Метод зон френеля доклад

Обновлено: 02.07.2024

Распространение радиоволн в свободном пространстве. Принцип Гюйгенса - Френеля, зоны Френеля. Дифракция радиоволн на полуплоскости. Размеры и форма области пространства распространения прямой электромагнитной волны. Дифракция радиоволн на полуплоскости.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.09.2008
Размер файла 459,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему:

Тонкая структура электромагнитного поля в свободном пространстве и при наличии экранирующих препятствий

Принцип Гюйгенса - Френеля, зоны Френеля…………………………..4

Дифракция радиоволн на полуплоскости……………………………….8

Необходимо отметить, что при распространении радиоволн в свободном пространстве различные его области не одинаково влияют на формирование электромагнитного поля в удаленной от излучателя точке приема. При этом всегда можно выделить некоторую область пространства, в которой распространяется основная часть передаваемой в заданном направлении энергии электромагнитных волн. Ее размеры и конфигурацию определяют исходя из известного из курса физики принципа Гюйгенса-Френеля.

Принцип Гюйгенса - Френеля, зоны Френеля.

Согласно принципу Гюйгенса, каждая точка фронта распространяющейся волны является источником новой сферической волны. При этом, если известно положение фронта волны S(t) в некоторый момент времени " t " (см. рис.1) и скорость волны " ", то положение фронта в последующий момент времени (t + ) можно определить поверхностью S(t+ ), огибающей все вторичные волны. Принцип Гюйгенса является чисто геометрическим и не указывает способа расчета амплитуды волны, огибающей вторичные волны. Поэтому, развивая указанный принцип, Френель предложил идею о когерентности вторичных волн и их интерференции, что позволяет определять полное поле в любой точке пространства как сумму элементарных волн, излучаемых "элементами Гюйгенса". Объединенные идеи Гюйгенса и Френеля известны в современной физике и электродинамике в качестве "Принципа Гюйгенса - Френеля".

Использование данного принципа позволяет достаточно просто определить размеры и форму области пространства распространения прямой электромагнитной волны.

Из теории электромагнитного поля известно, что каждый элемент фронта волны (элемент Гюйгенса), созданный каким-либо первичным источником, является вторичным источником сферической волны с характеристикой направленности в виде кардиоиды.

Математически характеристика направленности указанного элемента описывается функцией .

Если источник электромагнитного поля находится в некоторой точке А (рис. 2а), то полное поле в точке приема В можно определить, опираясь на вышеизложенное, воспользовавшись формулой Кирхгофа:

где - величина поля на элементе Гюйгенса, создаваемая первичным источником А;

r'' - расстояние от элемента Гюйгенса до точки приема; .

С учетом того, что:

,полное поле в точке В будет равно

Поскольку форма поверхности не имеет значения, возьмем в качестве этой поверхности плоскость, расположенную на расстояниях r1 и r2 (r1+ r2 =r) от точек А и В перпендикулярно траектории прямой волны (см. рис. 2б). При этом фазы элементарных волн будут определяться соотношением = k(r' + r''), а для центральной элементарной волны = kr = k(r1 + r2).

Для упрощения анализа характера и степени вторичных элементарных источников электромагнитных волн, расположенных на поверхности S, на результирующее поле в точке В, разделим всю поверхность S на зоны Френеля.

Зона Френеля - это часть поверхности фронта электромагнитной волны, охватывающая вторичные источники, элементарные волны которых в точке В расходятся по фазе не более чем на 180 0 , при этом соседние зоны Френеля создают в точке В противофазные поля.

Математически размер зоны определяется выражением:

Если перемещать воображаемую поверхность S вдоль линии АВ, то окружности радиуса опишут поверхности эллипсоидов вращения.

Области пространства между двумя соседними эллипсоидами вращения являются пространственными зонами Френеля (см. рисунок 3).

Несмотря на то, что площади зон Френеля

на плоскости S одинаковы, амплитуды, создаваемых ими полей в точке В убывают с ростом n, так как при этом () - уменьшается, а r'(r'') - увеличивается. Поэтому результирующее поле в точке В в основном создается волнами вторичных излучателей, расположенных в пределах первых нескольких зон Френеля.

Как показывают расчеты и эксперимент, вследствие взаимной компенсации противофазных полей соседних зон Френеля результирующее поле в точке В определяется действием лишь вторичных излучателей, расположенных в пределах 1/3 первой зоны Френеля (n = 1/3) с радиусом

Величина имеет важное практическое значение, так как определяет размеры области существенной для распространения радиоволн.

Результаты эксперимента (зависимость |Е/Есв| в очке В от относительной величины отверстия S/S1) показаны на рисунке 4.

Из рисунка 4 следует, что напряженность поля при отсутствии экрана Есв равняется напряженности поля Е при наличии экрана с отверстием, имеющим площадь, равную S1/3, радиус которой -. Экран практически не влияет на величину поля в точке приема при n > 8 (8 зон Френеля).

Дифракция радиоволн на полуплоскости.

Область, существенная для распространения радиоволн

Дифракция - огибание электромагнитной волной встречных препятствий.

Волновую теорию (принципы Гюйгенса-Френеля) можно использовать на практике для определения множителя ослабления электромагнитной волны на радиотрассе с препятствием.

Данную задачу можно решить достаточно просто, если препятствие в виде горы, холма и т.п. аппроксимировать плоскостью (рисунок 5).

Опираясь на рисунок 5, определим напряженность поля в точке приема В, используя формулу (2). При этом интегрирование в данном выражении будет производиться лишь по полуплоскости, дополняющей экран (т.е. при ZН), так как поле ЕS на теневой стороне экрана равно нулю.

Путем ввода некоторых допусков и новых переменных, выражение (2) приводится к виду

Тогда множитель ослабления на трассе с препятствием в виде полуплоскости определяется выражением

Здесь параметр U0 равен отношению Н к радиусу первой полузоны Френеля:

где Н - величина просвета (расстояние между прямой, соединяющей точки приема и передачи и кромкой экрана (препятствия)).

График функции |F(U0)| изображен на рисунке 6.

По данному графику легко определить область, существенную для распространения радиоволны. Анализ функции |F(U0)|, представленной на рисунке 6, показывает, что при Н = 0, т.е. когда траектория волны касается кромки экрана и все зоны Френеля оказываются наполовину прикрытыми, поле в точке приема составляет 0,5Есв. При увеличении просвета (Н > 0) между прямым лучом и кромкой экрана поле в точке приема быстро растет до величины, примерно равной полю в свободном пространстве. Это имеет место при Н = .

Поэтому величину , определяемую соотношением (5), называют радиусом области, существенной для распространения прямой волны.

Областью, существенной для РРВ, называют область пространства между передатчиком и приемником ЭМВ в виде параболоида вращения с радиусом в плоскости поперечного сечения, равным , препятствия расположенные вне этой области не влияют на уровень сигнала в точке приема.

В зависимости от величины Н различают следующие виды радиорелейных трасс:

Необходимо отметить, что при распространении радиоволн в свободном пространстве различные его области не одинаково влияют на формирование электромагнитного поля в удаленной от излучателя точке приема. При этом всегда можно выделить некоторую область пространства, в которой распространяется основная часть передаваемой в заданном направлении энергии электромагнитных волн. Ее размеры и конфигурацию определяют исходя из известного из курса физики принципа Гюйгенса-Френеля.

Принцип Гюйгенса - Френеля, зоны Френеля.

Согласно принципу Гюйгенса, каждая точка фронта распространяющейся волны является источником новой сферической волны. При этом, если известно положение фронта волны S(t) в некоторый момент времени " t " (см. рис.1) и скорость волны " ", то положение фронта в последующий момент времени (t + ) можно определить поверхностью S(t+ ), огибающей все вторичные волны. Принцип Гюйгенса является чисто геометрическим и не указывает способа расчета амплитуды волны, огибающей вторичные волны. Поэтому, развивая указанный принцип, Френель предложил идею о когерентности вторичных волн и их интерференции, что позволяет определять полное поле в любой точке пространства как сумму элементарных волн, излучаемых "элементами Гюйгенса". Объединенные идеи Гюйгенса и Френеля известны в современной физике и электродинамике в качестве "Принципа Гюйгенса - Френеля".



Использование данного принципа позволяет достаточно просто определить размеры и форму области пространства распространения прямой электромагнитной волны.

Из теории электромагнитного поля известно, что каждый элемент фронта волны (элемент Гюйгенса), созданный каким-либо первичным источником, является вторичным источником сферической волны с характеристикой направленности в виде кардиоиды.


Математически характеристика направленности указанного элемента описывается функцией .

Если источник электромагнитного поля находится в некоторой точке А (рис. 2а), то полное поле в точке приема В можно определить, опираясь на вышеизложенное, воспользовавшись формулой Кирхгофа:


, (1)


где - величина поля на элементе Гюйгенса, создаваемая первичным источником А;


r ’’ - расстояние от элемента Гюйгенса до точки приема; .



С учетом того, что:


,полное поле в точке В будет равно


. (2)

Поскольку форма поверхности не имеет значения, возьмем в качестве этой поверхности плоскость, расположенную на расстояниях r1 и r2 (r1 + r2 =r) от точек А и В перпендикулярно траектории прямой волны (см. рис. 2б). При этом фазы элементарных волн будут определяться соотношением = k(r' + r''), а для центральной элементарной волны = kr = k(r1 + r2 ).

Для упрощения анализа характера и степени вторичных элементарных источников электромагнитных волн, расположенных на поверхности S, на результирующее поле в точке В, разделим всю поверхность S на зоны Френеля.

Зона Френеля - это часть поверхности фронта электромагнитной волны, охватывающая вторичные источники, элементарные волны которых в точке В расходятся по фазе не более чем на 180 0 , при этом соседние зоны Френеля создают в точке В противофазные поля.

Математически размер зоны определяется выражением:


(3)


Если перемещать воображаемую поверхность S вдоль линии АВ, то окружности радиуса опишут поверхности эллипсоидов вращения.

Области пространства между двумя соседними эллипсоидами вращения являются пространственными зонами Френеля (см. рисунок 3).

Несмотря на то, что площади зон Френеля


(4)


на плоскости S одинаковы, амплитуды, создаваемых ими полей в точке В убывают с ростом n, так как при этом () - уменьшается, а r'(r'') - увеличивается. Поэтому результирующее поле в точке В в основном создается волнами вторичных излучателей, расположенных в пределах первых нескольких зон Френеля.

Как показывают расчеты и эксперимент, вследствие взаимной компенсации противофазных полей соседних зон Френеля результирующее поле в точке В определяется действием лишь вторичных излучателей, расположенных в пределах 1/3 первой зоны Френеля (n = 1/3) с радиусом


. (5)


Величина имеет важное практическое значение, так как определяет размеры области существенной для распространения радиоволн.



Результаты эксперимента (зависимость |Е/Есв | в очке В от относительной величины отверстия S/S1 ) показаны на рисунке 4.



Из рисунка 4 следует, что напряженность поля при отсутствии экрана Есв равняется напряженности поля Е при наличии экрана с отверстием, имеющим площадь, равную S1 /3, радиус которой -. Экран практически не влияет на величину поля в точке приема при n > 8 (8 зон Френеля).

Дифракция радиоволн на полуплоскости.

Область, существенная для распространения радиоволн

Дифракция - огибание электромагнитной волной встречных препятствий.

Волновую теорию (принципы Гюйгенса-Френеля) можно использовать на практике для определения множителя ослабления электромагнитной волны на радиотрассе с препятствием.

Данную задачу можно решить достаточно просто, если препятствие в виде горы, холма и т.п. аппроксимировать плоскостью (рисунок 5).



Опираясь на рисунок 5, определим напряженность поля в точке приема В, используя формулу (2). При этом интегрирование в данном выражении будет производиться лишь по полуплоскости, дополняющей экран (т.е. при ZН), так как поле ЕS на теневой стороне экрана равно нулю.

Путем ввода некоторых допусков и новых переменных, выражение (2) приводится к виду


. (6)

Тогда множитель ослабления на трассе с препятствием в виде полуплоскости определяется выражением


. (7)


Здесь параметр U0 равен отношению Н к радиусу первой полузоны Френеля:


, (8)

где Н - величина просвета (расстояние между прямой, соединяющей точки приема и передачи и кромкой экрана (препятствия)).

График функции |F(U0 )| изображен на рисунке 6.


Рис. 6


По данному графику легко определить область, существенную для распространения радиоволны. Анализ функции |F(U0 )|, представленной на рисунке 6, показывает, что при Н = 0, т.е. когда траектория волны касается кромки экрана и все зоны Френеля оказываются наполовину прикрытыми, поле в точке приема составляет 0,5Есв . При увеличении просвета (Н > 0) между прямым лучом и кромкой экрана поле в точке приема быстро растет до величины, примерно равной полю в свободном пространстве. Это имеет место при Н = .


Поэтому величину , определяемую соотношением (5), называют радиусом области, существенной для распространения прямой волны.


Областью, существенной для РРВ, называют область пространства между передатчиком и приемником ЭМВ в виде параболоида вращения с радиусом в плоскости поперечного сечения, равным , препятствия расположенные вне этой области не влияют на уровень сигнала в точке приема.

В зависимости от величины Н различают следующие виды радиорелейных трасс:

Дифракция Френеля играет основную роль в волновой теории, т.к. вопреки принципу Гюйгенса и на основе принципа Гюйгенса - Френеля, объясняет прямолинейность распространения света в свободной от препятствий однородной среде. Чтобы показать это, рассмотрим действие сферической световой волны от точечного источника s0 в произвольной точке пространства Р. Волновая поверхность такой волны симметрична относительно прямой S0P. Амплитуда искомой волны в точке Р зависит от результата интерференции вторичных волн, излучаемых всеми участками dS поверхности S. Амплитуды и начальные фазы вторичных волн зависят от расположения соответствующих источников dS по отношению к точке Р. Воспользовавшись симметрией задачи, Френель предложил оригинальный метод разбиения волновой поверхности на зоны (метод зон Френеля). По этому методу волновая поверхность разбивается на кольцевые зоны, построенные так, что расстояния от краев каждой зоны до точки Р отличаются на (длина световой волны в той среде, в которой распространяется волна). Если обозначить через r0 расстояние от вершины волновой поверхности О до точки Р, то расстояния r0 + k образуют границы всех зон, где k - номер зоны. Колебания, приходящие в точку Р от аналогичных точек- двух соседних зон, противоположны по фазе, так как разность хода от этих зон до точки Р равна . Поэтому при наложении эти колебания взаимно ослабляют друг друга, и результирующая амплитуда выразится суммой:

Величина амплитуды ак зависит от площади – й зоны и угла между внешней нормалью к поверхности зоны в любой ее точке и прямой, направленной из этой точки в точку Р. Можно показать, что площадь - й зоны не зависит от номера зоны в условиях. Таким образом, в рассматриваемом приближении площади всех зон Френеля равновелики и мощность излучения всех зон Френеля – вторичных источников - одинакова. Вместе с тем, с увеличением k возрастает угол между нормалью к поверхности и направлением в точку Р, что приводит к уменьшению интенсивности излучения k-й зоны в данном направлении, т.е. к уменьшению амплитуды Ak по сравнению с амплитудами предыдущих зон. Амплитуда Ak уменьшается также вследствие - увеличения расстояния от зоны до точки Р с ростом k. В итоге

A1 > A2 > A3 > A4 > . > Ak>….

Вследствие большого числа зон убывание Ak носит монотонный характер и приближенно можно считать, что с учетом малости амплитуды удаленных зон, все выражения в скобках равны нулю. Полученный результат означает, что колебания, вызываемые в точке Р сферической волновой поверхностью, имеют такую же амплитуду, как если бы действовала только половина центральной зоны Френеля. Следовательно, свет от источника S0 в точку Р распространяется как бы в пределах очень узкого прямого канала, т.е. прямолинейно. Мы приходим к выводу, что в результате явления интерференции уничтожается действие всех зон, кроме первой.

6. Дифракция Фраунгофера одной щели

Практически щель представляется прямоугольным отверстием, длина которого значительно больше ширины. В этом случае свет дифрагирует вправо и влево от щели. Если наблюдать изображение источника в направлении, перпендикулярном направлению образующей щели, то можно ограничиться рассмотрением дифракционной картины в одном измерении (вдоль х). Бели волна падает нормально к плоскости щели, в соответствии с принципом Гюйгенса - Френеля, точки щели являются вторичными источниками волн, колеблющимися в одной фазе, так как плоскость щели совпадает с фронтом падающей волны. Разобьем площадь щели на ряд узких полосок равной ширины, параллельных образующей щели. Фазы волн от разных полосок на одинаковых расстояниях, в силу вышесказанного, равны, амплитуды также равны, т.к. выбранные элементы имеют равные площади и одинаково наклонены к направлению наблюдения.

Если бы при прохождении света через щель соблюдался закон прямолинейного распространения света (не было бы дифракции), то на экране Э, установленном в фокальной плоскости линзы L2 получалось бы изображение щели. Следовательно, направление = 0 определяет недифрагированную волну с амплитудой a0, равной амплитуде волны, посылаемой всей щелью.

Вследствие дифракции световые лучи отклоняются от прямолинейного распространения на углы. Отклонение вправо и влево симметрично относительно осевой линии ОС0 (рис. 8.5, С и С,). Для отыскания действия всей щели в направлении, определяемом углом, необходимо учесть разность фаз, характеризующую волны, доходящие до точки наблюдения С от различных полосок (зон Френеля), т.к. как указывалось выше, в побочном фокусе линзы С собираются все параллельные лучи, падающие на линзу под углом к ее оптической оси ОС0, перпендикулярной фронту падающей волны. Проведем плоскость FD, перпендикулярную к направлению дифрагированных лучей и представляющую фронт новой волны. Так как линза не вносит дополнительной разности хода лучей, ход всех лучей от плоскости FD до точки С одинаков. Следовательно, полная разность хода лучей от щели FE задается отрезком ED. Проведем плоскости, параллельные волновой поверхности FD, таким образом, чтобы они разделили отрезок ED на несколько участков, каждый из которых имеет длину /2. Эти плоскости разделят щель на вышеупомянутые полоски - зоны Френеля, причем разность хода от соседних зон равна в соответствии с методом Френеля. Тогда результат дифракции в точке C определится числом зон Френеля, укладывающихся в щели: если число зон четное (z = 2k), в точке С наблюдается минимум дифракции, если z - нечетное (z = 2k+1), в точке С - максимум дифракции. Число зон Френеля, укладывающихся на щели FE, определяется тем, сколько раз в отрезке ED содержится, т.е. z = 0. Отрезок ED, выраженный через ширину щели и угол дифракции, запишется как ED = 0. В итоге для положения максимумов дифракции получаем условие, где k - 1,2,3.. - целые числа. Величина k, принимающая значения чисел натурального ряда, называется порядком дифракционного максимума. Знаки + и - в формулах соответствуют лучам света, дифрагирующим от щели под углами + и - и собирающимся в побочных фокусах линзы L2: C и C, симметричных относительно главного фокуса С0. В направлении = 0 наблюдается самый интенсивный центральный максимум нулевого порядка, т.к. колебания от всех зон Френеля приходят в точку С0 в одной фазе. Положение центрального максимума (= 0) не зависит от длины волны и, следовательно, является общим для всех длин волн. Поэтому в случае белого света центр дифракционной картины представится в виде белой полоски. Ясно, что положение максимумов и минимумов зависит от длины волны. Поэтому простое чередование темных и светлых полос имеет место только при монохроматическом свете. В случае белого света дифракционные картины для волн с разными сдвигаются в соответствии с длиной волны. Центральный максимум белого цвета имеет радужную окраску только по краям (на ширине щели укладывается одна зона Френеля). Боковые максимумы для разных длин волн уже не совпадают между собой; ближе к центру располагаются максимумы, соответствующие более коротким волнам. Длинноволновые максимумы отстоят друг от друга дальше, чем коротковолновые. Поэтому дифракционный максимум представляет собой спектр, обращенный к центру фиолетовой частью. Полное гашение света не происходит ни в одной точке экрана, так как максимумы и минимумы света с разными перекрываются.

Дифракция света – это явление отклонения света от прямолинейного направления его распространения во время прохождения рядом с препятствиями.

Из опыта видно, что определенные условия влияют на захождение геометрической тени на область.

Когда на пути встречается препятствие в виде диска, шарика или круглого отверстия, тогда экран, расположенный на большом расстоянии, покажет дифракционную картину, то есть систему чередующихся светлых и темных колец. При отверстии линейного характера (щели или нити) экран показывает параллельные дифракционные полосы.

Принцип Гюйгенса-Френеля

Существование дифракционных явлений было задолго до времен Ньютона. Объяснение, основанное на корпускулярной теории, не давало должных результатов. Одним из первых объяснений явления дифракции, основанное на волновых представлениях, было дано Т. Юнгом. Еще в 1818 году была известна и развита количественная теория дифракционных явлений О. Френеля. Принцип Гюйгенса был заложен в основу. Он только дополнил при помощи идеи об интерференции вторичных волн.

Первоначальный вид данного принципа давал возможность нахождения положения фронтов в последующие моменты времени, иначе говоря, определял направление распространения волны. Это и есть принцип геометрической оптики. Впоследствии гипотеза Гюйгенса об огибающих вторичных волнах были заменены Френелем с помощью физически ясного положения, тогда вторичные волны в точке наблюдения интерферировали друг с другом.

Принципом Гюйгенса-Френеля считалась гипотеза, которая была со временем подтверждена. При решении задач, где необходимо использовать данный принцип, получение результата достаточно точное. На иллюстрации изображен принцип Гюйгенса-Френеля.

Рисунок 3 . 8 . 1 Принцип Гюйгенса-Френеля. ∆ S 1 и ∆ S 2 – элементы волнового фронта, n 1 → и n 2 → - заданные нормали.

Предположим, что поверхность S – положение волнового фронта в некоторый момент. Из теории волн известно, что он является поверхностью, где в заданных точках происходит колебание с одинаковым значением фазы. Волновыми фронтами плоской волны считают семейством параллельных плоскостей, которые перпендикулярно направлены относительно распространения волны. Волновые фронты сферической волны, которые испускаются при помощи точечного источника, относят к концентрическим сферам.

Для определения колебания в заданной точке P , которое вызвано волной, используя принцип Френеля, находят колебания, которые вызваны в этой точке с помощью отдельных вторичных волн, которые приходят от элементов поверхности S ( ∆ S 1 , ∆ S 2 и так далее). Далее следует произвести сложение колебаний, учитывая амплитуды и фазы. Элементы, загороженные препятствиями, не учитываются при решении.

Для примера ниже приведена дифракционная задача прохождения плоской монохроматической волны, которая исходит от удаленного источника через отверстие с радиусом R непрозрачного экрана.

Рисунок 3 . 8 . 2 Дифракция плоской волны на экране, содержащем круглое отверстие.

Р – точка наблюдения, находящаяся на оси симметрии, располагаемого на L расстоянии относительно экрана. По принципу Гюйгенса-Френеля распределить на волновой поверхности вторичные источники, совпадающие с плоскостью отверстия, где волны достигают точки Р . Интерференция волн в этой точке является причиной возникновения результирующего колебания, квадрат амплитуды которого определяется при наличии значений длин волн λ , амплитуды A 0 падающей волны и расположением элементов.

Чтобы расчеты были облегченными, волновая поверхность падающей волны разбивается на кольцевые зоны, называемыми зонами Френеля, исходя из правила: расстояния от границ соседних зон к точке Р имеют отличие на половину волны.

Иначе говоря, r 1 = L + λ 2 , r 2 = L + 2 λ 2 , r 3 = L + 3 λ 2 . . .

При рассмотрении волновой поверхности исходя из точки Р , тогда получим, что границы зон Френеля будут иметь вид концентрических окружностей. Наглядно это изображено на рисунке.

Рисунок 3 . 8 . 3 Границы зон Френеля в плоскости отверстия.

По рисунку 3 . 8 . 2 определяем радиусы ρ m зон по формуле: ρ m = ρ m 2 - L 2 = m λ L + m 2 λ 2 4 ≈ m λ L .

Зоны Френеля. Интерференционный максимум

Из определений раздела оптики имеем, что λ L , тогда при решении можно пренебречь вторым подкоренным выражением. Для определения количества зон Френеля, которые укладываются на отверстии, используется формула, включающая в себя значение радиуса R : m = R 2 λ L .

Значение m может быть любым числом. От него зависит результат интерференции вторичных волн, проходящих точку Р . Такие открытые зоны Френеля обладают одинаковым значением площади:

S m = π ρ m 2 - π ρ m - 2 1 = π λ L = S 1 .

По теории равные площади возбуждают колебания с одинаковой амплитудой в точке наблюдения. Но каждая последующая зона угла α , располагаемая между лучом, проводимым к точке наблюдения, и нормалью относительно волновой поверхности, возрастает. Предположения Френеля говорит о том, что при увеличении угла α происходит незначительное уменьшение колебаний, то есть:

A 1 > A 2 > A 3 > . . . > A 1 , где A m обозначает амплитуду колебаний, которые были вызваны при помощи m -ой зоны.

Используя приближение, видно, что амплитуда колебаний, которая вызвана определенной зоной, равняется среднему арифметическому соседних зон. Иначе это запишем как A m = A m - 1 + A m + 1 2 .

Отличие от двух соседних точек расстоянием λ 2 говорит о том, что колебания, возбуждаемые этими зонами в состоянии противофазы. Соседние волны начинают гасить друг друга, а это приводит к тому, что суммарная амплитуда в точке запишется как:

A = A 1 – A 2 + A 3 – A 4 + . . . = A 1 – ( A 2 – A 3 ) – ( A 4 – A 5 ) – . . . A 1 .

Отсюда делаем вывод, что суммарная амплитуда в точке меньше колебаний, вызванных только при помощи одной зоны Френеля. Если все имеющиеся зоны Френеля являлись открытыми, тогда к точке наблюдения двигалась волна с амплитудой A 0 , невозмущенная препятствием. Тогда запись принимает вид:

A = A 0 + A 1 2 - A 2 + A 3 2 + A 3 2 - A 4 + A 5 2 + . . . = A 1 2 .

Выражения в скобках равняются нулю, значит, амплитуда, вызванная волновым фронтом, равняется половине действий первой зоны.

Когда отверстие непрозрачного экрана дает возможность только одной зоне Френеля быть открытой, тогда наблюдается возрастание амплитуды колебаний в количестве 3 раз, а интенсивности – 4 раз. При открытии двух зон действие становится равным нулю. При наличии непрозрачного экрана с несколькими нечетными открытыми зонами, очевидно, что произойдет резкое возрастание амплитуды. При открытии 1 , 3 , 5 зон получим, что A = 6 · A 0 , I = 36 · I 0 .

Полученные пластинки обладают свойством фокусировки света, поэтому их называют зонными пластинками.

Круглый диск дает понять, что при дифракции зоны Френеля от 1 до m будут в закрытом состоянии. Отсюда получаем, что формула амплитуды колебаний примет вид:

A = A m + 1 - A m + 2 + A m + 3 - . . . = A m + 1 2 + A m + 1 2 - A m + 2 - A m + 3 2 + . . .

Иначе можно записать как A = A m + 1 2 , ибо выражения в скобках будут равняться нулю.

Когда диск может закрыть небольшие зоны, тогда A m + 1 ≈ 2 A 0 и A ≈ A 0 , можно наблюдать интерференционный максимум. Иначе его называют пятном Пуассона, которое окружается дифракционными кольцами светлого и темного цвета.

Чтобы углубиться в понятие, необходимо оценить зоны Френеля. Имеется дифракционная картина на экране с расстоянием равным L = 1 м , а значение длины волны света λ = 600 н м (красный). Отсюда получим, что радиусом первой зоны является ρ 1 = L λ ≈ 0 , 77 м м .

Так как оптический диапазон имеет короткую волну, тогда соответственно зона Френеля также мала. Отчетливее проявление дифракционных явлений заметно при небольшом количестве зон на препятствии.

Получим формулы вида:

m = R 2 L λ ≥ 1 или R 2 ≥ L λ .

Название данного соотношения - критерий наблюдения дифракции.

Когда количество зон Френеля из препятствия увеличивается, тогда дифракционные явления становятся незаметными:

m = R 2 L λ > > 1 или R 2 > > L λ .

Определение границы применимости геометрической оптики возможно при помощи заданного неравенства. При выполнении данного условия узкий пучок света может быть сформирован.

Отсюда следует вывод, что волновая оптика – это предельный случай геометрической.

Выше рассмотренный случай относится к дифракции света с удаленным источником, располагаемом на препятствиях округлой формы. При расположении точечного источника света на конечном расстоянии сферически расходящаяся волна должна падать на препятствие. Данный случай усложняет задачу. Тогда построение зон Френеля необходимо выполнять на поверхности сферической формы, показанное на рисунке 3 . 8 . 4 .

Рисунок 3 . 8 . 4 Зоны Френеля на сферическом фронте волны.

При расчете видно, что радиусы ρ m зон Френеля на волне сферического фронта запишется, как

ρ m = a b a + b λ .

Выводы по теории Френеля справедливы.

Дифракция и интерференция света применима к любым волнам, так как имеется общность закономерностей. Начало XIX века – это было время, когда ученые только начинали изучать волны, а физическая природа света еще не была раскрыта.

Зонами Френеля называют области, на которые можно разделить поверхность световой, либо звуковой волны с целью расчета результатов дифракции света или звука.

Методика анализа была впервые применена О. Френелем в 1815 – 1819 годах. Зону Френеля можно наглядно представить в виде объема радио-волнового канала между двумя передатчиками сигнала.

Зонами Френеля

Максимальное значение объема канала отмечено центральной точкой, равноудаленной от двух антенн. Наиболее качественный сигнал обеспечивается путем подбора максимально чистой зоны, в которой отсутствуют физические и радио-волновые препятствия.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Расчет радиуса зоны Френеля

С помощью определенных характеристик можно выполнить корректный расчет. Для определения зоны Френеля в ее центре необходимо использовать формулу:

Где D равно расстоянию в километрах, f является частотой в GHz.

Если необходимо рассчитать размер зоны Френеля в любой ее точке, к примеру, в месте, где обнаружено препятствие, следует воспользоваться формулой:

Где f — это частота в GHz, D1 является расстоянием от первой антенны до искомой точки в километрах, D2 равно расстоянию от второй антенны до искомой точки в километрах.

Знание характеристик зоны Френеля позволяет выполнить точные расчеты. В практическом применении представленные формулировки обеспечивают данные для стабильности параметров беспроводного моста и максимально возможной скорости передачи сигнала.

Метод зон Френеля, основные принципы работы

С целью упрощения решений задач волновая поверхность S разбивается на отдельные зоны. Данный способ называют методом зон Френеля.

Точки поверхности S, которые являются границей первой или центральной зоны и удалены от точки М на расстояние:

Точки сферы S, которые находятся на расстоянии:

и так далее относительно точки М, образуют 2, 3 и так далее зоны Френеля.

В точке М образуются колебания. Они расположены между двумя соседними зонами, фазы которых противоположны по причине разности ходя от этих зон до точки М:

Метод зон Френеля

В процессе сложения колебания друг друга ослабляют:

Где A является амплитудой результирующего колебания, Аi представляет собой амплитуду колебаний, возбуждаемую i-й зоной Френеля.

Значение Аi определяется площадью Si зоны и углом αi между нормалью к поверхности и прямой, направленной в точку M. Расчет площади одной зоны выглядит следующим образом:

Исходя из представленного уравнения, можно сделать вывод о независимости площади зоны Френеля от номера зоны i. Данное утверждение позволяет сделать вывод о том, что при малых числах i соседние зоны будут обладать одинаковыми площадями. В то время, как номер зоны увеличивается, возрастает угол αi, а также снижается интенсивность излучения зоны по направлению к точке М, то есть уменьшается амплитуда Аi. Другой причиной данного явления служит увеличение расстояния до точки М: \(x = \over 2a>\) В целом количество зон Френеля, которые уменьшаются на части сферы, направленной к точке М, достаточно большое:

если радиус R=l=1 метр,

\(\lambda =-5\times 10^\) составляет 500 нм.

Количество зон \(N\approx 3\times 10^\)

Радиус первой зоны \(r_\approx 0.16\) мм

Исходя из вышеизложенной информации, можно сделать вывод о равенстве углов соседних зон между нормалью к зоне и направлением на точку М. Таким образом, наблюдается примерное равенство амплитуд волн, которые приходят в точку М от соседних волн. При прямолинейном распространении световой волны фазы колебаний, которые образованы в соседних зонах, будут отличаться на π. Согласно этим данным, в качестве допустимого приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны рассчитывается, как среднее арифметическое от амплитуд зон, которые к ней примыкают:

В таком случае, исходное уравнение можно преобразовать следующим образом:

Из равенства площадей, которыми обладают соседние зоны, вытекает нулевое значение выражения, заключенного в скобках. Тогда результирующая амплитуда будет равна:

Расчет интенсивности излучения имеет вид:

Таким образом, результирующая амплитуда, которая образована в какой-либо точке М всей сферической поверхностью, определяется, как половина амплитуды, сформированной одной лишь центральной областью, а интенсивность составляет:

Радиус, которым характеризуется центральная зона, небольшой:

\(r_\approx 0.16\) мм

Тогда допустимо считать распространение света от точки Р до точки М прямолинейным. В условиях, когда путь волны преграждает непрозрачный экран, в котором есть отверстие, открывающее только центральную зону Френеля, то амплитуда в точке М составляет А1. Поэтому, интенсивность в точке М превышает в 4 раза тот же показатель, но в условиях без экрана. В случае, когда все зоны с четными номерами закрыты, интенсивность света будет увеличиваться.

Таким образом, объясняют прямолинейность распространения света в условиях однородной среды с помощью принципа Гюйгенса-Френеля. Справедливость деления волнового фронта на зоны Френеля нашла подтверждение в ходе эксперимента. Для опыта используют зонные пластинки, представляющие собой систему чередующихся прозрачных и непрозрачных колец. Эксперимент подтверждает возможность увеличения освещенности в точке М с помощью зонных пластинок по принципу собирающей линзы.

Принцип Гюйгенса-Френеля

Дифракцией света в наиболее распространенном понятии называют огибание световыми лучами границы непрозрачных тел или экранов, то есть проникновение света в область с геометрической тенью.

Максимально рельефно дифракцию света можно наблюдать в зонах с резким изменением плотности потока лучей:

  • около каустик;
  • вблизи фокуса линзы;
  • у границ геометрической тени.

Дифракция волн тесно связана с процессами, при которых волны распространяются и рассеиваются в неоднородных средах.

Дифракция — это комплекс явлений, которые можно наблюдать в процессе распространения света в среде, отличающейся резкими неоднородностями, габариты которых соотносимы с длиной волны и связаны с отклонениями от законов геометрической оптики.

Огибание препятствий звуковыми волнами, то есть дифракцию звуковых волн, можно заметить в повседневной жизни.

К примеру, за углом дома слышен звук. Для того чтобы наблюдать дифракцию световых лучей, требуются специальные условия, что является причиной небольшой длины световых волн. Интерференция не отличается существенно от дифракции. Данные явления зависят от перераспределения светового потока в результате суперпозиции волн.

Дифракция объясняется принципом Гюйгенса. Согласно данному утверждению, каждая точка, которую достигает волна, является центром вторичных волн, а огибающая этих волн определяет положение волнового фронта в следующий момент времени.

На рисунке изображен непрозрачный экран, на отверстие в котором нормально падает плоская волна.

Принцип Гюйгенса

Каждая точка области волнового фронта, выделенного отверстием, представляет собой источник вторичных волн. В условиях однородной среды они будут иметь сферическую форму. С помощью огибающих вторичных волн для некоторого момента времени можно увидеть, что фронт волны достигает области геометрической тени, то есть волна огибает края отверстия.

Благодаря принципу Гюйгенса, можно решить задачу, связанную с направлением, в котором распространяется волновой фронт. Но утверждение не касается вопроса о таких характеристиках разнонаправленных волн, как амплитуда и интенсивность. Решающая роль в определении волновой природы света отведена О. Френелю, который проводил данные исследования в начале XIX века. Ученый представил объяснение явлению дифракции и ее количественный расчет. В 1818 году Френель был удостоен премии Парижской академии за достижения в данной области.

Френель дополнил принцип Гюйгенса физическим смыслом с помощью идеи интерференции вторичных волн. Ученый рассматривал дифракцию по средствам нескольких ключевых положений, которые не требую доказательств. Комплекс данных утверждений называют принципом Гюйгенса-Френеля. Исходя из принципа Гюйгенса, каждая точка фронта волны рассматривается в качестве источника вторичных волн. Френель значительно развил это утверждение:

  1. Все вторичные источники фронта волны, которая исходит из одного источника, когерентны между собой.
  2. Участки волновой поверхности с разными площадями испускают равные интенсивности или мощности.
  3. Для каждого вторичного источника характерно излучение света в большей степени по направлению к внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при \(\alpha \geq \frac<\pi >\)
  4. Вторичные источники характеризуются принципом суперпозиции, то есть излучение одних областей волновой поверхности не оказывает влияние на излучение других участков. Это можно понять, когда часть волновой поверхности прикрыта непрозрачным экраном, а вторичные волны излучаются открытыми областями так, как если бы экран отсутствовал.

Благодаря данным положениям, Френелю удалось составить дифракционную картину. Используя справедливые утверждения, ученый выполнял количественные расчеты, характеризующие явление дифракции.

Читайте также: