Объекты микромира и методы их изучения доклад 7 класс физика

Обновлено: 18.04.2024

Микромир является одним из структурных уровней организации материи. Объекты микромира – атомы, ядра, элементарные частицы и т.д. меньше миллиардных долей сантиметра и непосредственному наблюдению недоступны.

Микромир, так же, как любой структурный уровень, имеет свои характерные особенности. К таким особенностям можно отнести:

  • Бессмысленность применения привычных единиц измерения расстояния (метры, километры и т.д.)
  • Бессмысленность применения бытовых единиц измерения веса (граммы, килограммы, фунты и т.д.).

Исследование микромира и мегамира привело к крушению теории Ньютона, а вместе с тем к разрушению механистической картины мира.

В 1927 г. Нильс Бор сформулировал принцип дополнительности, и тем самым внес существенный вклад в развитие науки. Данный принцип был сформулирован исходя из двойственной природы света – корускулярно-волнового дуализма. По утверждению самого ученого, появление принципа дополнительности было вызвано изучением микромира из макромира, что подтверждалось следующими доводами:

  • При объяснении явлений микромира осуществлялись попытки использования понятий, выработанных при изучении макромира;
  • Разделение бытия на субъект и объект вызывало сложности в сознании человека;
  • Невозможность абстрагироваться в ходе изучения и описания явлений микромира от явлений макромира, и средств, используемых для этого наблюдателем.

Квантово-механическая концепция описания микромира

Согласно утверждения Нильса Бора, принцип дополнительности может использоваться как в исследованиях микромира, так и в других науках, например, в психологии.

Микромир является объектом изучения квантовой механики.

На принципе дополнительности Нильса Бора и соотношении неопределенностей В. Гейзенберга основывается квантово-механистическое описание микромира.

Соотношение неопределенностей заключается в том, что нельзя одинаково точно определить взаимодополняющие характеристики микрочастицы, такие, как ее координаты и импульс. Например, в ходе эксперимента, который точно показывает местонахождение частицы в данный момент, ее движение нарушается и после этого найти частицу не представляется возможным. Обратная ситуация с измерением точной скорости, когда определение местонахождения частицы невозможно.

Готовые работы на аналогичную тему

Противоречия корпускулярно –волновых свойств объектов микромира есть результат взаимодействия микрообъектов и макроприборов. Существует два вида приборов. В одном случае квантовые объекты изучаются как волны, в другом случае – как частицы. При проведении экспериментов наблюдается не реальность как она есть, а квантовое явление, которое заключается в результате взаимодействия микрообъекта и прибора.

Важной чертой, присущей квантовой механике, является то, что предсказания поведения микрообъектов носят вероятностный характер, то есть при проведении одинаковых экспериментов с одинаковыми объектами результаты будут отличаться, и известным будет лишь вероятностное значение.

Соотношение неопределенностей с точки зрения классической механики представляется абсурдным. Однако построение в макромире наглядной модели микромира невозможно. Таким образом, корпускулярная и волновая картины призваны быть комплементарными, то есть дополнять друг друга.

Элементарные частицы

Ранее считалось, что атомы, из которых состоит материя, являются неделимыми. Затем выяснилось, что это не соответствует действительности, и атомы состоят из элементарных частиц. Раньше всех был открыт электрон, его характеристики определил Дж. Дж. Томпсон в 1897 г, а в 1914 г. было установлено существование протона, который является элементарным носителем положительного заряда. В 1920 г. Резерфорд предположил существование нейтрона, он был открыт в 1932 году, тогда же открыли существование позитрона.

Таким образом, элементарные частицы – это частицы, которые не удается разделить на составные части. Элементарные частицы разделяются на стабильные и нестабильные. Основные черты элементарных частиц, и стабильных, и нестабильных, следующие:

  • Частицы неизменны
  • Частицы одного вида абсолютно одинаковы и неразличимы
  • Частицы имеют способность рождаться и исчезать.

Стандартная модель определяет, что вещество, включая свет, имеет в составе 12 элементарных частиц и 12 частиц – переносчиков взаимодействий. Сюда относятся кварки, электроны, фотоны и т. д.

На сегодняшний момент, современная наука пока не может ответить на вопрос о том, почему имеется именно таков набор частиц, также неизвестны причины наличия массы у некоторых из них. Перед современной физикой возникает новая задача – построение теории, в которой свойства частиц вытекают из свойств вакуума.

Современной науке известно несколько сотен элементарных частиц, а значит, необходима их классификация.

Для всех элементарных частиц характерны следующие параметры:

  • Масса покоя
  • Электрический заряд, который кратен заряду электрона, либо отсутствует
  • Спин
  • Время жизни.

Классификация элементарных частиц основана на их способности участвовать в каких-либо видах фундаментальных взаимодействий. Согласно этому, элементарные частицы делятся на:

  • Фотоны - частицы, масса которых равна 0, они не имеют сильного и слабого взаимодействия, но принимают участие в электромагнитном.
  • Лептоны не участвуют в сильном взаимодействии.
  • Адроны: барионы и мезоны. Адроны могут участвовать в сильном взаимодействии.

Микромир является основой нашего макромира. Наряду с микромиром, в науке можно выделить наномир, который, в отличие от микромира, является носителем всего спектра электромагнитных процессов. Наномир – это фундамент, основа структуры элементарных частиц и большей части явлений, известных современной науке.

То есть, предметы окружающей действительности, и тело человека состоит из частей, которыми являются молекулы. В свою очередь, молекулы состоят из атомов, которые делятся на еще более мелкие части – элементарные частицы. Таким образом, в случае, если некогда произойдет разрушение Вселенной, оно начнется с наномира и микромира.

Становление теории атомно-молекулярного строения мира приходится на начало 19 века, хотя еще Демокрит предполагал, что Вселенная слагается из мельчайших неделимых частиц, однако доказать экспериментально, что каждый химический элемент состоит из одинаковых атомов, удалось лишь в 1808 году. Сделал это английский химик и физик Дж.Дальтон - создатель химического атомизма, а в 1811 году итальянский физик и химик А.Авогадро выдвинул гипотезу молекулярного строения веществ (в частности, простых газов).

В конце XIX - начале XX вв. физика вышла на новый уровень исследований. Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств пространства и времени, но еще в большей мере к исследованию физических свойств мельчайших частиц материи или микрообъектов, таких, как электроны, протоны, нейтроны, атомы и подобные им объекты, которые часто называют атомными частицами. Они образуют невидимый нами микромир.

В первое время физики были поражены необычными свойствами тех мельчайших частиц материи, которые они изучали в микромире. Попытки описать, а тем более объяснить свойства микрочастиц с помощью понятий и принципов классической физики потерпели явную неудачу. Поиски новых понятий и методов объяснения, в конце концов, привели к возникновению новой квантовой механики, к окончательному построению и обоснованию которой значительный вклад внесли Э. Шредингер (1887 – 1961), В. Гейзенберг (1901 – 1976), М. Борн (1882 – 1970). В самом начале эта механика была названа волновой в противоположность обычной механике, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики.

Все вышесказанное обосновывает актуальность данной темы.

Цель работы: всестороннее изучение и анализ микромира и его объектов.

Работа состоит из введения, двух глав, заключения и списка использованной литературы. Общий объем работы 14 страниц.

1 Объекты микромира

Все многообразие известных человечеству объектов и свойственных им явлений обычно разделяется на три качественно различные области — микро-, макро- и мегамиры (см. таблицу).

Уровни Условные границы
Размер, м Масса, кг
Микромир r -8 m 10
Макромир r ~ 10 -8 - 10 7 m ~10 -10 – 10 20
Мегамир r >10 7 m > 10 20

Первой элементарной частицей, открытой в физике, стал электрон, который в 1897 году, изучая газовые разряды открыл английский физик Джозеф Томсон и измерил отношение его заряда к массе. Электрон — один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

В обычном употреблении физики называют элементарными такие частицы, которые не являются атомами и атомными ядрами, за исключением протона и нейтрона. После установления сложной структуры многих элементарных частиц потребовалось ввести новое понятие – фундаментальные частицы, под которыми понимаются микрочастицы, внутреннюю структуру которой нельзя представить в виде объединения других свободной частиц.

Во всех взаимодействиях элементарные частицы ведут себя как единое целое. Характеристиками элементарных частиц являются, кроме массы покоя, электрического заряда, спина, также такие специфические характеристики (квантовые числа), как барионный заряд, лептонный заряд, гиперзаряд, странность и т.п.

Существует несколько групп элементарных частиц, различающихся по своим свойствам и характеру взаимодействия, которые принято делить на две большие группы: фермионы и бозоны (см. рисунок).

Фермионы составляют вещество, бозоны переносят взаимодействие.

Лептоны (от греч. легкий) - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом, могут быть нейтральными. Заряженные лептоны могут, как и электроны (относящиеся к их числу) вращаться вокруг ядер, образуя атомы. Лептоны, не имеющие заряда могут проходить беспрепятственно через вещество (хоть через всю Землю) не взаимодействуя с ним. У каждой частицы есть античастица, отличающаяся только зарядом.


Адроны - элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка.

При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Атомом (от греч. atomos - неделимый) называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру, представляя собой целостную ядерно-электронную систему. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг движутся электроны, образующие электронные оболочки, размеры которых (~10-8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в периодической системе. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке; соединяясь химически, атомы образуют молекулы.

Важная характеристика атома — его внутренняя энергия, которая может принимать лишь определенные (дискретные) значения, соответствующие устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая определенную порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень энергии). Из возбужденного состояния атом, испуская фотон, может перейти в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные — возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.

Ядро в целом – устойчивая система, для его разрушения необходимо затратить энергию. Эта энергия называется энергией связи ядра . Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи . Нуклоны в ядре удерживаются ядерными силами, представляющими сильное взаимодействие и имеют обменный характер . Ядерные силы обладают рядом свойств:

1. Ядерные силы являются короткодействующими (радиус действия порядка 10 -15 м) На этих расстояниях они значительно превышают кулоновские силы отталкивания протонов. При значительном уменьшении расстояния притяжение нуклонов сменяется отталкиванием.

2. Ядерные силы обладают зарядовой независимостью, т.е. действуют как между заряженными, так и между нейтральными частицами.

3. Ядерные силы обладают свойствами насыщения. Это означает, что каждый нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему нуклонов.

4. Ядерные силы не являются центральными. Их величина зависит от ориентации спинов частиц.

Молекулы — это очередной после атомов качественный уровень строения и эволюции вещества. Молекула – микрочастица, образованная из атомов и способная к самостоятельному существованию, обладающая его главными химическими свойствами. Имеет постоянный состав входящих в нее атомных ядер и фиксированное число электронов и обладает совокупностью свойств, позволяющих отличать молекулы одного вида от молекул другого. Число атомов в молекуле может быть различным: от двух до сотен тысяч.

Молекулы простых веществ состоят из одинаковых атомов, сложных – из разных атомов. Существует большое количество соединений, молекулы которых состоят из многих тысяч атомов - макромолекулы.

Подчеркивая целостность молекул, органическое единство их составных частей, современное естествознание характеризует движение молекул как движение самостоятельных и целостных систем, а не как простую сумму разрозненных движений отдельных образующих их частиц (атомов, ядер и электронов). Те взаимодействия молекул, которые не сопровождаются изменением их структуры, изучаются физикой и называются физическими. Взаимодействия же молекул, приводящие к их качественным взаимопревращениям, перестройке их внутренних связей, называются химическими и изучаются химией.

2 Концепции микромира и квантовая механика

Для описания явлений микромира обычно привлекают квантовую механику (иногда ее еще называют волновой механикой). Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Разработка квантовой механики относится к началу XX века, когда были обнаружены две, казалось бы, не связанные между собой группы явлений (установление на опыте двойственной природы света - дуализма света и невозможность объяснить на основе имевшихся представлений существование устойчивых атомов и их оптические спектры), свидетельствующих о неприменимости механики Ньютона и классической электродинамики к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели к открытию законов квантовой механики.

Впервые представления о кванте ввел в 1900 году М.Планк в работе, посвященной теории теплового излучения тел. Существовавшая в то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату,. Планк разрешил противоречие о том, что тепловое равновесие между излучением и веществом не может быть достигнуто, так как вся энергия должна перейти в излучение, предположив, что свет испускается не непрерывно, как следует из классической теории излучения, а дискретными порциями энергии - квантами, причем величина кванта энергии зависит от частоты света.

Эта работа Планка стимулировала развитие квантовой механики в двух взаимосвязанных направлениях: первое направление - теория фотоэффекта Эйнштейна, который предположил, что свет квантами не только испускается и поглощается, но и распространяется, т.е. дискретность присуща самому свету: свет состоит из отдельных порций — световых квантов (фотонов).

В 1922 году А.Комптон экспериментально показал, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Таким образом, было доказано, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света — огибании светом различных препятствий) свет обладает и корпускулярными свойствами: он состоит как бы из частиц — фотонов. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо считать, что свет имеет волновую природу, а объяснение других предполагало его корпускулярную природу.

Второе направление развития начинается с работы Эйнштейна, посвященной теории теплоемкости твердых тел. Обобщая идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы, он утверждал, что если тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов с квантованной энергией, т.е. разность соседних уровней энергии равна ħv, где v - частота колебаний атомов.

В 1913 году Н.Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э.Резерфорда. Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе представлений классической электродинамики приводило к парадоксальному результату — невозможности существования стабильных атомов. Дело в том, что, согласно этим представлениям, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию, а радиус его орбиты должен непрерывно уменьшаться, и через время 10 -8 с электрон должен упасть на ядро. Однако атомы не только существуют, но и весьма устойчивы.

Объясняя устойчивость атомов, Бор предположил, что из всех орбит, допускаемых классической механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определенным условиям квантования, а именно величина действия для классической орбиты должна быть кратной постоянной Планка. Бор постулировал, что электрон, совершая допускаемое условиями квантования орбит движение (т.е. находясь на определенном уровне энергии), не испускает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т.е. с одного уровня энергии на другой, с меньшей энергией; при этом рождается квант света. В результате этого возникает линейчатый спектр атома. Бор получил формулу для частот спектра, линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул.

Таким образом, Бор, используя квант, постоянную Планка, отражающую дуализм света, показал, что эта величина определяет также движение электронов в атоме. Этот факт позднее был объяснен на основе универсальности корпускулярно-волнового дуализма, в соответствии с которым понятия частицы и волны, с одной стороны, дополняют друг друга, а с другой - противоречат друг другу. Он связан также со способами изучения явлений микромира. Существуют два типа приборов: в одних квантовые объекты ведут себя как волны, в других — как частицы, поэтому экспериментально можно наблюдать квантовые явления, на которые налагается взаимодействие приборов с микрообъектом, а не реальность как таковую.

Дальнейшая разработка вопросов теории атома привела к пониманию, что движение электронов в атоме нельзя описывать в терминах классической механики (как движение по определенной траектории или орбите), поскольку движение электрона между уровнями не подчиняется законам, определяющим поведение электронов в атоме. Была необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 году В.Гейзенберг построил формальную схему, где вместо координат и скоростей электрона фигурировали абстрактные алгебраические величины - матрицы. Связь матриц с наблюдаемыми величинами (уровнями энергии и интенсивностями квантов, переходов) описывалась простыми непротиворечивыми правилами Уравнение Шрёдингера позволило показать математическую эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 году Борн дал вероятностную интерпретацию волн де Бройля.

Большую роль в создании квантовой механики сыграли работы П.Дирака, который заложил основы квантовой электродинамики и квантовой теории гравитации, разработал квантовую статистику, релятивистскую теорию движения электрона, предсказал позитрон и т.д. Окончательное формирование квантовой механики произошло в результате работ Гейзенберга.

В течение короткого времени квантовую механику с успехом применили для создания теории атомных спектров, строения молекул, химической связи, периодической системы элементов, металлической проводимости и ферромагнетизма. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской квантовой механикой.

Таким образом, микромир – это мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10~ 8 до 10~ 16 см, а время жизни – от бесконечности до 10~ 24 секунд.

Объектами микромира являются фундаментальные и элементарные частицы, ядра, атомы и молекулы.

Для описания явлений микромира обычно привлекают квантовую механику, законы которой составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Список использованной литературы

1. Бондарев В.П. Концепции современного естествознания: Учебное пособие для студентов вузов / В.П.Бондарев. - М.: Альфа-М, 2003. - 464 с.

2. Грушевицкая Т.Г. Концепции современного естествознания: Учеб. пособие / Т.Г.Грушевицкая, А.П.Садохин. - М.: Высшая школа, 1998. - 383 с.

3.Грядовой Д.И. Концепции современного естествознания: Структурный курс основ естествознания / Д.И.Грядовой. - М., 2000. – 208 с.

4. Концепции современного естествознания. Учебник для ВУЗов / В.Н.Лавриненко, В.П. Ратников, В.Ф.Голубь и др. – М: ЮНИТИ, 1999. - 271 с.

6. Найдыш В.М. Концепции современного естествознания: Учебник / В.М.Найдыш. – М.: ИНФРА-М, 2004. – 476 с.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Содержание Введение

1 Объекты микромира

2 Концепции микромира и квантовая механика

Список использованной литературы Введение Становление теории атомно-молекулярного строения мира приходится на начало 19 века, хотя еще Демокрит предполагал, что Вселенная слагается из мельчайших неделимых частиц, однако доказать экспериментально, что каждый химический элемент состоит из одинаковых атомов, удалось лишь в 1808 году. Сделал это английский химик и физик Дж.Дальтон - создатель химического атомизма, а в 1811 году итальянский физик и химик А.Авогадро выдвинул гипотезу молекулярного строения веществ (в частности, простых газов).

В конце XIX - начале XX вв. физика вышла на новый уровень исследований. Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств пространства и времени, но еще в большей мере к исследованию физических свойств мельчайших частиц материи или микрообъектов, таких, как электроны, протоны, нейтроны, атомы и подобные им объекты, которые часто называют атомными частицами. Они образуют невидимый нами микромир.

В первое время физики были поражены необычными свойствами тех мельчайших частиц материи, которые они изучали в микромире. Попытки описать, а тем более объяснить свойства микрочастиц с помощью понятий и принципов классической физики потерпели явную неудачу. Поиски новых понятий и методов объяснения, в конце концов, привели к возникновению новой квантовой механики, к окончательному построению и обоснованию которой значительный вклад внесли Э. Шредингер (1887 – 1961), В. Гейзенберг (1901 – 1976), М. Борн (1882 – 1970). В самом начале эта механика была названа волновой в противоположность обычной механике, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики.

Все вышесказанное обосновывает актуальность данной темы.

Цель работы: всестороннее изучение и анализ микромира и его объектов.

Работа состоит из введения, двух глав, заключения и списка использованной литературы. Общий объем работы 14 страниц. 1 Объекты микромира Все многообразие известных человечеству объектов и свойственных им явлений обычно разделяется на три качественно различные области — микро-, макро- и мегамиры (см. таблицу).

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10—8 до 10—16 см, а время жизни — от бесконечности до 10-24 с.

Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

МИКРОКОСМ (от микро… и космос) — человек как подобие, отражение, зеркало, символ Вселенной — макрокосма. Учение о микрокосме было распространено в древнегреческой философии (Платон, перипатетическая школа, стоицизм), философии Возрождения (Николай Кузанский, Дж. Бруно, Т. Кампанелла, Парацельс), оно присуще пантеистическим учениям И. В. Гете и немецкого романтизма. В философии Г. В. Лейбница — монада.

МАКРОКОСМ(ОС) (от макро… и космос) — Вселенная, универсум, мир в целом, в отличие от микрокосм(ос)а (человека).

Микрургия (от микро… и греч. érgon — работа), микродиссекция (от лат. dissectio — рассечение) — совокупность методических приёмов и технических средств, позволяющих производить под микроскопом операции на очень мелких объектах — микроорганизмах, простейших, клетках многоклеточных организмов или внутриклеточных структурах (ядрах, хромосомах и др.). Микрургия включает в себя также микроизоляции, микроинъекции, микровивисекционные и микрохирургические вмешательства (например, операции на глазном яблоке). Большое развитие Микрургия получила в 20 в. в связи с усовершенствованием микроманипуляторов и специальных микроинструментов — игл, микроэлектродов и др.

Объект помещают в камеру, заполненную физиологическим раствором, вазелиновым маслом, сывороткой крови или другой средой. При помощи Микрургии возможно выделение отдельных клеток, в том числе микробных, разрезание их на части, удаление и пересадка ядер и ядрышек, разрушение отдельных участков и органоидов клетки, введение в клетку микроэлектродов и химических веществ, извлечение из неё органоидов. Микрургия позволяет изучать физико-химические свойства клетки, её физиологическое состояние, пределы реактивности. Особое значение Микрургия приобретает в связи с возможностью пересадки ядер соматических клеток в яйцевые и обратно. Так, Дж. Гёрдон (1963) перенёс ядро из эпителиальной клетки кишечника земноводного в яйцевую клетку того же вида. При Микрургии резко нарушаются строение и жизнедеятельность клетки, поэтому необходим строгий контроль физиологичности производимых операций.

Микро…, микр… (от греч. mikrós — малый, маленький):

1) составная часть сложных слов, указывающая (в противоположность макро…) на малые размеры или малую величину чего-либо (например, микроклимат, микролит, микроорганизмы).

2) Приставка для образования наименований дольных единиц, по размеру равных одной миллионной доле исходных единиц. Обозначения: русское мк, международное m. Пример: 1 мксек (микросекунда) = 10-6сек.

Микромир. Атом

Морфологические и синтаксические свойства

Им. мѝкроми́р мѝкромиры́
Р. мѝкроми́ра мѝкромиро́в
Д. мѝкроми́ру мѝкромира́м
В. мѝкроми́р мѝкромиры́
Тв. мѝкроми́ром мѝкромира́ми
Пр. мѝкроми́ре мѝкромира́х

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1c по классификации А. А. Зализняка).

Микромир: концепции современной физики [23.12.11]

1. Сущность квантово-механической концепции описания микромира 4 стр.

2. Взгляды М.Планка, Луи де Бройля, Э. Шредингера, В.Гейзенберга, Н. Бора на природу микромира 6 стр.

3. Особенности волновой генетики 9 стр.

Заключение 11 стр.

Список используемой литературы 12 стр.

Словарь терминов 13 стр.

Введение.

Микромир – это мир предельно малых, непосредственно не наблюдаемых микрообъектов. (Пространственная размерность, которых исчисляется от 10 -8 до 10 -16 см, а время жизни – от бесконечности до 10-24 с.) [3]

Главной задачей является отслеживание путей открытия различных объектов и понятие их основных критериев, доказательств на которых основывались ученые, выдвигая гипотезы на всеобщее обсуждение

1. Сущность квантово-механической концепции описания микромира.

В конце XIX - начале XX вв. физика вышла на уровень исследования микромира, для описания которого концептуальные построения классической физики оказались непригодными. В результате научных открытий были опровергнуты представления об атомах как о последних неделимых структурных элементах материи. В первое время физики были поражены необычными свойствами мельчайших частиц материи, которые они изучали в микромире. Поиски новых понятий и методов объяснения, в конце концов, привели к возникновению новой квантовой механики, в окончательное построение и обоснование которой значительный вклад внесли Э.Шредингер, В. Гейзенберг, М.Борн, М.Планк. В самом начале эта механика была названа волновой в противоположность обычной механике, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики. [2]

Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения. Законы квантовой механики используются при поиске и создании новых материалов (магнитных, полупроводниковых, сверхпроводящих). Таким образом, квантовая механика становится в значительной мере "инженерной" наукой, знание которой необходимо не только физикам-исследователям, но и инженерам. [3]

2. Взгляды М.Планка, Луи де Бройля, Э. Шредингера, В.Гейзенберга, Н. Бора на природу микромира

Изучая микрочастицы, ученые столкнулись с парадоксальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые; так и корпускулярные свойства.

Первый шаг в этом направлении был сделан немецким физиком М. Планком.

В 1900 году появилась работа немецкого физика М. Планка, в которой он пришел к ошеломляющему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях - квантах. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант - фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.[4]
Важная особенность микромира заключается в том, что электрон ведет себя подобно частице, когда движется во внешнем электрическом или магнитном поле, и подобно волне, когда дифрагирует, проходя через кристалл. Поведение потока частиц – электронов, атомов, молекул - при встрече с препятствиями или отверстиями атомных размеров подчиняется волновым законам: наблюдаются явления дифракции, интерференции, отражения, преломления. В 1924 г. французский физик Луи де Бройль предположив, что все без исключения частицы - электроны, протоны и целые атомы обладают волновыми свойствами, то есть электрон – это волна определенной длины. А в 1929 году де Бройль получил за нее Нобелевскую премию. [5c.98]

Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений - волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта? Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира. Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, поведение таких физических объектов, как "измерительный прибор", или "наблюдатель", не описывается фундаментальными законами, справедливыми для прочих физических систем. Впервые к таким выводам пришли сами основоположники квантовой теории - Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.[4]
Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном В.Гейзенбергом и принципе дополнительности Н.Бора.

Суть соотношения неопределенностей В.Гейзенберга заключается в следующем. Невозможно не только практически, но и вообще с одинаковой точностью место и величину движения микрочастиц. Только одно из этих свойств можно определить точно. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. [4]

Принцип неопределённости Гейзенберга - в квантовой физике так называют закон, который устанавливает ограничение на точность (почти) одновременного измерения переменных состояния, например, положения и импульса частицы. Кроме того, он точно определяет меру неопределённости, давая нижний (ненулевой) предел для произведения дисперсий измерений.

В терминах квантовой механики, процедура применения оператора привела частицу в смешанное состояние с определённой координатой. Любое измерение импульса частицы обязательно приведёт к дисперсии значений при повторных измерениях. Кроме того, если после измерения импульса мы измерим координату, то тоже получим дисперсию значений. В более общем смысле, соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Это - один из краеугольных камней квантовой механики. [1c.143]

Принцип дополнительности - один из важнейших принципов квантовой механики, сформулированный в 1927г. Н. Бором. Согласно этому принципу, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих и дополнительных набора классических понятий, совокупность которых даёт информацию об этих явлениях как о целостных.

В микромире корпускулярная и волновая картина сами по себе не являются достаточными, как в мире больших тел. Обе картины законны, и противоречия между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую, т.е. быть комплементарными. Только при учете обоих аспектов можно получить общую картину микромира. [4]

3. Особенности волновой генетики.

Петр Гаряев доктор биологических наук, академик Российской академии медико-технических наук, директор Института Квантовой Генетики является основателем волновой генетики в России. Главная идея П.Гаряева: наши ДНК являются антеннами, через которые из космоса к ним поступает информация. Мы постоянно подпитываемся информацией из космоса. Генетическая информация может существовать в виде электромагнитного поля и может быть передана из одного организма в другой.

Генетический аппарат человека содержит только около 35000 белковых генов, что составляет всего 2% ДНК человека. Функции основной части генетического аппарата, то есть 98% ДНК, до сих пор не поняты. Фактически такое положение в биологии и в её главной части, генетике, означает кризис. В то же время существует направление в эмбриологии и генетике, начатое Российскими учеными около 80 лет назад. В основе этого направления лежит фундаментальная идея, что генетическая информация существует одновременно в двух видах – вещественном (белковые гены) и волновом. Волновой уровень кодирования генетической информации включает в себя такие составляющие как голографическая память хромосомного континуума, текстоподобность ДНК и другие формы волновых функций хромосом. Одним из основных проявлений функций генома на волновом уровне является его квантовая нелокальность. Нелокальность означает, что информационная голограмма генома (проект организма) не ограничена какими-либо пространственными рамками, а распространена на всю Вселенную. Это не исключает канонической модели генетического белкового кода, она является лишь частью интегральных вещественно-волновых знаковых механизмов хромосомного континуума биосистем. Начиная с 30-х годов внимание исследователей привлекает, роль электромагнитных излучений не только как источника энергии, но и в качестве канала информации, используемой живыми системами для авторегуляции процессов жизнедеятельности. [6] [7]

Получены реальные доказательства теоретических моделей. Генетическая информация действительно может существовать в форме электромагнитных – фотонных или радиоволновых полей, несущих полезный сигнал на квантовом параметре поляризации электромагнитных векторов. Такая поляризационно-радиоволновая информация имеет очень высокую избирательность и может на больших расстояниях управлять физиолого-генетическими процессами определенных организмов. [5c.98]

1. Экспериментально подтверждён фундаментальный атрибут генетического аппарата – его дуалистичность, то есть его вещественно-волновая знаковая природа.

2. Создана лазерно-радиоволновая аппаратура, имитирующая знаковые волновые процессы в организме и являющаяся прообразом ДНК-волнового биокомпьютера.

3. Экспериментально подтверждена гипотеза дальнего радиоуправление генетико-физиологическими функциями животных и растительных организмов.

4. Радиоуправление организмами может осуществляться как в благих целях (лечение, продление жизни и т.д.), так и в негативном смысле. [6] [7]

Заключение.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений.

Рождение и развитие квантовой физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира. Но классическая механика Ньютона при этом не исчезла. По сей день, она занимает почетное место среди других естественных наук. С ее помощью, например, рассчитывается движение искусственных спутников Земли, других космических объектов и т.д. Но трактуется она теперь как частный, случай квантовой механики, применимый для медленных движений и больших масс объектов макромира.

Принципиально новыми моментами в исследовании микромира стали:

  1. Каждая элементарная частица обладает как корпускулярными, так и волновыми свойствами;
  2. вещество может переходить в излучение (аннигиляция частицы и античастицы дает фатон, т.е квант света);
  3. можно предсказать место и импульс элементарной частицы только с определенной вероятностью;
  4. прибор, исследующий реальность, влияет на нее;
  5. точное измерение возможно только при излучении потока частиц, но не одной частицы.

По существу, относительность восторжествовала и в квантовой механике, так как ученые признали, что нельзя, во-первых, найти истину безотносительно от измерительного прибора; во-вторых, знать одновременно и положение, и скорость частиц; в-третьих, установить, имеем ли мы в микромире дело с частицами или с волнами. Это и есть торжество относительности в физике XX века.

Список используемой литературы:

1. Концепции современного естествознания М.К. Гусейханов, О.Р. Раджабов

2. Микромир и судьба человечества Гордиенко В.А.,

3.Научно-образовательный Центр ФТИ им. А.Ф.Иоффе

7. Волновая генетика как реальность. Гаряев П.П.

Институт квантовой генетики (статья)

Словарь терминов.

1. Атом – фундаментальная строительная единица материи, состоящая из ядра и движущихся по орбитам электронов.

2. Бозоны – элементарные частицы, имеющие целочисленный спин и переносящие физические взаимодействия.

3. Вакуум – низшее энергетическое состояние поля, при котором число квантов равно нулю

4. Галактика – основной структурный элемент Вселенной, состоящий из объединенных звездный систем, связанных между собой силой гравитации.

5. Детерминизм – учение об однозначной связи между причиной и следствием.

6. Интерференция – взаимное наложение волн.

7. Квазар – мощные источники электромагнитного излучения, представляющие собой очень активные ядра далеких галактик.

8. Кварк – элементарные частицы с дробным зарядом, из которых, по современным физическим представлениям, состоят все вильновзаимодействующие (внутриядерные частицы).

9. Коллайдер – ускоритель на встречных пучках элементарных частиц.

10. Литосфера – земная оболочка, включающая в себя земную кару и часть верхней мантии до астеносферы.

11. Макромир – маар в масштабах, с которыми люди сталкиваются в повседневной жизни.

12. Мегамир – мир в масштабах звездных систем и галактик.

13. Микромир – мир в масштабах атомов и элементарных частиц.

14. Наука – сфера человеческой деятельности, в которой вырабатываются и теоретически систематизируются знания о действительности, допускающие доказательство или эмпирическую проверку.

15. Онтогенез – развитие индивида.

16. Полимеры – молекулы, состоящие из длинных цепей атомов – мономеров. Это цепи свернутые в клубки.

17. Реликтовое излучение – равномерно распределенное во вселенной электромагнитное излучение, сохранившееся до наших дней со времени образования Вселенной.

18. Сингулярность – область и состояние с формально бесконечной плотностью.

19. Тяготение – взаимодействие между всеми телами, выражающиеся в виде их взаимного притяжения.

20. Триплет – кодовое число, соответствующее одной определенной аминокислоте.

21. Фенотип – совокупность признаков организма, сформировавшихся в процессе его индивидуального развития.

22. Фотон – элементарная частица, квант электромагнитного излучения, распространяющаяся в пространстве с предельно возможной скоростью 300 000 км/с.

23. Хромосома – часть ядра клетки, состоящая из белка и нуклеиновых кислот, в которой заключена наследственная информация об организме.

24.Черная дыра – космический объект, возникший в результате сжатия тела гравитационными силами. Основное свойство черной дыры заключается в том, что никакие сигналы (свет, частицы), испускаемые из внутренней части черной дыры не могут выйти наружу, так как не могут преодолеть силы притяжения.

25. Эффектор – дифференцированная структура (клетка, ткань, орган или система органов), осуществляющая специфическую реакцию в ответ на стимулы, поступающие из нервной системы.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Читайте также: