История теории множеств доклад

Обновлено: 01.06.2024

Теория множеств — это раздел логики и математики, в рамках которого изучаются классы (множества) элементов произвольной природы. Множество при этом понимается как произвольная совокупность определённых и различимых объектов, мысленно объединённых в единое целое и называемых его элементами (см. Множество). Методы теории множеств широко используются во всех областях современной математики и математической логики (см. Логика математическая); они имеют принципиальное значение для вопросов обоснования математики логическими средствами. Однако при обосновании самой теории множеств возникают трудности, не преодолённые и в настоящее время.

Кантор развил определённую технику оперирования с актуально бесконечными множествами и построил определённый аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным — разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимно-однозначное соответствие с элементами подмножества B 1 множества B, а элементы множества B нельзя поставить во взаимно-однозначное соответствие с элементами A, то тогда говорят, что мощность множества B больше мощности множества A. Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства.

Кантор также развил арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением — мощность так называемого множества-произведения двух данных множеств и так далее. Наиболее важным оказывается переход от данного множества к множеству-степени, то есть, по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через a, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2 a , и мы имеем, следовательно, 2 a a. Значит, переходя от некоторого бесконечного множества, например от множества всех натуральных чисел, имеющего мощность ℵα (обозначение Кантора) к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и так далее, мы будем получать ряд множеств все более возрастающей мощности. Есть ли предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия.

Другой классической проблемой теории множеств является аксиома выбора. Она формулируется следующим образом: дано некоторое, вообще говоря, бесконечное множество множеств. Существует функция, ставящая в соответствие каждому множеству один его элемент (выбирающая из каждого множества по элементу). Несмотря на простоту формулировки аксиомы выбора, трудно представить, как бы можно было её доказать. В то же время от этой аксиомы зависит большое множество теорем анализа, а в самой теории множеств — доказательство фундаментальной теоремы Э. Цермело о возможности сравнения мощностей различных множеств. Благодаря работам К. Гёделя (1939) и П. Коэна (1963) было установлено, что аксиома выбора независима от корпуса других аксиом теории множеств Цермело — Фрэнкеля. Вместо аксиомы выбора были предложены альтернативные аксиомы, например аксиома детерминированности. При изменении аксиом теории множеств, естественно, меняется и характер математики, построенной на базе этой теории множеств.

В интуиционистской математике Л. Э. Я. Брауэр ограничил использование закона исключённого третьего (см. Закон исключённого третьего), и ввёл новую трактовку логических связок и кванторов. Была построена новая математика, включая теорию континуума. Однако эта другая математика в корне отличалась от той, которая развивалась в течение почти трёх тысяч лет. Этот путь также оказался далёк от решения вопроса обоснования математики.

Наконец, ряд систем преследуют специфические цели (конечность числа аксиом, нестандартные логические средства вывода и так далее). Это системы Неймана — Гёделя — Бернайса, У. Куайна и появившиеся за последние десятилетия системы, основанные на неклассических логиках (см. Логики неклассические), в первую очередь — на интуиционистской логике (см. Логика интуиционистская).

Аксиоматический подход позволил решить ряд вопросов о соотношении различных аксиоматических систем теории множеств, придать точный смысл вопросам неразрешимости ряда математических проблем (континуум-проблемы, в частности), решить некоторые трудные классические проблемы топологии, теории кардинальных и ординальных чисел. Тем не менее, вопрос о непротиворечивости всех этих систем остаётся открытым.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Элементы теории множеств

Краткая история развития теории множеств………………….

Понятия теории множеств…………………………………………..

Теория множеств — раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики.

Несмотря на основополагающий характер данной теории и достаточную давность ее исследования, в этой области существует большое количество неточностей, противоречий и парадоксов.

В настоящее время теория множеств широко используется при решении задач на компьютере. Она значительно облегчает запись на различных языках программирования.

Рассмотрение теории множеств дает ключ к дальнейшему более глубокому понимаю всех отраслей математики.

Целью данной работы является рассмотрение основ теории множеств, выявление ее составляющих, а также определение современной степени ее развития.

Краткая история развития теории множеств

Наивная теория множеств

До второй половины 19-го века понятие "множества" не рассматривалось в качестве математического ("множество книг на полке", "множество человеческих добродетелей" и т. д. - всё это чисто бытовые обороты речи). Положение изменилось, когда немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным "множеством". Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого "натуральным рядом" - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано. При этом общему понятию "множества", рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде "множество есть многое, мыслимое как единое", и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не "теорией множеств" (этот термин появился много позднее), а учением о множествах (Mengenlehre).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер, полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что "бог создал натуральные числа, а всё прочее - дело рук человеческих"). Тем не менее, некоторые другие математики - в частности, Готлоб Фреге и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык.

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с множествами (выраженный им самим в принципе "сущность математики состоит в её свободе") является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть "доказано" абсолютно любое утверждение). Антиномии ознаменовали собой полный провал программы Кантора.

Аксиоматическая теория множеств

В начале 20-го века Бертран Рассел, изучая наивную теорию множеств, пришел к парадоксу (с тех пор известному как парадокс Рассела). Таким образом, была продемонстрирована несостоятельность наивной теории множеств и связанной с ней канторовской программы стандартизации математики.

После обнаружения антиномии Рассела часть математиков (например, Л. Э. Я. Брауэр и его школа) решила полностью отказаться от использования теоретико-множественных представлений. Другая же часть математиков, возглавленная Д. Гильбертом, предприняла ряд попыток обосновать ту часть теоретико-множественных представлений, которая казалась им наименее ответственной за возникновение антиномий, на основе заведомо надёжной финитной математики. С этой целью были разработаны различные аксиоматизации теории множеств.

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества "существуют" исключительно формальным образом, и их "свойства" могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что "мощность континуума, если только мыслить его как множество точек, есть единая некая реальность", место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза, или же её отрицание.

В настоящее время наиболее распространённой аксиматической теорией множеств является ZFC - теория Цермело—Френкеля с аксиомой выбора. Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешенным.

Понятия теории множеств

Теория множеств составляет основу построения всей современной математики. Сама она базируется на двух очень простых понятиях: на понятии множества и понятии элемента.

Понятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким ученым Георгом Кантором (1845-1918).Следуя Кантору, понятие "множество" можно определить как

совокупность объектов, обладающих определенным свойством, объединенных в единое целое. Т.о. Под множеством принято понимать любую совокупность объектов, которые по какой-либо причине необходимо сгруппировать вместе.

Объекты, составляющие множество, называются элементами множества. Множество A и его элемент a находятся в отношении принадлежности: a  A. Эта запись расшифровывается так: элемент a принадлежит множеству A, а множество A содержит в себе элемент a.

Выделим из множества A какую-нибудь часть его элементов. Эту выделенную часть можно трактовать как самостоятельное множество B. Тот факт, что B является частью A, обозначают так: B  A. При этом говорят, что B есть подмножество множества A. Надо четко различать две записи

a ? A

B ? A

Знак включения ? связывает два множества, а знак принадлежности ? связывает множество с его элементом.

Составляя множество B, мы могли включить в него все элементы из A. Тогда получится

B = A. Но даже в этом крайнем случае B можно трактовать как часть A. То есть B ? A не исключает возможности совпадения B = A. Желая обозначить подмножество B, не совпадающее с A, будем писать В  А.

Другой крайний случай B ? A возникает, когда B не содержит ни одного элемента. Такое множество называют пустым множеством и обозначают специальным значком B ? A. Пустое множество можно рассматривать как подмножество для любого множества A, т. е.

? ? A.

Пусть A и B - два произвольных множества. Некоторые из элементов этих двух множеств могут быть общими: c ? A и c ? B. Из таких элементов формируется отдельное множество C, которое называют пересечением множеств A и B. Его обозначают так:

C = A ? B. Если A ? B  ?, то говорят, что множества A и B пересекаются. Если же, наоборот, A ? B = ? , то говорят, что эти множества не пересекаются.

Пусть вновь A и B - два произвольных множества. Соберем в одно множество C все элементы из A и B. Полученное множество в этом случае называют объединением множеств A и B. Его обозначают так: C = A ? B.

Элементы, составляющие множество A ? B, разбиваются на три группы (на три подмножества). Это:

элементы, принадлежащие множеству A и множеству B одновременно;

элементы, принадлежащие множеству A, но не принадлежащие множеству B;

элементы, принадлежащие множеству B, но не принадлежащие множеству A.

Первая группа элементов составляет пересечение A ? B. Вторая группа элементов составляет множество, которое называют разностью множеств A и B. Его обозначают

A \ B. Очевидно, что третья группа элементов, составляет множество, которое является разностью B \ A. Множества A ? B, A \ B и B \ A не пересекаются друг с другом. При этом их объединение совпадает с объединением A и B:

A ? B = (A ? B) ? (A \ B) ? (B \ A).

Дополнением множества А в В называется разность А\В, если В является подмножеством множества А. Дополнение множества обозначается СА.

Пустое множество

Среди множеств выделяют особое множество - пустое множество. Пустое множество- множество, не содержащее ни одного элемента.

Пустое множество является частью любого множества.

Множество считается определенным, если указаны все его элементы. Эти элементы могут быть указаны с помощью некоторого общего признака или с помощью некоторого списка, где обозначены все элементы.

Последний способ возможен только в том случае, если множество имеет конечное число элементов.

Конечное множество- множество, состоящее из конечного числа элементов.

Основной характеристикой конечного множества является число его элементов. Теория конечных множеств изучает правила: как, зная количество элементов некоторых множеств, вычислить количество элементов других множеств, которые составлены из первых с помощью некоторых операций.

Бесконечное множество - непустое множество, не являющееся конечным.

Пример: Множество натуральных чисел является бесконечным.

Упорядоченное множество - множество, каждому элементу которого поставлено в соответствие некоторое число (номер этого элемента) от 1 до n, где n - число элементов множества, так что различным элементам соответствуют различные числа. Каждое конечное множество можно сделать упорядоченным, если, например, переписать все элементы в некоторый список (a, b, c, d. ), а затем поставить в соответствие каждому элементу номер места, на котором он стоит в списке.

Мощность множеств

Первым вопросом, возникшим в применении к бесконечным множествам, был вопрос о возможности их количественного сравнения между собой. Ответ на этот и близкие вопросы дал в конце 70-ых годов 19 века ученый Г.Кантор, основавший теорию множеств как математическую науку. Возможность сравнительной количественной оценки множеств опирается на понятие взаимно однозначного соответствия между двумя множествами. Пусть каждому элементу множества А поставлен в соответствие в силу какого бы то ни было правила или закона некоторый определенный элемент множества В; если при этом каждый элемент множества В оказывается поставленным в соответствие одному и только одному элементу множества А, то говорят, что между множествами А и В установлено взаимно однозначное соответствие. Очевидно, что между конечными множествами можно установить взаимно однозначное соответствие тогда и только тогда, когда оба множества состоят из одного и того же числа элементов.

Два множества называются равномощными, если между ними можно установить взаимно однозначное соответствие.

Еще до создания теории множеств чешский ученый Б.Больцано владел, с одной стороны, вполне точно формулированным понятием взаимно однозначного соответствия, а с другой стороны, считал несомненным существование бесконечностей различных ступеней; однако, он не только не сделал взаимно однозначное соответствие основой установления количественной равносильности множеств, но решительно возражал против этого. Б.Больцано останавливало только то, что бесконечное множество может находиться во взаимно однозначном соответствии со своей правильной частью.

Вместо того, чтобы в применении к бесконечным множествам отказаться от аксиомы: часть меньше целого, Б.Больцано отказался от взаимной критерия равномощности, и таким образом, остался вне основной линии развития теории множеств. В каждом бесконечном множестве имеется (как легко доказывается) правильная часть, равномощная всему М, тогда как ни в одном конечном множестве такой правильной части найти нельзя. Поэтому наличие правильной части, равномощной целому, можно принять за определение бесконечного множества.

Для двух бесконечных множеств А и В возможны следующие три случая: либо А есть правильная часть, равномощная В, но в В нет правильной части, равномощной А; либо, наоборот, в В есть правильная часть, равномощная А, а в А нет правильной части, равномощной В; либо в А есть правильная часть, равномощная в, и в В есть правильная часть, равномощная А. Доказано, что в третьем случае А и В равномощны. В первом случае говорят, что мощность множества а больше мощности множества В, во втором - что мощность множества В больше мощности множества А.

Множество, равномощное множеству всех натуральных чисел, называется счетным множеством. Мощность счетных множеств есть наименьшая мощность, которую может иметь бесконечное множество; всякое бесконечное множество содержит счетную правильную часть. Г.Кантор доказал, что множество всех рациональных и даже всех алгебраических чисел счетно, тогда как множество всех действительных чисел - несчетное множество. Тем самым было дано новое доказательство существования трансцендентных чисел. Мощность множества всех действительных чисел называется мощностью континуума. Г.Кантор высказал гипотезу (континуум-гипотезу): всякое множество, состоящее из действительных чисел, либо конечно, либо счетно, либо равномощно множеству всех действительных чисел.

Алгебра множеств

Алгебра множеств — это совокупность тождеств справедливых независимо от того, какое универсальное множество V и какие именно его подмножества входят в эти тождества.

Законы алгебры множеств:

1) Коммутативный (переместительный):
А ? B = B ? A
A U B = B U A

2) Сочетательный (ассоциативный):
А U (В U С) = (А U В) U С
А ? (В ? С) = (А ? В) ? С

3) Дистрибутивный (распределительный):
А U(В ? С) = (А U В) ? (А U С)
А ? (В U С) = (А ? В) U (А ? С)

4) Свойства относительно пустого и универсального множеств:
А U ? = ?A
A ? V = A;
A U ? A = V
A U V = V
A ? ? = ?;

5) Законы идемпотентности:
A U A = A
A ? A =A

6) Законы поглощения:
A U (A ? B ) = A
A ? (A U B) = A
A U (?A ? B ) = A U B
A ? (?A U B) = A ? B

7) Законы склеивания:
(A ? B) U (?A U B) = B
(A U B) ? (?A U B) = B

Парадоксы

Парадокс Рассела — парадокс, открытый в начале XX века Бертраном Расселом и демонстрирующий противоречивость наивной (или канторовской) теории множеств.

Парадокс Рассела формулируется следующим образом:

Пусть K — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то, по определению K, оно не должно быть элементом K — противоречие. Если нет — то, по определению K, оно должно быть элементом K — вновь противоречие.

А именно, допустим, что множество U всех множеств существует. Выделим среди элементов U те и только те, которые не содержат себя в качестве элемента. Из аксиомы выделения следует, что полученная совокупность — тоже множество. Далее, вопрос, содержит ли это новое множество себя в качестве элемента, приводит к противоречию, из чего следует невозможность существования U.

Варианты формулировок

Существует много популярных формулировок этого парадокса. Одна из них традиционно называется задачей (или пародоксом) брадобрея и звучит так:

Еще один вариант:

Аксиома выбора

Неожиданные трудности в теории множеств могут возникнуть, казалось бы, в самых простых случаях. Если, например, задано семейство непересекающихся множеств, ни одно из которых не пусто, то интуитивно кажется очевидным, что мы можем построить новое множество, содержащее ровно по одному элементу из каждого множества, входящего в это семейство. Но если наше семейство содержит бесконечно много множеств, то для построения нового множества может потребоваться бесконечное число произвольных выборов, а законность такого процесса при тщательном анализе становится отнюдь не очевидной. Аксиома выбора, утверждающая, что такое множество существует, была впервые сформулирована в 1904 Э.Цермело (1871–1953). До сих пор не удалось показать, что аксиома выбора следует из остальных аксиом теории множеств. Но около 1938 К.Гёдель (1906–1978) показал, что если теория множеств непротиворечива (т.е. не содержит внутренних противоречий) без аксиомы выбора, то она остается непротиворечивой и после присоединения к ней аксиомы выбора

Таким образом, теория множеств является основой практически всех математических знаний. А следовательно, исследования в данной области затронут многие понятия других областей математики.

Обладая достаточно простым языком основных понятий, элементы данной теории широко используются в повседневной жизни человека.

Несмотря на все это, данная теория требует дальнейшей разработки для устранения существенных противоречий. Это и должно стать определяющим направлением в развитии теории множеств.

Теория множеств – одна из тех тем математики, которая охватывает не только математические понятия, но и широкий круг общественных отношений. Поэтому изучение данной теории необходимо не только для студентов математических факультетов, но и для широкого круга лиц, желающих развить свой аппарат логического мышления.

множество U

Джон Венн (1834-1923) был священником англиканской церкви, став затем преподавателем логики и теории вероятностей в Кембриджском университете. Венн разработал простую систему диаграмм, облегчающую понимание определенных операций на множествах, но никто и представить не мог, что его имя будет известно студентам половины земного шара. Диаграммы Венна включают рамку, обозначающую универсальное множество U с которым мы будем работать:

объединение

В этой рамке внутренняя часть круга представляет данное множество (вместо круга может использоваться любая замкнутая кривая). Эти диаграммы очень удобны, потому что с их помощью можно наглядно представить, например, объединение двух множеств А и В (выделено синим цветом):

пересечение

Пересечение множеств (выделено красным):

и дополнение (выделено желтым):Диаграммы особенно полезны, когда используется несколько множеств:

На последней диаграмме нетрудно заметить следующие соотношения: $A\cap C=\oslash, C\subset B, A\cap B \cap D \subset A$.

Логические противоречия

История теории множеств тесно связана с понятием бесконечности, в частности, с понятием истинной бесконечности, и с необходимостью создавать математические объекты с бесконечным множеством элементов. Несмотря на то, что начала теории множеств определил Бернард Больцано (1781-1848), создание теории в целом единогласно приписывается Георгу Кантору (1845-1918).

Однако вскоре теория Эрнста Цермело (1908) и ее уточнения, разработанные Френкелем (1922), Сколемом (1923), фон Нейманом (1925) и другими авторами, сформировали фундамент, на котором и строится теория множеств в ее нынешнем виде.

Булева алгебра

В 1938 году Клод Элвуд Шеннон (1916-2001) представил булеву алгебру для двух значений и тем самым превратил ее в один из важнейших теоретических инструментов за всю историю технологии. С этого момента булева алгебра стала грамматикой компьютерного языка, поскольку она дала возможность описать свойства электрических цепей. Используем ли мы компьютер, переходим ли дорогу на светофоре, смотрим на электронные часы, пользуемся связью, включаем бытовую технику или поднимаемся в самолет — глубоко внутри всех этих механизмов работает булева алгебра.

image

Концепция бесконечности идеологически далека от обычной математической терминологии — ни одна другая тема не выходит за пределы математики так, что превращается из практического, аналитического инструмента в явление мифического порядка. Понятие бесконечности на короткой ноге с такими культурными темами, как религия и философия, и окутана загадочной аурой божественности.

Когда-то давным давно во всех академических дисциплинах было заложено фундаментальное убеждение — существует единственная бесконечность.


С 1874 по 1897 год Кантор неистово публиковал статью за статьёй, разворачивая свою теорию абстрактных множеств в расцветающую дисциплину. Однако она была встречена упорным сопротивлением и критикой; многие педанты считали, что его теории перешли в область философии и нарушили принцип религии.

Однако когда начали находиться практические применения математического анализа, отношение к теории изменилось, а идеи и результаты Кантора начали получать признание. К первому десятилению 20-го века его наблюдения, теории и публикации достигли своей кульминации — признания современной теории множеств новой, совершенно уникальной областью математики:

Теория множеств — это математическая теория о точно определённых наборах (множествах) отдельных объектов, называемых членами или элементами множества.

Сколько чисел есть между 0 и 1?

Первая публикация Кантора, состоящая из четырёх с половиной страниц, является великолепным примером краткости. Она разделена на два отдельных доказательства, совместно приводящих к выводу о существовании по крайней мере двух уникальных видов множеств.

Если говорить вкратце, то набор, или множество всех вещественных алгебраических чисел можно вывести с помощью какого-то теоретического ряда многочленов с различными степенями и коэффициентами; следовательно, множество всех вещественных алгебраических чисел является бесконечным счётным множеством.

Во второй части труда Кантора анализируется роль вещественных комплексных чисел, также называющихся трансцендентными числами. Транцендентные числа (лучшие примеры которых — это пи и e) имеют любопытное свойство: математически невозможно вывести их с помощью многочленной функции — они не являются алгебраическими. Вне зависимости от величин, количества частей, степеней или коэффициентов, никакой ряд никогда не может посчитать пи в своём наборе бесконечного счётного множества.

Затем Кантор указывает, что в любом замкнутом интервале [a,b] существует хотя бы одно транцендентное число, которое никогда нельзя будет подсчитать в бесконечном счётном множестве. Поскольку одно такое число существует, то предполагается, что в семействе вещественных чисел существует бесконечное количество транцендентных чисел.

Таким образом он доказал очень чёткое различие между множеством непрерывных, идущих потоком несчётных чисел и набора счётных чисел, которые можно представить как ряд, например, всех вещественных алгебраических чисел.

Далее: запись и операции

Первая публикация Кантора завершилась на этом потрясающем подтверждении существования по крайней мере двух разных видов бесконечности. После его первой статьи появился шквал дополнений, медленно, но верно прокладывавших путь к современной теории множеств.


Вооружившись базовым пониманием истории множеств и совершив кратковременное погружение в глубины его влияния, мы можем приступать к знакомству с основами системы обозначений теории множеств.

image

Часть вторая. Краткий обзор операций, обозначений и диаграмм Венна.

Как сказано в предыдущей части, одно из фундаментальных преимуществ теории множеств произрастает не из какой-то конкретной теории, а из созданного ею языка. Именно поэтому основная часть этого раздела будет посвящена обозначениям, операциям и визуальному представлению теории множеств. Давайте начнём с объяснения базовых символов обозначения множества — соответствующих ему элементов. В таблице ниже показан пример одного множества A с тремя элементами:


В первой строке показано множество A с тремя отдельными элементами (A = ); во второй строке показан правильный способ обозначения отдельного конкретного элемента 1, принадлежащего множеству A. Пока всё довольно просто, но теория множеств становится существенно интереснее, когда мы добавляем второе множество — начинается путешествие по стандартным операциям.

Для показанной выше таблицы давайте введём два дополнительных множества B и C, содержащие следующие элементы: B = , C = . Хоть мы и создали три множества (A,B и C), в показанных ниже примерах операции выполняются одновременно только с двумя множествами, поэтому внимательно следите за тем, какие множества указаны в самом левом столбце. В показанной ниже таблице представлено пять самых распространённых операндов множеств:


Операции: пересечение (intersection) — множество элементов, принадлежащих множеству A и множеству B;

объединение (union) — множество элементов, принадлежащих множеству A или множеству B;

подмножество (subset) — C является подмножеством A, множество C включено во множество A;

собственное (истинное) подмножество — C является подмножеством A, но C не равно A;

относительное дополнение (relative complement) — множество элементов, принадлежащих к A и не к B.

Вот и они, самые распространённые операции в теории множеств; они довольно популярны и в областях за пределами чистой математики. На самом деле, высока вероятность того, что вы уже видели подобные типы операций в прошлом, хоть и не совсем с такой терминологией, и даже пользовались ими. Хорошая иллюстрация: попросите любого студента описать диаграмму Венна из двух пересекающихся групп, и он интуитивно придёт к правильному результату.

Ещё раз взгляните на последнюю строку, относительное дополнение — какое необычное сочетание слов, правда? Относительное к чему? Если относительное дополнение A — B определяется как A и не B, то как нам обозначить всё, что не является B?

Универсальное множество — пустое множество

Оказывается, если мы хотим получить значимый ответ, то для начала нужно предоставить генеральной совокупности нашей задачи множеств некий контекст. Он часто явным образом задаётся в начале задачи, когда допустимые элементы множества ограничиваются некоторым фиксированным классом объектов, в котором существует универсальное множество, являющееся общим множеством, содержащим все элементы для этой конкретной задачи. Например, если мы хотели бы работать со множествами только из букв английского алфавита, то наше универсальное множество U состояло бы из 26 букв алфавита.

Для любого подмножества A множества U дополнение множества A (обозначаемое A′ или UA) определяется как множество всех элементов в генеральной совокупности U, которое не находится в A. Если вернуться к поставленному выше вопросу, то дополнением множества B является всё в пределах универсального множества, что не принадлежит B, в том числе и A.

Диаграммы Венна и остальное

Диаграммы Венна, официально изобретённые в 1880 году Джоном Венном, являются именно тем, что вы и представляете, хотя их научное определение звучит примерно так:

Ниже показано изображение шести самых распространённых диаграмм Венна, и почти во всех показаны недавно изученные нами операнды:


Объединение (union), пересечение (intersection), относительное дополнение (relative complement), симметрическая разность (symmetric difference), собственное множество (proper subset), абсолютное дополнение (universal дополнение).

Начав с очень простых обозначений множества и его элементов, мы узнали затем о базовых операциях, позволивших нарисовать эту визуальную подсказку. Мы рассмотрели все операции, за исключением симметрической разности (внизу слева). Чтобы не оставлять пробелов в знаниях, скажем, что симметрическая разность, также называемая дизъюнктивным объединением — это просто множество элементов, которые находятся в любом из множеств, но не входят в их пересечение.

Закончим мы этот раздел введением понятия мощности (кардинального числа). Мощность множества, обозначаемая символом абсолютного значения — это просто количество уникальных элементов, содержащихся в определённом множестве. Для показанного выше примера мощность трёх множеств равна: |A| = 3, |B| =6, |C| = 2.

Прежде чем двигаться дальше, дам вам пищу для размышлений — какова связь между мощностью и количеством возможных подмножеств?

image

Часть 3. Мощность и показательные множества

В предыдущих двух частях мы разобрались с основами теории множеств. В третьей части мы укрепим своё понимание, сосредоточившись на самом важном свойстве любого множества: общем количестве содержащихся в нём уникальных элементов.

Количество уникальных элементов во множестве, также известное как мощность, предоставляет нам фундаментальную опорную точку для дальнейшего, более глубокого анализа этого множества. Во-первых, мощность — это первое из рассматриваемых нами уникальных свойств, позволяющее нам объективно сравнивать различные виды множеств, проверяя, существует ли биекция (это, с небольшими оговорками, просто более изысканный термин для function ) одного множества на другое. Ещё один способ применения мощности, а также тема этой части статьи — мощность позволяет оценить все возможные подмножества, существующие в данном множестве. Что достаточно буквально можно применять в повседневных задачах распределения решений, будь то планирование бюджета на поездку в продуктовый магазин или оптимизация портфеля акций.


Примеры мощности множеств

Например, в таблице выше показаны пять отдельных множеств с их указанной справа мощностью. Как мы уже говорили, символ мощности напоминает символ абсолютного значения — значение, заключённое между двумя вертикальными линиями. Все примеры понятны, за исключением, возможно, последней строки, которая подчёркивает тот факт, что на мощность влияют только уникальные элементы множества.

Помните подмножества из предыдущей части статьи? Оказывается, что мощность некоторого множества A и количество возможных подмножеств множества A имеют удивительную связь. Ниже показано, что количество подмножеств, которые можно составить из некоторого подмножества, увеличивается с порядком мощности на предсказуемую величину:

Показательное множество (булеан)

Прежде чем мы вычислим все подмножества для примера множества C, я хотел бы ввести последнее понятие — булеан.

Булеан обозначается заглавной буквой S, за которой в скобках указывается исходное множество S(С). Булеан — это множество всех подмножеств C, включая пустое множество и само множество C. В таблице ниже показан булеан S(С) со всеми перестановками возможных подмножеств для множества C, содержащихся в одном большом множестве.


Для удобства форматирования я убрал запятые между множествами***

Чем может быть полезен булеан? На самом деле, вы скорее всего много раз интуитивно использовали булеаны, даже об этом не догадываясь. Каждый раз, когда вы выбираете подмножество элементов из более крупного множества, вы выбираете элемент булеана. Например ребёнок внимательно изучающий кондитерский магазин с купюрой в 5 долларов — какой элемент булеана множества всех доступных сладостей он выберет? Или если взять более технический пример: вам, как разработчику ПО может потребоваться запросить всех возможных пользователей базы данных, также обладающих свойством X и Y — ещё один случай, в котором одно подмножество выбирается из всех возможных подмножеств.

Эквивалентность и биективная функция

Теперь мы понимаем, что такое мощность множества, почему оно важно, и его связь с булеаном. Поэтому вернёмся ненадолго к тому, что упоминали в самом начале: что конкретно определяет эквивалентность в теории множеств?

image

Часть 4. Функции.

В этой части мы подробнее расскажем о функциях в пределах теории множеств. Как и в случае с предыдущими понятиями, терминология стандартных функций в теории множеств слегка отличается от других областей математики, а потому требует объяснения. Терминологии довольно много, так что давайте сразу приступим к делу! В первой таблице внизу отражены понятия области определения, области значений и значения функции:


Пока особо ничего сложного, только новый способ задания параметров функций. Далее мы расскажем о том, как описывать поведения этих функций соответствия при помощи обычных типов функций.

Инъекции, сюръекции и биекции

В теории множеств для классификации соответствия множеств обычно используются три понятия: инъекция, сюръекция и биекция. К сожалению, эти понятия имеют несколько разных названий, усиливающих неразбериху, поэтому мы сначала рассмотрим каждое определение, а затем изучим визуальные примеры. Все три термина описывают способ, которым отображаются аргументы на образы:

Прочитайте заново представленный выше список пунктов. Биекция — это просто функция, удовлетворяющая обоим предыдущим требованиям; то есть, функция инъективна и сюръективна. Инъективная функция не должна быть сюръективной, а сюръективная — инъективной. Ниже показан визуальный пример, в котором эти три классификации привели к созданию функций множеств, определяемых четырьмя возможными комбинациями инъективных и сюръективных свойств:

image

Биекция (инъекция + сюръекция), инъекция (инъекция + не-сюръекция), сюръекция (не-инъекция + сюръеция), без классификации (не-инъекция + не-сюръекция)

Вот и всё! Теперь мы обладаем элементарным пониманием самых часто встречаемых соотношений, встречающихся в мире множеств. Однако это ни в коем случае не конец нашего пути: напротив, это самое начало.

Фундаментальные основы теории множеств — ключ к пониманию более высокоуровневых областей математики. Чтобы продолжить наше движение вверх, к этим различным областям, далее нужно будет, пользуясь своими знаниями о теории множеств, уяснить одну из самых революционных теорий в истории математики: систему аксиом Цермело-Френкеля.

Читайте также: