Клетки организма человека доклад

Обновлено: 24.04.2024

Общие свойства клеток и их различия

Основные положения:
• Клетка образуется только из предсуществующей клетки
• Каждая клетка несет генетическую информацию, реализация которой позволяет ей производить все необходимые компоненты
• Плазматическая мембрана состоит из липидного бислоя, отделяющего клетку от окружающей среды

В основе всего многообразия живых организмов лежит одна основная структурная единица: клетка. Основное положение биологии, утвердившееся с момента разработки клеточной теории в XIX веке, состоит в том, что каждая клетка образуется в результате деления предсуществующей.

Простейшие представляют собой одноклеточные организмы: их клетка сама по себе является самостоятельной биологической единицей, способной к воспроизведению многих себе подобных копий. Для того чтобы выжить, одноклеточные организмы могут приспосабливаться к самым различным типам окружающей среды, от крайне низких до крайне высоких температур, могут существовать в аэробных или анаэробных условиях, или даже в атмосфере метана. Некоторые из них живут в других организмах.

Клетки также могут образовывать многоклеточные организмы. В этом случае различные клетки специализируются для выполнения различных функций. В многоклеточном организме клетки взаимодействуют друг с другом, тем самым обеспечивая его функционирование как целого.

Многоклеточные организмы обладают способностью к размножению, однако их индивидуальные клетки могут проявлять или не проявлять такую способность. Клетки организма, для которых размножение обычно нехарактерно, могут приобрести способность к неограниченному делению, что может послужить причиной развития рака.

Размеры и форма клеток сильно варьируют, что иллюстрирует рисунок ниже. Самые мелкие клетки представлены одноклеточными организмами, которые имеют сферическую форму с диаметром, не превышающим 0,2 мкм. К числу одной из наиболее крупных клеток относится нейрон (нервная клетка) гигантского кальмара, диаметр которого в 5000 раз больше и составляет 1 мм. От тела нейрона отходят отростки (аксоны) диаметром 20 мкм (в 100 раз больше, чем размеры мельчайшей клетки), которые в длину могут достигать 10 см!

Клетки человека и других млекопитающих по величине занимают среднее положение, и обычно их диаметр составляет 3—20 мкм.

Клетки могут не очень сильно различаться по форме. Так, клетки сферической формы обычно существуют в жидкой среде. Иногда они могут обладать более определенной формой, как, например, нейрон, с характерными длинными отростками, или клетки эпителия, которые имеют выраженную апикальную и базолатеральную поверхности, выполняющие различные функции. Клетка может свободно существовать в жидкой среде либо быть прикрепленной к поверхности или к другим клеткам.

Клетки могут взаимодействовать друг с другом или атаковать другие клетки.

Размеры клеток

Клетки сильно различаются по своим размерам и форме. Некоторые клетки обладают сферической формой, другие имеют протяженные выросты.
Остальные по форме занимают промежуточное положение. На фотографиях представлена микоплазма (Тим Питцкер, Ульмский университет), дрожжи (Фред Уинстон, Гарвардская медицинская школа),
фибробласт (Цзюнзо Десаки, Медицинская школа Университета Эхиме), нейрон (Джералд Дж. Обермайр Бернгардт Е. Флухер, Медицинский университет Инсбрука), растительная клетка (Мин X. Чен, Университет в Альберте)

Однако, несмотря на столь различные формы клеток, в основе их строения лежат несколько общих принципов.
• Внутреннее содержимое клетки отделено от внешней среды мембраной, которая называется плазматической мембраной.
• Плазматическая мембрана содержит системы, контролирующие вход и выход из нее различных метаболитов.
• Необходимые для клетки метаболиты образуются из компонентов пищи при участии внутренних энергетических систем.
• Генетический материал содержит всю информацию, необходимую для образования всех компонентов клетки.
• Генетическая информация реализуется при экспрессии генов.
• Индивидуальные белки кодируются соответствующими генами и после синтеза могут собираться в более крупные структуры.

Каждый из слоев липидного бислоя, с одной стороны, содержит множество гидрофильных головок, а с другой стороны, гидрофобные хвосты. В водном окружении гидрофобные хвосты агрегируют, и, таким образом, гидрофобные поверхности каждого слоя могут соединяться, образуя неионный центр, подобно масляной капле на поверхности воды. С каждой стороны липидного бислоя гидрофильные головки обращены в сторону среды, содержащей ионы. Липидный бислой обладает важным свойством текучести. Это позволяет ему сплавляться с другими мембранами, образовывать новые при разделении, и служить в качестве растворителя для белков, которые присутствуют в бислое и мигрируют в его пределах.

Липидный бислой в определенной степени пропускает молекулы воды, но непроницаем для ионов, мелких заряженных молекул, а также для всех крупных молекул. В результате различного ионного окружения по обеим сторонам мембраны создается осмотическое давление, под действием которого молекулы воды проходят через мембрану и понижают концентрацию ионов с одной или с другой стороны мембраны, в зависимости от их концентрации.

Для обеспечения правильной работы всех систем, клетке необходимо регулировать свойства своей внутренней среды. Особый контроль необходим за ионным составом и величиной pH. Непроницаемость мембраны создает необходимость функционирования в ней специальных систем, обеспечивающих прохождение ионов.

Мембрана клетки

Липидный бислой мембраны состоит,
главным образом, из амфипатических фосфолипидов.

Клетка должна усваивать метаболиты из окружающей среды. В первую очередь это источники энергии (являющиеся субстратами метаболических процессов) и небольшие молекулы, которые служат предшественниками компонентов, в дальнейшем образующих более крупные молекулы и структуры. Жирные кислоты используются для синтеза липидов, аминокислоты для синтеза белков, а из нуклеотидов образуются РНК и ДНК

Поскольку все клетки должны усваивать метаболиты из окружающей среды, они также должны обладать способностью выводить их. Клетки выводят в окружающую среду различные ионы, небольшие молекулы, и даже белки. Процессы экспорта, и в значительной степени импорта, являются строго специфичными: они должны с высокой селективностью удалять из клетки (или пропускать в нее) необходимые метаболиты.

Для выживания и воспроизводства клетка должна получать источники энергии из окружающей среды и использовать эту энергию для синтеза необходимых компонентов. В качестве источника энергии могут служить вещества, захваченные клеткой из внешней среды. Обычно это смесь простых и сложных соединений углерода. В качестве источника энергии клетка может использовать свет. Способы расходования энергии для разных типов клеток различны.

Поскольку образование новых клеток предполагает деление существующих, клетка должна располагать информацией о воспроизведении всех ее компонентов. Эта информация содержится в универсальном типе генетического материала — ДНК, которая кодирует все белки, содержащиеся в клетке. В свою очередь, белки могут собираться в большие структуры или участвовать в метаболических процессах в качестве катализаторов. Аппарат считывания генетического кода во всех клетках включает одни и те же компоненты.

Поскольку клетка постоянно испытывает различные воздействия со стороны окружающей среды, для обеспечения ее существования необходимы системы репарации повреждений, возникающих в генетическом материале.

Клетки поддерживают свое существование за счет процесса деления. Специальный механизм предназначен для обеспечения способности к делению, при котором образуются две дочерних клетки, каждая из которых идентична родительской по содержанию генетического материала и также содержит примерно половину других структур (за некоторыми исключениями, В процессе дифференцировки образуются различные специализированные клетки, включая терминально дифференцированные).

На представлены минимальные условия, необходимые для образования клетки. Резюмируя, мембрана отделяет внутреннее содержимое клетки от окружающей среды, и многие основные пути взаимодействия клеток с окружением определяются ее свойствами. Для формирования клетки необходим источник энергии, которая используется при создании более сложных компонентов из небольших метаболитов. Генетический материал содержит информацию, необходимую для воспроизведения всех характерных особенностей той или иной клетки, и все клетки обладают системами, позволяющими эту информацию использовать.

Обязательные компоненты клетки

Клетка содержит геном, кодирующий строение всех структур,
аппарат для экспрессии генетической информации, систему использования энергии и плазматическую мембрану,
контролирующую взаимодействие клетки с окружающей средой.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Клетки человека

Каково строение клетки человека и что нам о нем известно? Ученые сумели рассмотреть эту крохотную деталь нашего организма во всех подробностях и хорошо представляют, как она работает и что умеет. Познакомимся с удивительной жизнью клеток, триллионы которых образуют организм человека.

Строение клетки человека

Клетка человека представляет собой элементарную живую систему, основную структурную и функциональную единицу организма, которая может самообновляться, саморегулироваться и самовоспроизводиться.

Организм человека содержит десятки триллионов клеток, которые вместе образуют ткани и органы. Известны разные виды клеток человека: мозг, сердце и печень, например, состоят из специфических клеток.

Но все же общее строение клеток очень похоже, и именно на нем остановимся подробнее. Из чего состоит клетка? Структура клетки человека представлена компонентами.

Цитоплазматическая мембрана

Рассматривать строение клетки начинают с мембраны, так как она ее основа. Об этом компоненте клеток известно следующее:

  1. Это своеобразный конструктор, который, во-первых, ограждает всю клетку, а во-вторых, заключает в себе ядро и все мембранные органоиды (маленькие органы клетки).
  2. Мембраны образуют двойной липидный (жировой) слой. На их внешней стороне находятся особенные молекулы белка — рецепторы, которые взаимодействуют с другими клетками и веществами.
  3. Все мембраны обладают избирательной проницаемостью, то есть одни вещества они могут пропускать внутрь, а другие — нет.

Мембрана выполняет защитную функцию, регулирует обмен веществ между клеткой и окружающей средой, а также поддерживает ее форму.

Цитоплазма клетки человека

Это жидкая среда клетки, в которой находятся все органоиды и разнообразные включения. Основной ее компонент — вода. Это среда для протекания всех химических процессов. Также цитоплазма объединяет всю клетку в единое целое и служит полем для взаимосвязи всех компонентов.

Органоиды

Каждая из этих мельчайших деталей наделена важной функцией и бесперебойно ее выполняет.

Строение клетки человека

Органоиды клетки человека: Freepick

Главный органоид — это ядро. Оно состоит из:

  • ядерной мембраны;
  • ядрышка;
  • кариоплазмы;
  • хромосом.

С помощью мембраны ядро отделено от цитоплазмы. Внутри оно наполнено ядерным соком (кариоплазмой). Ядрышко необходимо для процесса синтеза белка. Самая сокровенная часть ядра — это хромосомы, ДНК с записью всей наследственной информации.

Стоит отметить, что количество хромосом разное у каждого вида и никак не связано со сложностью его организации. Так, человеческая клетка содержит 46 хромосом, клетка шимпанзе — 48, собаки — 78.

Клеточное ядро сохраняет наследственную информацию о клетке, передает ее дочерним клеткам во время деления, реализовывает наследственную информацию путем синтеза белков, которые характерны для данной клетки.

Кроме ядра, клетка организма содержит:

  1. Эндоплазматическую сеть (ЭПС). Эта система каналов пронизывает цитоплазму и нужна для обмена белков и жиров.
  2. Аппарат Гольджи, который располагается вокруг ядра в виде плоских цистерн. Этот органоид передает, сортирует и накапливает белки, липиды и полисахариды, а также образует лизосомы.
  3. Лизосомы — маленькие пузырьки, наполненные пищеварительными ферментами, которые выполняют функции защиты и переваривания белков, жиров и углеводов.
  4. Митохондрии занимаются синтезом АТФ — вещества, из которого организм получает энергию.
  5. Рибосомы необходимы для синтеза белка.
  6. Клеточный центр — густая цитоплазма с центриолями (комплексом микротрубочек), которая участвует в делении клеток.

В отдельных группах клеток присутствуют органоиды специального назначения. К ним относятся:

  • жгутики в мужских половых клетках, благодаря которым они двигаются;
  • миофибриллы в мышечных клетках, которые отвечают за процессы сокращения мышц;
  • нейрофибриллы в нервных клетках, которые передают нервные импульсы;
  • фоторецепторы в клетках глаз.

Также клетки могут постоянно или временно содержать ряд включений:

  • пигменты, окрашивающие клетки (коричневый пигмент меланин вырабатывается в коже на солнце, чтобы защитить ее, а мы видим этот процесс как образование загара);
  • трофические включения, в которых запасается энергия;
  • секреторные включения встречаются в клетках, которые выделяют гормоны;
  • экскреторные включения. К этой группе относится пот в потовых железах.

Все это умещается в 3–4 микрометре (мкм) — таков средний размер человеческой клетки!

Клетка человека: свойства

Прежде чем рассмотреть функции клетки и ее свойства, обратим внимание на состав клетки человека.

Состав клетки человека

Разобраться в свойствах клетки поможет знание ее состава:

  1. В клетках находятся соединения кислорода (О), серы (S), фосфора (Р), углерода (С), калия (К), хлора (Сl), водорода (Н), железа (Fe), натрия (Na), азота (N), кальция (Са), магния (Mg).
  2. Основной компонент — вода. В ней растворяются и переносятся питательные вещества, а также идут все реакции. Вода выводит из клеток вредные продукты обмена. Она регулирует температуру тела и составляет до 85% клеточного состава.
  3. Углеводы поставляют энергию для всех внутриклеточных процессов.
  4. Жиры нужны для образования мембран, а при нехватке углеводов становятся энергетическим ресурсом.
  5. Из белков построены все органоиды клетки, а также часть мембраны.
  6. Нуклеиновая кислота ДНК хранит и передает генетическую информацию, а РНК участвуют в синтезе белков.
  7. АТФ служит источником энергии.

Свойства

Клетки человека наделены следующими свойствами:

  1. Они способны самовоспроизводится путем деления.
  2. Могут изменяться в процессе существования.
  3. Клетки постоянно поддерживают обмен веществ с внешней средой и другими клетками организма.
  4. Способны использовать энергию, аккумулированную в химических веществах (углеводах, жирах, АТФ).
  5. Клетки реагируют на внешние и внутренние раздражители.
  6. Адаптируются к условиям внешней среды.

Процесс деления клеток человека

Процесс деления клеток человека: Freepick

Размножение

Одно из важнейших и ключевых свойств всех клеток — их способность к делению, благодаря которой организм растет, а старые клетки заменяются новыми.

Размножаются клетки в организме человека непрямым делением. В результате у дочерней клетки сохраняется хромосомный набор, идентичный материнскому. Именно хромосомы содержат всю информацию о наследственных свойствах данного организма и передают ее.

Процесс размножения состоит из нескольких стадий:

  1. На этапе подготовки к размножению происходит удвоение числа хромосом. Клетка активно запасается энергией и веществами, которые необходимы для деления.
  2. В первой фазе начинается деление. Центриоли в клеточном центре расходятся в клетке в разные стороны. Происходит утолщение и укорачивание хромосом, растворение ядерной оболочки. Клеточный центр превращается в веретено деления.
  3. На второй стадии удвоенные хромосомы располагаются в центре клетки. К каждой из них от центриолей протягиваются плотные нити.
  4. Далее эти нити сжимаются, притягивая хромосомы к двум противоположным частям клетки. Они расходятся пополам.
  5. В конце происходит деление всего содержимого клетки и цитоплазмы. Хромосомы вновь становятся длинными и неразличимыми, вокруг них образуется оболочка ядра. Тело клетки образует перетяжку, которая углубляясь, разделяет ее пополам, и две дочерние клетки продолжают отдельную жизнь.

Таково базовое строение клетки человека. Это совершенно крохотный и удивительный микромир, который богат органоидами и различными веществами. В нем происходят сложнейшие процессы, благодаря которым мы живем.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции - это:

1. случайные изменения генетической информации, передаваемой от организма к его потомкам;

2. отбор генетической информации, способствующей выживанию и размножению своих носителей.

Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить ошеломляющее разнообразие живого мира.

Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными.

Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.

Примерная история клетки

Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.

Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).

Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.

Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы).

В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.

Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.

Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка


Строение типичной клетки прокариот: капсула, клеточная стенка, плазмалемма, цитоплазма, рибосомы, плазмида, пили, жгутик, нуклеоид.

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Животная клетка


Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

Общие сведения

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден и Теодор Шванн сформулировали клеточную теорию , основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные положения клеточной теории:

1) Клетка - элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

1.1) О вирусах (1898г.): вне клетки жизни нет.

2) Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3) Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

4) Клетка - это единица развития живого организма.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.

2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.

3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

4. Клетки многоклеточных обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной работой различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

История развития понятий о клетке

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

Развитие клеточной теории во второй половине XIX века

С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распространение на простейших, которые были признаны свободно живущими клетками (Сибольд, 1848). В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток, что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений. Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма: Каждая клетка из клетки .

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например, с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой.

Строение клетки.

Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки – цитоплазма и ядро.

Клетка покрыта мембраной, состоящей из нескольких слоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазме расположены мельчайшие структуры – органоиды. К органоидам клетки относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр.

Мембрана.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Итак, клеточная мембрана – очень мелкое молекулярное сито. Однако мембрана – весьма своеобразное сито. Её поры скорее напоминают длинные узкие проходы в крепостной стене средневекового города. Высота и ширина этих проходов в 10 раз меньше длины. Кроме того, в этом сите отверстия встречаются очень редко – поры занимают у некоторых клеток только одну миллионную часть площади мембраны. Это соответствует всего одному отверстию на площади обычного волосяного сита для просеивания муки, т.е. с обычной точки зрения мембрана вовсе не сито.

Ядро.

Ядро — самый заметный и самый большой органоид клетки, который первым привлёк внимание исследователей. Клеточное ядро открыто в 1831 году шотландским учёным Робертом Брауном. Ядро играет главную роль в наследственности. Ядро выполняет также функцию восстановления целостности клеточного тела (регенерация), является регулятором всех жизненных отправлений клетки. Форма ядра чаще всего шарообразная или яйцевидная. Важнейшей составной частью ядра является хроматин (от греч. хрома – цвет, окраска) – вещество, хорошо окрашивающееся ядерными красками.

Ядро отделено от цитоплазмы двойной мембраной, которая непосредственно связана с эндоплазматической сетью и комплексом Гольджи. На ядерной мембране обнаружены поры, через которые (как и через наружную цитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.е. поры, обеспечивают избирательную проницаемость мембраны.

Внутреннее содержимое ядра составляет ядерный сок, заполняющий пространство между структурами ядра. В ядре всегда присутствует одно или несколько ядрышек. В ядрышке образуются рибосомы.

В ядре расположены нитевидные образования – хромосомы. В ядре клетки тела человека (кроме половых) содержится по 46 хромосом. Хромосомы являются носителями наследственных задатков организма, передающихся от родителей потомству.

Большинство клеток содержит одно ядро, но существуют и многоядерные клетки (в печени, в мышцах и др.). Удаление ядра делает клетку нежизнеспособной.

Цитоплазма.

Цитоплазма – полужидкая слизистая бесцветная масса, содержащая 75-85% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3% жиров и липидов, 1% неорганических и других веществ. Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты

Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названа вакуолярной системой.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Читайте также: