такие станции имеют мачты высотой 60—80 м, находящиеся на расстоянии 40—60 км друг от друга.

Все большей популярностью пользуются оптоволоконные линии связи, позволяющие передавать большой объем информации.
Процесс передачи основан на многократном отражении лазерного луча, распространяющегося по тонкой трубке (волокну).
Такая связь возможна между двумя неподвижными объектами.

Созданы мощные и надежные системы, обеспечивающие телевизионным вещанием районы Сибири и Дальнего Востока.
Они позволяют осуществить телефонно-телеграфную связь с отдаленными районами нашей страны.


Совершенствуются и находят новые применения и такие сравнительно старые средства связи, как телеграф и фототелеграф.
В год по фототелеграфу передаются десятки тысяч газетных полос, с которых печатаются сотни миллионов экземпляров газет.
Телевидение охватывает почти все населенные пункты нашей страны.

В нашей стране создается Единая автоматизированная система связи.
В связи с этим развиваются, совершенствуются и находят новые области применения различные технические средства связи.

Электромагнитные волны. Физика, учебник для 11 класса - Класс!ная физика


На данном уроке мы познакомим учащихся со свойствами радиоволн различной длины; объясним принцип радиолокации и рассмотрим ее применение. А также познакомим учащихся с этапами развития и становления современного телевидения.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Радиолокация. Понятие о телевидении. Развитие средств связи"

Человечество было сформировано не императорами,

жрецами, полководцами, а теми, кто создал топор,

колесо, самолет, кто нашел злаки, следил за звездами,

кто открыл железо, полупроводники и радиоволны.

Даниил Гранин

В данной теме речь пойдёт об использовании радиоволн в современном мире, а именно речь пойдет о радиолокации и телевидении. Также поговорим о развитии средств связи.

Электромагнитная волна — это распространяющееся в пространстве периодически изменяющееся электромагнитное поле.

Впервые электромагнитные волны экспериментально получил, передал на расстояние (правда в пределах стола) и принял Генрих Герц. А уже в апреле 1895 года, Александр Степанович Попов создал первый в мире радиоприемник. С этого момента и начинается история развития и использования электромагнитных волн для нужд человечества.

Наиболее широкое применение из всего диапазона электромагнитных волн нашли радиоволны. Все радиоволны можно разделить на 3группы: ультракороткие, короткие и длинные волны.


Выбор используемой длины радиоволн зависит от конкретной задачи.

Например, с помощью мегаметровых волн можно держать связь с подводными лодками. Одни из самых распространенных — метровые, чаще всего используют для работы радио и телевидения, а сантиметровые и дециметровые — в радиолокации, т.е. в обнаружении объектов с помощью радиоволн.

На распространение радиоволн очень сильно влияют форма и физические свойства земной поверхности. Особенно сильное влияние на распространение радиоволн оказывают слои ионизированного газа в верхних слоях атмосферы. Эти слои, их еще называют ионосферой, ионизируются электромагнитным излучением Солнца и потоком заряженных частиц, излучаемых им. При этом, проводящая электрический ток ионосфера отражает все радиоволны, длина волны которых превышает 10 метров. Поэтому распространение таких волн на большие расстояния происходит только за счет многократных отражений от поверхности Земли и ионосферы.

Если же мы будем использовать радиоволны с длиной волны значительно превышающей 100 метров, то сможем создать устойчивую радиосвязь между удаленными точками на земной поверхности вне прямой видимости. Все дело в том, что такие волны (а это длинные волны) способны огибать выпуклую поверхность Земли. Причем это огибание будет выражено тем сильнее, чем больше длина волны.

А вот если использовать ультракороткие радиоволны, длина волны которых менее 10 метров, то можно выйти на связь с международной космической станцией. Дело в том, что такие волны могут свободно проходить через ионосферу и при этом практически не огибают земную поверхность.

Помимо всего вышеперечисленного, радиоволны, как и любые другие электромагнитные волны, распространяются прямолинейно и отражаются от преград.

Эти свойства радиоволн используются во многих отраслях современного мира. Об одном таком использовании поговорим более подробно. А именно, разговор пойдет о радиолокации.

История развития радиолокации своими корнями уходит в 1898 год, когда Александр Степанович Попов пытался осуществить радиосвязь между двумя кораблями, находящимися на расстоянии 5-ти километров друг от друга. В определенный момент после четкого и довольно устойчивого сигнала передатчика неожиданно обнаружился эффект затухания радиосигнала, который вскоре пропал. Как оказалось, в этот самый момент между двумя подопытными кораблями проходил третий. Это, можно сказать, и были первые эксперименты в области радиолокации. Тогда стало ясно, что электромагнитные волны можно использовать не только для связи, но и для обнаружения объектов в воздухе. Однако, в то время, применить практически открытую возможность дальнего видения никому не удалось.

Активное развитие радиолокации началось во время второй мировой войны. В Советском Союзе, Великобритании и США стали производить радары для раннего обнаружения самолетов вражеской авиации.

Современные локаторы засекают цели не только на сверхдальних расстояниях, но и за оптически непрозрачными преградами. Причем видят они не только неодушевленные объекты, но и живые организмы.


Что же такое радиолокация? Этот вопрос почти наверняка не у кого не вызовет затруднений. Хотя и не все непосредственно занимаются радиолокацией, но интернет, телевидение и документальные фильмы достаточно хорошо познакомили нас с вращающимися антеннами и серьезными сосредоточенными лицами операторов, которые вглядываются в слабо светящиеся экраны, мерцающие таинственными световыми пятнами — отметками целей.


Излучается радиоволна в пространство (это делает передатчик) и ожидается, когда появится отраженный сигнал. О его приходе извещает приемник радиолокационной станции, который снабжен огромной антенной для улавливания слабых отраженных сигналов. Если вокруг нет никаких предметов, которые отражали бы радиоволны, то отраженного сигнала не будет. Но, вероятнее всего, что радиоволна встретит на своем пути какое-то препятствие. В этом случае происходит либо отражение радиоволны, либо ее рассеяние. При отражении та часть волны, которая попадает на отражающий объект, сохраняет свою структуру, но изменяет направление своего движения. И если отраженная волна попадает на антенну, то в приемнике радиолокационной станции появится довольно сильный сигнал. И чем больше площадь отражающего объекта, тем сильнее принятый сигнал и тем отчетливее отметка от цели на экране индикатора.

Это явление легко смоделировать в домашних условиях. Для этого нужно лишь маленькое зеркало и солнышко в окошке. Оно и будет выполнять роль передатчика радиолокационной станции. Зеркально отражающий объект — зеркальце, а в качестве приемника отраженного сигнала можно использовать, например, кошку. Пока солнечный зайчик будет бегать по ковру и стенам, кошка будет спокойно сидеть и недоуменно смотреть на Вас (отраженный сигнал не попадает в приемник). Но как только световое пятнышко попадет на нее, кошка зажмурится, и тем сильнее, чем больше будет зеркальце. Сигнал принят.

Известно, что для проведения радиолокационных наблюдений необходим передатчик, чувствительный приемник с антенной, сигнал и какой-нибудь отражающий объект.


Как организовать их совместную работу в тех или иных случаях? Существует довольно много схем построения радиолокационных станций, и каждой схеме соответствует тот или иной принцип работы. Рассмотрим импульсный радиолокатор.


Импульсный радиолокатор излучает радиоволны в виде коротких радиоимпульсов, длина каждого из них несколько тысячных или миллионных долей секунды. В момент излучения передатчиком радиоимпульса приемник радиолокатора отключают, чтобы мощный передаваемый сигнал не повредил его. Как только передатчик отключают, так сразу же включают приемник, который ждет появление слабого отраженного сигнала. Через некоторое время, когда придет отраженный сигнал или исчезнет всякая надежда на его появление, снова включают передатчик и отключают приемник. И такой цикл повторяют непрерывно, пока станция ведет радиолокационное наблюдение.

Работа такого радиолокатора напоминает поведение человека, который любит послушать обычное эхо. Каждый знает немало мест, где эхо слышно особенно хорошо. Найдите такое место, крикните какое-нибудь заветное слово и прислушайтесь. Если Вам повезло и Вы нашли удачное место, то эхо можно услышать два или даже три раза. Когда эхо замокнет, можете крикнуть еще раз, и снова услышите ответ. Но если кричать непрерывно, то ничего не услышите, так как сами себя оглушите криком. Так и радиолокационная станция прекращает излучение, чтобы можно было принимать слабые отраженные сигналы (кстати, специалисты называют их эхо-сигналами).

Как же с помощью радиолокации определяется местоположение объекта? Станция включилась в работу. Сигнал срывается с передающей антенны и со скоростью света устремляется к цели. Одновременно на экране индикатора световой луч развертки начинает свой путь из точки, которая обозначает место расположения станции (на экране появляется всплеск около нулевой отметки шкалы дальности). Система развертки устроена таким образом, что при отсутствии цели луч будет все время прочерчивать на экране светящуюся горизонтальную линию (но будем все-таки считать, что цель есть). Вот сигнал достиг цели, отразился от нее и, вернувшись к станции, попал на огромное полотнище приемной антенны. И в этот момент луч сделает на экране засечку — цель обнаружена. То же происходит и со всеми последующими сигналами. Если цель приблизится к станции, то сигнал совершит свое путешествие к ней и обратно быстрее, а значит и луч развертки раньше засветит отметку от цели. Так как скорость, с которой путешествует сигнал, постоянна, то время, прошедшее с момента излучения сигнала до его приема, пропорционально удвоенному расстоянию до цели. Поэтому выбрав подходящий коэффициент пропорциональности, можно измерить расстояние на индикаторе, которое успел пробежать луч развертки за это время, непосредственно в километрах или милях. Так получается шкалу дальности на экране индикатора. Теперь достаточно заметить цифру, у которой возникает отметка от цели, чтобы сказать, на какой дальности она находиться.


где R – расстояние до цели.

В настоящее время радиолокация занимает существенную нишу как в военно-оборонной сфере, так и в гражданской. Радиолокационные установки обнаруживают корабли и самолеты на расстоянии до нескольких сот километров. Во все крупных аэропортах мира локаторы следят за взлетающими и идущими на посадку воздушными судами. Все современные корабли и самолеты также снабжены радиолокаторами, которые служат им для навигационных целей. Их используют службы погоды для наблюдения за облаками. И наконец, локаторы активно используются в наблюдениях за космическими объектами и в исследовании космоса.



А теперь, разобравшись с некоторыми аспектами радиолокации, настало время поговорить еще об одном способе использования радиоволн. А именно речь пойдет о телевидении.

Современная телевизионная система состоит из трех узлов, каждый из которых выполняет свою четко сформулированную задачу. Так, преобразователь свет-сигнал (это может быть, например, видеокамера) из поступающего на его вход оптического изображения формирует электрический сигнал, который принято в телевидении называть сигналом изображения или видеосигналом.

Видеосигнал, в свою очередь, передается по каналу связи и затем в месте приема преобразуется в изображение на телевизионном экране.

Наиболее часто в настоящее время в качестве преобразователя сигнал-свет используются приемные телевизионные трубки (кинескопы), жидкокристаллические экраны, проекционные кинескопы и т.д.


Несмотря на простоту схемы телевизионной системы, необходимо отметить, что ТВ устройства являются едва ли не самыми сложными из радиоэлектронных устройств. Это связанно с тем, что телевидение постоянно развивается и совершенствуется, вбирая в себя новейшие достижения науки и техники и стимулируя, в свою очередь, их развитие. Современный этап развития телевидения характеризуется интенсивным внедрением цифровых технологий обработки сигналов, использованием достижений твердотельной электроники, созданием и развитием цифрового спутникового телевидения, разработкой и внедрением ТВ систем высокой четкости.


Любопытным в истории развития телевидения является тот факт, что основополагающие принципы телевидения были сформированы более века назад. Идея создания первой телевизионной системы была предложена Джоном Керри. В 1875 году он предложил телевизионную систему с разбиением изображения на отдельные элементы (так называемое мозаичное изображение). А в 1880 году российский ученый Порфирий Иванович Бахметьев предложил информацию о каждом из элементов изображения извлекать, передавать по каналу связи и воспроизводить последовательно с помощью телевизионной развертки.

За прошедший век в телевидении произошли существенные изменения, связанные с общим техническим процессом. На смену оптико-механическим ТВ системам невысокого качества пришли системы электронного телевидения. Черно-белое (монохромное) телевидение повсеместно вытеснено системами цветного ТВ вещания. Аналоговое телевидение постепенно превращается в цифровое. Не исключена возможность внедрения в обозримом будущем стереоскопического телевидения. Однако, несмотря на столь очевидный прогресс, телевидение развивалось и развивается в рамках направления, ограниченного вышеупомянутыми предложениями Джона Керри и Порфирия Бахметьева. И действительно, понятие элемента изображения (пиксел) является фундаментальным в современном телевидении, а развертка — основным технологическим процессом при анализе и синтезе телевизионного изображения.

Принцип действия современной системы визуального телевидения основан на использовании процесса развертки, осуществляемого дважды — на передающей и приемной сторонах.


В процессе развертки на передающей стороне формируется видеосигнал, при этом происходит пространственно-временная дискретизация, т.е. разложение изображения на кадры, строки и элементы. Это происходит благодаря передающей вакуумной трубки, называемой иконоскопом. Внутри такой трубки располагается мозаичный экран, на который проецируется изображение объекта. Под действием падающей на ячейки световой энергии, каждая из них определенным образом заряжается. Далее, с помощью электронной пушки формируется электронный пучок, который поочередно попадает на все элементы мозаики от строчки к строчке. При этом изменяется заряд каждой ячейки мозаики.

После передачи данного видеосигнала по каналу связи производится восстановление телевизионного изображения с помощью видеоконтрольного устройства. Синтез изображения как операция, обратная разложению, также связан с процессом развертки, которая производится синтезирующей апертурой в плоскости изображения. В качестве синтезирующей апертуры в ТВ приемниках в настоящее время наиболее широко используется подвижное световое пятно, возникающее в результате взаимодействия сфокусированного электронного луча высокой энергии с катодолюминофором, нанесенным на экран кинескопа — приемной телевизионной электронно-лучевой трубки. Системы катушек горизонтального и вертикального отклонения заставляют такой луч сканировать весь экран точно так же, как электронный луч сканирует мозаичный экран в передающей трубке. Вследствие чего и возникает свечение экрана в местах попадания луча, а мы с вами наслаждаемся просмотром любимой телепередачи или фильма.


Конечно, был рассмотрен самый простой способ передачи изображения на расстояние — черно-белое. Получение цветного изображения сходно с получением черно-белого, однако в нем изображение разлагается на видеосигнал, несущий компоненты, соответствующие основным цветам спектра — красному, синему и зеленому.


Еще совсем недавно междугородняя телефонная связь осуществлялась только по воздушным линиям связи, на надежность которых оказывали влияние многочисленные факторы: грозы, сильные ветра и обледенение проводов. Сейчас же широко применяются кабельные и радиорелейные линии, сотовая мобильная связь и многое другое.

С развитием техники совершенствуется и аппаратура средств связи. Например, на смену простой телефонной связи пришли цифровые телекоммуникационные системы, которые обладают огромными функциональными возможностями.

Однако настоящей революцией в развитии средств связи, наверное, следует считать появление всемирной системы общедоступных электронных сетей — Интернет. Компьютерный мир уже давно стал сетевым. И появление Интернета, позволило людям со всех стран и всех континентов обмениваться огромными объемами различной информации.

Читайте также: