Информатика в медицине доклад

Обновлено: 16.05.2024

Внедрение информационных технологий в повседневную практику здравоохранения влечет за собой коренные изменения в организации труда многих медиков. Каждый этап развития системы здравоохранения и медицины связан с появлением новых интегрированных областей знаний, которые несут в себе общенаучные основы: медицинская кибернетика, экономика, здравоохранение, менеджмент и маркетинг и т. д. Информатизация и бурное развитие информационных процессов в системе здравоохранения в 70-х гг. ХХ в. сначала за рубежом, а затем и в нашей стране привели к становлению самостоятельной науки - медицинской информатики.

Существует несколько определений медицинской информатики.

Определение

Медицинская информатика - это наука об обработке, преобразовании, хранении, передаче и представлении информации в области здравоохранения на основе использования информационно-коммуникационных технологий.

Медицинская информатика - прикладной раздел информатики, занимающийся исследованием процессов получения, передачи, обработки, хранения и представления информации в медицине и здравоохранении с помощью компьютерных технологий, внедрением и использованием информационной техники и технологий во всех сферах медицины и здравоохранения.

Медицинская информатика ориентирована на биомедицинскую информацию (данные и знания, их хранение, передачу и обработку, использование для решения проблем или принятия решений). Она изучает закономерности и методы получения, хранения, обработки и использования знаний в медицинской науке и практике с целью расширения горизонтов и возможностей познания, профилактики и лечения болезней, охраны и улучшения здоровья человека. Это научная дисциплина, содержащая систему знаний об информационных процессах в медицине, системе здравоохранения и смежных дисциплинах, обосновывает и определяет способы и средства рациональной организации и использования информационных ресурсов в целях охраны здоровья населения.

Медицинская информатика стала необходимой с того времени, когда начался переход от разрозненного использования компьютера к целостным информационным технологиям. Как и все научные дисциплины, медицинская информатика имеет предмет изучения - информационные процессы (во время которых происходит сбор, обработка, накопление, хранение, поиск, распространение и использование информации), связанные с медико-биологическими, клиническими и профилактическими проблемами медицины.

Задачами медицинской информатики являются:

• исследование информационных процессов в медицине;

• разработка новых информационных технологий медицины;

• решение научных проблем создания и внедрения вычислительной техники в медицине.

Медицинская информатика как практическое направление в здравоохранении возникла в России в 1970-х годах. Процесс формирования шел по этапам: 1-й этап - работы по созданию первых автоматизированных историй болезни; 2-й этап - разработка автоматизированных систем управления. Это направление базировалось на системном подходе и включало обработку данных с помощью традиционных и нетрадиционных методов математико-статистического анализа. В последующем стали применять пакеты статистических программ, ориентированные на биологическую и медицинскую информацию. 3-й этап - в 1980-х гг. стали создаваться (или встраиваться в автоматизированные системы) экспертные системы (интеллектуальные), использовавшие врачебные знания.

Становление медицинской информатики в России связано с именами Н.М. Амосова, П.К. Анохина, А.И. Берга, С.А. Гаспаряна, Г.И. Чеченина и др. В 1975-1984 гг. Научным советом по медицинской кибернетике при Минздраве РСФСР под руководством С.А. Гаспаряна в разработку были вовлечены крупные центры регионов России, среди которых Владивосток, Ижевск, Кемерово, Новокузнецк, Ярославль и др. Период с 1975 по 1985 г. можно охарактеризовать как время создания государственной системы организации и координации работ по внедрению методов информатики и средств вычислительной техники в практическую медицину, создание в регионах медицинских вычислительных центров. Это создало благоприятные условия для разработки новых проектов и их внедрения. Начиная с 2000-2001 гг. медицинскую информатику стали преподавать в медицинских вузах страны.


Ни для кого не секрет, что компьютерные технологии проникли практически во все аспекты современного общества: политика, оборона, развлечения, образование и многое другое. Медицина не стала исключением. Сейчас это не секрет, однако 60 лет назад все это казалось научной фантастикой.

Сегодня мы затронем прошлое, настоящее и будущее партнерства этих столь разных отраслей, медицины и компьютерных технологий. Узнаем какие революционные открытия были сделаны, какие недостатки и опасности несет в себе данное партнерство и, наконец, какое будущее медицины нас ждет.

Применение компьютерных технологий в медицине

На данный момент компьютеры приобрели широкое распространение во многих ветвях медицины. Начиная с CPOE (computerized physician order entry) — компьютеризованной системы предписаний врача (назначение анализов и/или медикаментов), заканчивая роботами-интернами, помогающими хирургам во время операций. Также не малое значение компьютеры играют и в работе клиник в целом, помогая планировать и выполнять различные административные задачи, отслеживать финансы, проводить инвентаризации и т.д.


Далеко не второстепенную роль сыграл и Интернет. Благодаря ему появилось новое направление в медицинской диагностике — телерадиология (проще говоря передача через всемирную паутину изображений и данных медицинского характера). Это новшество дало возможность анализировать данные пациента и принимать решения касательно его лечения, находясь в дали от него, тем самым экономя драгоценное время. Также врачи получили возможность быстро консультироваться со своими коллегами со всего мира. Огромная база медицинских знаний, хранимая в Интернете, доступна и пациентам, давая им возможность ознакомится со своим заболеванием, распознать симптомы, узнать нужную информацию о враче и/или клинике, о препаратах и т.д. Касательно использования Интернета пациентом ходит не мало споров. Дело в том, что доверять самому пациенту устанавливать себе диагноз и назначать лечение — крайне опасно для него самого. С другой стороны, если пациент совмещает использование информации из Интернета с посещением реального врача, это может улучшить качество его лечения.


Хронологическая шкала взаимосвязи компьютерных технологий и медицины (1954-2006)


Электронные медицинские записи (EMR)


В добавок к преимуществу удаленного доступа к данным, EMR обладает и другими, о которых мы поговорим далее. Исходя из этих преимуществ и того факта, что идея электронных записей существует уже много десятилетий, можно подумать, что EMR используются абсолютно везде. Однако это не совсем так. К примеру, в США EMR используется только в 17% клиник.

История EMR

В конце 1960-х годов был разработан язык программирования, называемый Мульти-программная система Общеклинической больницы Массачусетса — Massachusetts General Hospital Utility Multi-Programming System(MUMPS) для использования в системах здравоохранения. Он не получил широкого распространения до 1970-х годов, когда начал использоваться для создания многих клинических программ. И по сей день многие старые системы работаю с ПО на базе MUMPS. Несмотря на свое изначально медицинское направление, MUMPS широко используется и в других отраслях, требующих большого числа одновременных подключений к базе данных (банки, фондовые биржи, туристические агенства).

В 1978 году Джозеф (Тед) О'Нил и Марти Джонсон вместе со своей командой разработали Fileman, используя язык MUMPS. Fileman представлял собой набор обобщенных процедур, специально упрощенных для пользователей не разбирающихся в MUMPS и в программировании в целом. В период с поздних 1970-ых по ранние 80-е на базе Fileman было спроектирована множество утилит. Позднее министерство по делам ветеранов США начало использовать Fileman как свою официальную медицинскую программу.

В 1981 году во Флориде Микки Сингер основал компанию программного обеспечения под названием Personalized Programming Inc., которая стала одной из многих, сформировавших в дальнейшем компанию Medical Manager Inc. Она предоставляла клиникам и частным практикующим врачам программное обеспечение, популярность которого была настолько велика, что уже к 1997 году более 24000 клиник и 110000 практикующих врачей пользовались им. Однако далее следовало лишь падение. Взамен Medical Manager Inc. пришла Open Public Public License (GPL), предоставляющая своим пользователям исходный код программного обеспечения, давая им возможность проводить необходимую кастомизацию.

На данный момент количество компаний, предоставляющих решения для EMR, варьируется от 250 до 500. Некоторые их них сосредоточены на малых системах, вроде выписки рецептов или истории болезни. Другие же предлагают пакетные решения.

Преимущества EMR

Основными пользователями EMR являются врачи и другой мед.персонал. Стандартная EMR дает им доступ к электронной версии медицинской истории пациента, которая ранее, в течении многих лет, хранилась на бумаге. Так зачем менять то, что так долго работало?

  • Ответ прост — ошибки врачей. Одной из основных проблем медицины во все эпохи были яторогенные осложнения состояния пациента, то есть те, что были ненамеренно вызваны действиями мед. персонала. К примеру, назначение не того препарата или же назначение слишком большой или малой его дозы. Электронные медицинские записи в сопряжении с системами поддержки принятия клинических решений способны обеспечить автоматические проверки, предотвращающие подобные ошибки.
  • Другое преимущество уже упоминалось в данной статье — это доступ к базе из любой точки мира. Это позволяет лучше координировать работу различных специалистов, сокращая время на рассмотрение анамнеза и принятие решения. А время, как мы знаем, очень часто является критическим фактором в борьбе за жизнь и здоровье пациента.
  • Для облегчения работы врачей и снижения временных затрат пациента на их посещение необходима также и координация EMR с другими системами, например лабораторными. Ранее пациент приходил к врачу, тот назначал ему определенные тесты / анализы, пациент шел в лабораторию, передавал назначение, делал тесты и результаты опять же записывались на бумагу и должны были быть переданы врачу. Это длительный процесс, в течении которого не редки ошибки и путаница. Начнем с классики — почерк врача может быть неразборчив, могут быть проведены не те тесты, результаты могут быть утеряны или перепутаны. Если же использовать взаимосвязь двух электронных систем, то направление и результаты будут помещены в электронную папку пациента, к которой имеется доступ у врача.

Несмотря на весьма внушительные преимущества EMR, их скорость распространение не впечатляет. Сейчас мы рассмотрим почему.

  • Многие современные EMR несовместимы. Дело в том, что у каждой клиники имеется своя база, которая никак не работает с базой других клиник. Поскольку облегчать процесс перехода пациента к конкурентам — не выгодно, сами понимаете.
  • Большим вопросом всегда остается конфиденциальность информации. Как сделать так, чтобы лишь нужная информация попадала в руки лишь нужных людей? Как обезопасить EMR от взломов? На эти вопросы многие не хотят отвечать, просто отказываясь от внедрения электронной системы.
  • Для того, чтобы EMR была полноценной, в ней должна быть история пациентов, а не только свежие данные. Соответственно, эту историю необходимо внести в базу, а это много ручной работы, которая требует не только времени, но и финансовых затрат. На это многие клиники не готовы.
  • Сейчас формат в котором хранятся данные один, а что если в будущем он измениться? Можно ли будет получить доступ к данным? Весьма странные вопросы, согласен. Но они отпугивают клиники от внедрения EMR.

В этом разделе мы обсудим историю систем поддержки принятия клинических решений (CDSS), текущие исследования, коммерческую направленность и потенциально интересные области для будущих исследований.


История CDSS

    1960 год — пациент-компьютер

Как мы уже поняли, компьютеризация медицинской сферы крайне важна и должна развиваться. Этот процесс сталкивается с множеством трудностей. Не все хотят тратиться на внедрение новых систем, обучение персонала. Кто-то боится юридических последствий, в случае обмена данными между клиниками. Также стоит вопрос и о конфедициальности информации. Все это — факторы, сдерживающие прогресс. Но есть мнения, утверждающие, что это не стоит форсировать, поскольку могут возникнуть непредвиденные последствия.

Деперсонализация


Конечно, все больше и больше полагаясь на современные технологии, мы забываем о старых добрых методах. Но, если компьютеризация здравоохранения снизит число смертей среди больных, я готов отказаться от персонализации, как таковой.

Ошибки, связанные с препаратами

Некоторые врачи утверждают, что электронные системы, хоть и помогают уменьшить число ошибок, но не избавляют от них полностью. Все потому, что человек, как источник ошибки, управляет этой электронной системой.

Это неоспоримо, но проблема все равно остается в человеческом факторе, а не в системе, как таковой. Для решения данного затруднения необходимо более внимательно отнестись к обучению мед. персонала. Если персонал не умеет пользоваться системой, то, конечно, все ее преимущества теряют свой смысл. Пока в отрасли есть хоть один человек, будут и ошибки.

Неверная информация в Интернете

В сети можно найти множество статей о различных заболеваниях, препаратах и т.д. Многие из нас пользовались подобным контентом для проведения самодиагностики и даже самолечения. Конечно, информация это сила, но только тогда, когда она верна.


Очень много медицинской информации во всемирной паутине содержит ошибки. А это может привести к тому, что пациент начнет неправильное лечение либо просто проигнорирует потенциально опасное заболевание. Эту проблему можно решить лишь внедрением стандартов достоверности информации и методов ее проверки и контроля публикаций.

Поиск нужной информации

Хранение всей истории пациента в одной электронной папке позволяет врачу быстро получить к ней доступ. Но так ли быстро он сможет найти то, что ему нужно в данном конкретном случае? Огромный поток информации, который необходимо не просто просмотреть, но и проанализировать, может задержать формирование анамнеза и установление диагноза.

Мир не стоит на месте. Компьютерные технологии все глубже врезаются в другие сферы нашей жизни, привнося много нового, хорошего или плохого, порой сложно сказать. Но прогресс нельзя остановить, опираясь лишь на страх чего-то нового. Это касается и медицины. Многие болезни остались бы неизлечимыми, если бы какие-то смельчаки не решили лечить их по-другом, не так как раньше. Главное помнить, что человек создает технологию, человек ее совершенствует и только он может нести за нее ответственность.

На правах рекламы.Акция! Только сейчас получите до 4-х месяцев бесплатного пользования VPS (KVM) c выделенными накопителями в Нидерландах и США (конфигурации от VPS (KVM) — E5-2650v4 (6 Cores) / 10GB DDR4 / 240GB SSD или 4TB HDD / 1Gbps 10TB — $29 / месяц и выше, доступны варианты с RAID1 и RAID10), полноценным аналогом выделенных серверов, при заказе на срок 1-12 месяцев, условия акции здесь, cуществующие абоненты могут получить 2 месяца бонусом!


Тема: Применение компьютерных технологий в медицине.

условиях развития современного общества информационные технологии глубоко проникают в жизнь людей. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности.

Сейчас трудно найти сферу, в которой не используются информационные технологии.

каждым годом информационные технологии все прочнее входят во все сферы деятельности (от автобизнеса до строительства). Стремительно набирая темпы в последние десятилетия, прогресс на фоне повсеместного внедрения компьютерных информационных технологий (IT-технологий) охватил и медицину. Сегодня информационные системы в медицине используются всё шире: при создании серьёзной клиники без IT-составляющей уже не обойтись. Особенно актуально их внедрение в практику деятельности коммерческих клиник и медицинских центров, ведь помимо пользы для медперсонала и пациентов, информационные системы выгодны с чисто экономической точки зрения.

И далеко не случайно, намереваясь финансировать медучреждения либо даже их сети, инвесторы прежде всего закладывают в инвестиционный бюджет оснащённость клиник современными IT системами. Применяемые в медицинских клиниках и центрах информационные технологии дают следующие преимущества:

Делают работу медицинского персонала более эффективной и удобной.

Позволяют сэкономить значительные денежные средства.

Компьютеры в медицине

Компьютеры уже давно используются в медицине. Многие современные методы диагностики базируются на компьютерных технологиях. Такие способы обследования, как УЗИ или компьютерная томография, вообще немыслимы без компьютера. Но и в более "старые" методы обследования и диагностики компьютеры вторгаются все более активно. Кардиограмма и анализы крови, исследование глазного дна и состояния зубов. - трудно сейчас найти область медицины, в которой компьютеры не применялись бы все более и более активно.

Но только диагностикой применение компьютеров в медицине уже не ограничивается. Они все активнее начинают использоваться и при лечении различных заболеваний - начиная от составления оптимального плана лечения и до управления различным медицинским оборудованием во время проведения процедур.

Кроме того, сейчас компьютеры помогают больным людям и в повседневной жизни. Уже создано огромное количество устройств, предназначенных для больных и немощных людей, которые управляются компьютерами.

Компьютер в стоматологии

Сегодня в России компьютер есть в каждой стоматологической клинике. Чаще всего он

работает как помощник бухгалтера, а не служит для автоматизации делопроизводства

всей стоматологической клиники

Наиболее широко распространены на стоматологическом рынке компьютерных программ

системы цифровой (дигитальной) рентгенографии, часто называемые радиовидеографами. Системы позволяют детально изучить различные фрагменты снимка зуба и пародонта, увеличить или уменьшить размеры и контрастность изображений,

сохранить всю информацию в базе данных и перенести ее при необходимости на бумагу с помощью принтера. Наиболее известные программы: Gendex, Trophy. Недостатком данной группы программ является дефицит информации о пациенте.

Следующая группа - системы управления стоматологическими клиниками. Таких программ достаточно много. Они применяются в Воронеже, Москве, Санкт-Петербурге и даже в Белгороде. Одним из недостатков является их незащищенность от несанкционированного доступа к информации.

Электронный документооборот модернизирует обмен информации внутри стоматологической клиники. Различная степень доступа врачей и пациентов, обязательное использование системы шифрования для кодирования диагнозов, результатов обследования, терапевтических, хирургических, ортодонтических и др. процедур дает возможность надежно защищать любую информацию.

Функциональные исследования

Такие важные методы обследования, как КТ, УЗИ, МРТ, ЭКГ и другие невозможны без использования компьютера. Но и в классические способы диагностики вводится использование компьютеров. Сейчас сложно представить области медицины, в которых не используются компьютеры. Анализы крови, снимки органов и костей, кардиограмма, гастроэндоскопия, сшивающие приборы и многое другое стало помощником в медицинском обследовании и лечении.

настоящее время ультрозвуковая диагностика применяется в медицине повсеместно,

являясь необходимым методом исследования во многих разделах медицины, несмотря на наличее более современных методов.

Ультразвук – это волны высокой частоты, применяющиеся для изучения внутренних органов. Получение изображения в режиме реального времени дает возможность отслеживать ряд динамических процессов, происходящих в организме, таких как движение крови по сосудам и состояния плода.

Метод исследования биоэлектрической активности сердца, получивший название электрокардиография, является сегодня незаменимым в диагностике нарушений ритма и проводимости, ишемической болезни сердца и других заболеваний, гипертрофии миокарда предсердий и желудочков.

Метод основан на регистрации электрических потенциалов, возникающих в сердце.

Метод изучения состояния организма человека, при котором производится последовательное, очень частое измерение тонких слоев внутренних органов. Эти данные записываются в компьютер, который на их основе выстраивает полное объемное изображение. Физические основы измерений разнообразны: рентгеновские, магнитные, ультразвуковые, ядерные и пр.

Совокупность устройств, обеспечивающих измерения, сканирование, и компьютер, создает полную картину, называются томографом.

Томография является одним из основных примеров внедрения новых информационных технологий в медицине. Создание этого метода без мощных компьютеров было бы невозможным.

Исследование внутренней структуры объектов, которые проецируются при помощи рентгеновских лучей на специальную плёнку или бумагу. Наиболее часто термин относится к медицинскому неинвазивному исследованию, основанному на получении суммарного проекционного изображения анатомических структур организма посредством прохождения через них рентгеновских лучей и регистрации степени ослабления рентгеновского излучения.

История рентгенологии начинается в 1895 году, когда Вильгельм Конрад Рентген впервые зарегистрировал затемнение фотопластинки под действием рентгеновского излучения. Им же было обнаружено, что при прохождении рентгеновских лучей через ткани кисти на

фотопластинке формируется изображение костного скелета. Это открытие стало первым в мире методом медицинской визуализации, до этого нельзя было прижизненно, не инвазивно получить изображение органов и тканей. Рентгенография очень быстро распространилась по всему миру. В 1896 году в России был сделан первый рентгеновский снимок.

1918 году в России была создана первая рентгенологическая клиника. В 1921 году в Петрограде был открыт первый рентген стоматологический кабинет.

настоящее время рентгенография остается основным методом диагностики поражений костно-суставной системы. Важную роль играет при обследовании легких, особенно в качестве скринингового метода. Методы контрастной рентгенографии позволяют оценить состояние внутреннего рельефа полых органов, распространённость свищевых ходов и др. 13 июля 2018 года новозеландскими учёными в Женеве был представлен рентгеновский аппарат, который способен делать трёхмерные цветные снимки.

Компьютерные технологии в протезировании

Компьютерная визуализация позволяет хирургу видеть картинку сустава. Данная система визуализации тканей сустава использует инфракрасные лучи. Информация, полученная с их помощью, обрабатывается на компьютере и строится изображение сустава и положение хирургического инструмента. Эта информация помогает хирургу ориентировать инструментарий и компоненты протеза при использовании маленьких разрезов.

Большинство ортопедов применяют при протезировании тазобедренного сустава компьютерные системы, что позволяет им добиться применения маленьких разрезов. Хирургия малых разрезов способствует быстрому заживлению, меньшей кровопотере и сопровождается меньшими болями в послеоперационном периоде.

Компьютерные технологии позволяют добиться высокой точности при сопоставлении костей суставов, что невозможно сделать невооруженным взглядом.

Компьютерные технологии в лучевой терапии

Лучевая терапия опухолей - один из наиболее известных терминов онкологии, подразумевающий использование ионизирующего излучения для разрушения опухолевых клеток.

Изначально лучевое лечение использовало принцип большей устойчивости здоровых клеток к воздействию радиации, в сравнении со злокачественными. При этом в зону расположения опухоли подавали высокую дозу излучения (за 20-30 сеансов), что приводило к разрушению ДНК клеток опухоли.

Развитие способов воздействия ионизирующего излучения на опухоль привело к изобретению новых направлений в радиационной онкологии. Например, радиохирургии (Гамма-Нож, КиберНож), при которой высокая доза радиации однократно (либо за несколько сеансов) подается точно в границы новообразования и приводит к биологическому разрушению его клеток.

Эволюция медицинской науки и технологий лечения рака привела к тому, что классификация видов лучевого лечения (радиотерапии) довольно сложна. И пациенту, столкнувшемуся с лечением онкозаболевания, сложно самостоятельно определить, насколько подходит в его случае тип лучевого лечения опухолей, предложенный в конкретном онкоцентре России и зарубежья.

Наивысшего технического уровня достигло лучевое лечение, при котором доза излучения доставляется бесконтактно, с небольшого расстояния. Дистанционная лучевая терапия проводится как с использованием ионизирующего излучения радиоактивных радиоизотопов (современная медицина использует дистанционное излучение изотопов только при радиохирургии на Гамма-Ноже, хотя в некоторых онкоцентрах России все еще можно встретить старые аппараты для радиотерапии работающие на изотопе кобальта), так и с применением более точных и безопасных ускорителей элементарных частиц (линейный ускоритель или синхроциклотрон при протонной терапии).



Так выглядят современные аппараты для дистанционного лучевого лечения опухолей (слева направо, сверху вниз): Линейный ускоритель, Гамма-нож, КиберНож, Протонная терапия

Компьютерные технологии в офтальмологии

Офтальмология – это узкий раздел медицины, изучающий строение, анатомию и болезни глаза. Как и всякая область знаний, медицина активно развивается и пользуется продуктами технологического прогресса.

Поражает размах и качество применения новых технологий в офтальмологии сегодня: микроэлектронные приборы для лечения кажутся почти фантастическими. Научные открытия и труды химиков, физиков и биологов в совокупности дают широкий спектр возможностей, который позволяет врачам покорять новые горизонты в лечении глазных заболеваний.

Развитие технологий и научных достижений на протяжении последних 20 лет привело к новым возможностям в офтальмологии. Главным достижением, пожалуй, является лазерная коррекция зрения.

Телемедицина

Технология телемедицины работает в двух направлениях:

информацией между врачом и пациентом.

это дистанционная диагностика с помощью специальных приборов (например, измерение и контроль сердечных ритмов) и дистанционные консультации пациентов.

При этом клиент может связаться с врачом по телефону, скайпу либо же через мессенджеры или специальные приложения. Такой вид консультаций не может заменить личный визит к врачу, но делает медицинские услуги более доступными.

Электронный документооборот

Электронный документооборот — совокупность нормативно-методических документов, стандартов и технологий подготовки, хранения, поиска и обработки ЭД, а также их передачи на физических носителях и по каналам связи, обеспечивающая конфиденциальность содержащихся в них сведений и их юридическую значимость.

Для медицинской организации основным первичным внутренним ЭД является электронная медицинская карта (ЭМК), или история болезни (ЭИБ) пациента, которая в общем случае представляются в виде определенной совокупности персональных медицинских записей в базе данных (БД). К внешним ЭД относятся переписка, различного рода отчетность, реестры, выписки из медицинских документов и т.п. К электронным документам особого вида следует отнести нормативы, классификаторы и справочники, используемые в здравоохранении.

Электронная история болезни

Внедрение в клиническую практику электронной истории болезни позволяет устранить многие недостатки бумажного медицинского документооборота, связанные с трудоемкостью заполнения, архивации, поиска документации, создать удобную навигацию по истории болезни, объединить в едином информационном пространстве все службы современного медицинского учреждения с выходом на внешние информационные системы.

Электронная история болезни устраняет многие недостатки бумажного документооборота и обладает рядом существенных преимуществ: четкой формализацией записей; сокращением времени оформления медицинских документов в 2,5—10 раз; сокращением рукописной работы, что снимает все вопросы, связанные с неразборчивым почерком медицинского персонала; персонификацией записи медицинских специалистов;

мгновенной доступностью медицинских данных для персонала; новыми способами защиты от подделок и подмены данных в истории болезни.

Идеология стандарта ЭИБ позволяет создать «Единое хранилище персональных записей о (электронный архив) — пожизненный электр банк, в котором содержится личная медицинская информация пациента. Электронный архив значительно уменьшает время поиска персональных медицинских данных, сокращает часть медицинского персонала, занятого архивированием бумажных носителей, и освобождает площади, занятые бумажными картотеками. Персональные медицинские данные электронного архива могут лечь в основу создания персональных медицинских электронных паспортов, которые необходимы для оперативного доступа к медицинским данным пациента при экстренной медицинской помощи, например при дорожно-транспортных происшествиях.

Одной из главных задач стандарта ЭИБ является создание основ для формирования единого информационного пространства медицинского учреждения

Сегодня все большее внимание уделяется внедрению современных информационных технологий в больницах и поликлиниках, поскольку это позволяет вывести их работу на качественно новый уровень. Применение информационных технологий в медицине позволяет:

повысить качество оказания медицинских услуг и удовлетворенность пациентов;

снизить нелечебную нагрузку на врачей-специалистов;

улучшить доступность медицинской информации и скорость ее предоставления медицинскому персоналу;

повысить эффективность работы служб обеспечения;

снизить процент случайных потерь и необоснованных трат медицинских материалов,

оборудования и инвентаря;

совершенствовать внутренний медицинский учет;

оптимизировать процесс обязательной отчетности перед вышестоящими организациями,

представлять результаты работы поликлиники для руководства в реальном времени;

повысить лояльность врачей и медицинского персонала.

Компьютеры играют важную роль в медицинских исследованиях. Они позволяют установить, как влияет загрязнение воздуха на заболеваемость населения данного района.

Кроме того, с их помощью можно изучать влияние ударов на различные части тела, в частности последствия удара при автомобильной катастрофе для черепа и позвоночника человека.

Банки медицинских данных позволяют медикам быть в курсе последних научных и практических достижений.

Компьютеры используются для создания карт, показывающих скорость распространения эпидемий.

Компьютеры хранят в своей памяти истории болезни пациентов, что освобождает врачей от бумажной работы, на которую уходит много времени, и позволяет больше времени уделять самим больным.

Сегодня информационные системы в медицине используются всё шире. Поэтому медицина XXI века не может существовать без компьютера и ИКТ.


-75%

Внедрение информационных технологий в повседневную практику здравоохранения ведет за собой коренные изменения в организации труда многих медиков. Каждый этап развития системы здравоохранения и медицины связан с появлением новых интегрированных областей знаний, которые несут в себе общенаучные основы: медицинская кибернетика, экономика, здравоохранение, менеджмент и маркетинг и т. Информатизация и бурное развитие информационных процессов в системе здравоохранения в 70-х годах XX века сначала за рубежом, а затем и в нашей стране привели к становлению самостоятельной науки — медицинской информатики.

Медицинская информатика (МИ) — это отрасль науки, которая быстро развивается. Она ориентирована на биомедицинскую информацию (данные и знания, их хранение, передачу и обработку, использование для решения проблем или принятия решений). Она изучает закономерности и методы получения, хранения, обработки и использования знаний в медицинской науке и практике с целью расширения горизонтов и возможностей познания, профилактики и лечения болезней, охраны и улучшения здоровья человека. Это научная дисциплина, содержит систему знаний об информационных процессах в медицине, системе здравоохранения и смежных дисциплинах, обосновывает и определяет способы и средства рациональной организации и использования информационных ресурсов в целях охраны здоровья населения.

Медицинская информатика сегодня — это целый комплекс научных направлений, отличающихся друг от друга как взглядом, так и теми методами, которые в них используются. И сегодня продолжается диспут о том, какой метод лучше для медицины — теоретический или экспериментальный: это здоровое противопоставление взглядов эмпирического исследования и результатов научных исследований. Теоретические предположения были преимущественно основой рациональной практической медицины. Если когда-то медицина считалась искусством, к сейчас все больше обращаются к ее теоретического обоснования, предоставляется преимущество развития формальных теоретических методов, которые внедрялись в медицинскую практику. Вместе с тем развиваются и медицинские знания, вплоть до молекулярного и генетического уровней.

Экспериментальная наука не всегда может ответить на вопрос о природе заболевания и методы его лечения. Медицинский экспериментальный поиск происходит в лабораториях и клиниках. Одним из основных методов исследования в медицинской информатике является математическое моделирование с использованием компьютеров — это универсальная методология, основной инструмент математизации всех медицинских знаний.

Медицинская информатика стала необходимой с тех пор, когда начался переход от разрозненного использования компьютера в целостных информационных технологий. Как и все научные дисциплины, медицинская информатика имеет предмет изучения — информационные процессы (при которых происходит сбор, обработка, накопление, хранение, поиск, распространение и использование информации), связанные с медико-биологическими, клиническими и профилактическими проблемами медицины.

Задачами медицинской информатики являются:

  • исследования информационных процессов в медицине;
  • разработка новых информационных технологий медицины;
  • решения научных проблем создания и внедрения вычислительной техники в медицине.

Роль медицинской информатики в научно-практическом обосновании и использовании современных технологий заключается в нахождении новых решений на стыке формального и логического подходов с эмпирическим описательным характером медицины. Основой основ при работе с информацией является мышление и логический анализ. Именно они лежат в основе клинического диагноза — фиксированного на информационном носителе заключения врача о локализации, характер и стадию заболевания, которое обосновывает оптимальный выбор лечебной тактики (управляющей действия) в пределах имеющихся медицинских ресурсов.

Врач-клиницист, в основном, работает с данными. Его задача в системе оказания медицинской помощи — получение и представление для дальнейшей работы персонифицированной информации о пациенте. В клиническом диагнозе врач фиксирует информацию как результат анализа и оценки сведений о биологических качества и индивидуальное здоровье пациента.

Медицинская информация и ее виды

Медицинская информация отражает данные и результаты медицинских научных исследований и медицинской практики. С одной стороны, она отражает процессы и явления в системе здравоохранения (то есть средством, используемым врачами во время медицинской практики), с другой стороны, она может быть результатом работы информационно-вычислительных центров, специалистов оргметодотдела т.

Внедрение вычислительной техники обострило задачу классификации медицинской информации. В начале работы нужно определить уровень формализации материала, предназначенного для ввода в компьютер, а затем установить признаки, по которым будет проводиться классификация. Такими признаками могут быть:

  • этап образования информации (исходная, промежуточная, конечная);
  • условия хранения и использования (постоянная, переменная, условно постоянная)
  • периодичность использования (оперативная, текущая, перспективная)
  • функциональное содержание (клиническая, экспериментальная, экономическая, кадровая, финансовая, организационная и т.д.).

Классический пример формализованного документа — формализованная история болезни, используется во многих информационных системах.

Информация, данные, знания

Во время информационного процесса данные преобразуются из одного вида в другой с помощью различных методов. Обработка данных содержит в себе много операций, среди которых можно выделить следующие:

В соответствии с методом регистрации данные могут храниться и транспортироваться на носителях различных видов. В вычислительной технике в роли носителей информации выступают различные магнитные диски, ленты, оптические диски и т. Полный перечень операций с данными намного шире, поэтому можно сделать вывод: обработки информации имеет высокую трудоемкость и требует автоматизации.

Типы медицинских знаний

Существуют несколько аспектов по классификации и структуризации знаний. С одной точки зрения знания можно делить на высказанные и личные.

Высказанные знания — теории, основанные на дисциплинах и концепциях, полученных от систематических знаний — традиционных средств, с помощью которых высшее образование строит свои планы и программы Выработанные в этих теорий практические принципы, основанные на прикладной сфере профессиональной деятельности с конкретными примерами испытанных и проверенных случаев. Большинство высказанных знаний общедоступные или закодированы.

Личные знания. В отличие от систематизированных знаний, которые находятся в опубликованной форме, личные знания индивидуально приобретаются опытом. Большая часть этих знаний считается привычным и не поддается дальнейшему анализу как владельцем, так и другим лицом.

Источником данных, учитываемых врачом является именно пациент. В процессе интерпретации или обсуждения получается информация, которая влияет на принятие врачом дальнейшего решения.

Информационный медицинский документ

Большая часть медицинских данных фиксируется в различных документах (например, история болезни, направленные на исследование, результаты анализа, рецепт, отчет о деятельности медицинского учреждения, реферат статьи медицинского журнала и т.д.). Обычные медицинские документы не пригодны или мало пригодны для автоматизированной обработки.

Медицинский документ, как правило, имеет сложную структуру: много разделов, пунктов, таблиц и т. Они создаются в виде стандартизированных историй болезней, карт этапных эпикризов, карт по отдельным видам исследований, паспортов учреждений здравоохранения. Все эти документы имеют определенную форму, то есть внутреннюю структуру, отражающую строение, связь и способ взаимодействия частей элементов объекта или явления, информация о которых фиксируется в данном документе. Специалист должен уметь заполнить соответствующие стандартные формы медицинских документов.

Как правило, в медицинских документах фиксируются такие данные, как:

  • паспортно-демографические — сведения о фамилии, имени, отчества больного, год и место рождения, о характере работы, о родственниках;
  • данные о структуре и функции медицинских учреждений, отражающие основной процесс медицинского учреждения; для лечебного учреждения это, например, данные о возможных в данном учреждении лабораторных и инструментальных методов исследований;
  • статистически управленческие данные, составляющие основу для дальнейших расчетов показателей государственной медицинской статистики (например, структура учреждения) и показателей, характеризующих работу врача или отделения и учреждения в целом; сюда относятся показатели точности постановления диагнозов (соответственно классификации ВОЗ), продолжительности пребывания в стационаре, степени восстановления работоспособности, расхождения в диагнозах;
  • плановые показатели, данные о хозяйственной и бухгалтерскую деятельность медицинских учреждений.

Компьютерные бланки медицинских информационных документов обычно содержат две части: объяснение и смысл. В часть объяснения включается описательная и объяснительная информация, что облегчает заполнение документа, но не вводится в ПК. В содержательной части включаются необходимые данные, коды, служебные знаки, отведенные места для внесения необходимых записей. Для удобства работы обе части в документе разделены. Документ заполняется врачом.

Информационные документы как носители информации, содержащие исходные данные в упорядоченном виде и пригодны для обычного использования и для подготовки данных к вводу в ПК, составляют основу информационной базы различных компьютерных систем. Информационный документ отличается от обычного медицинского документа тем, что в нем сочетаются две функции: функция обычного документа и функция сбора и подготовки данных для ввода в компьютер. Таким документам присущи несомненные преимущества: сокращается время подготовки исходной информации, исключается дополнительная работа по ее переписывания; уменьшается количество ошибочных записей; упрощается контроль за прохождением документа в процессе его обработки.

Одним из важнейших условий, обеспечивающих эффективность обработки медицинской информации, является ее унификация. Статистические материалы используются для формирования оперативно-справочной и отчетной информации, пригодна для принятия решений, чем первичные данные. Данные, сгруппированы и представлены в табличной форме, является лучшим материалом для выявления определенных тенденций и закономерностей.

Медицинская информация может быть классифицирована в соответствии с дисциплинарными и проблемных свойств, к объектной признаки (лечебно-профилактическое учреждение, материально-техническая база, лечебные средства и т.д.), к видам информации (экономическая, научная, нормативно-правовая и т.д.), к ее характеру (первичная, второстепенная, оперативная, обзорно-аналитическая, экспертная, прогноз и т.д.).

Читайте также: