Холодильные машины доклад по физике

Обновлено: 04.07.2024

Х олодильная машина, устройство, служащее для отвода теплоты от охлаждаемого тела при температуре более низкой, чем температура окружающей среды. Холодильная машина используются для получения температур от 10 °С до -150 °С. Область более низких температур относится к криогенной технике. Холодильная машины работают по принципу теплового насоса - отнимают теплоту от охлаждаемого тела и с затратой энергии (механической, тепловой и т.д.) передают её охлаждающей среде (обычно воде или окружающему воздуху), имеющей более высокую температуру, чем охлаждаемое тело. Работа холодильная машина характеризуется их холодопроизводительностью, которая для современных машин лежит в пределах от нескольких сотен вт до нескольких Мвт.

В холодильной технике находят применение несколько систем холодильных машин - парокомпрессионные, абсорбционные, пароэжекторные и воздушно-расширительные, работа которых основана на том, что рабочее тело (холодильный агент) за счёт затраты внешней работы совершает обратный круговой термодинамический процесс (холодильный цикл). В парокомпрессионных, абсорбционных и пароэжекторных холодильных машинах для получения эффекта охлаждения используют кипение низкокипящих жидкостей. В воздушно-расширительных холодильных машинах охлаждение достигается за счёт расширения сжатого воздуха в детандере.

Первые холодильная машина появились в середине 19 в. Одна из старейших холодильных машин - абсорбционная. Её изобретение и конструктивное оформление связано с именами Дж. Лесли (Великобритания, 1810), Ф. Карре (Франция, 1850) и Ф. Виндхаузена (Германия, 1878). Первая парокомпрессионная машина, работавшая на эфире, построена Дж. Перкинсом (Великобритания, 1834). Позднее были созданы аналогичные машины с использованием в качестве хладагента метилового эфира и сернистого ангидрида. В 1874 К. Линде (Германия) построил аммиачную парокомпрессионную холодильную машину, которая положила начало холодильному машиностроению.

Парокомпрессионные холодильные машины - наиболее распространённые и универсальные. Основными элементами машин данного типа являются испаритель, холодильный компрессор, конденсатор и терморегулирующий (дроссельный) вентиль - ТРВ, которые соединены трубопроводом, снабженным запорной, регулирующей и предохранительной арматурой. Ко всем элементам холодильной машины предъявляется требование высокой герметичности. В зависимости от вида холодильного компрессора парокомпрессионные машины подразделяются на поршневые, турбокомпрессорные, ротационные и винтовые.

В парокомпрессионной холодильной машине осуществляется замкнутый цикл циркуляции хладагента. В испарителе хладагент кипит (испаряется) при пониженном давлении pk и низкой температуре. Необходимая для кипения теплота отнимается от охлаждаемого тела, вследствие чего его температура понижается (вплоть до температуры кипения хладагента). Образовавшийся пар отсасывается компрессором, сжимается в нём до давления конденсации pk и подаётся в конденсатор, где охлаждается водой или воздухом. Вследствие отвода теплоты от пара он конденсируется. Полученный жидкий хладагент через ТРВ, в котором происходит снижение его температуры и давления, возвращается в испаритель для повторного испарения, замыкая таким образом цикл работы машины. Для повышения экономической эффективности холодильной машины (снижения затрат энергии на единицу отнятого от охлаждаемого тела количества теплоты) иногда перегревают пар, всасываемый компрессором, и переохлаждают жидкость перед дросселированием. По этой же причине для получения температур ниже -30 °С используют многоступенчатые или каскадные холодильные машины.

В многоступенчатых холодильных машин сжатие пара производится последовательно в несколько ступеней с охлаждением его между отдельными ступенями. При этом в двухступенчатых холодильных машинах получают температуру кипения хладагента до -80 °С.

В каскадных холодильных машинах, представляющих собой несколько последовательно включенных холодильных машин, которые работают на различных, наиболее подходящих по своим термодинамическим свойствам для заданных температурных условий хладагентах, получают температуру кипения до -150 °С.

А бсорбционная холодильная машина состоит из кипятильника, конденсатора, испарителя, абсорбера, насоса и ТРВ. Рабочим веществом в абсорбционных холодильных машин служат растворы двух компонентов (бинарные растворы) с различными температурами кипения при одинаковом давлении. Компонент, кипящий при более низкой температуре, выполняет функцию хладагента; второй служит абсорбентом (поглотителем). В области температур от 0 до -45 °С применяются машины, где рабочим веществом служит водный раствор аммиака (хладагент - аммиак). При температурах охлаждения выше 0 °С преимущественно используют абсорбционные машины, работающие на водном растворе бромида лития (хладагент - вода). В испарителе абсорбционной холодильной машины происходит испарение хладагента за счёт теплоты, отнимаемой от охлаждаемого тела. Образующиеся при этом пары поглощаются в абсорбере.

Полученный концентрированный раствор перекачивается насосом в кипятильник, где за счёт подвода тепловой энергии от внешнего источника из него выпаривается хладагент, а оставшийся раствор вновь возвращается в абсорбер. Что касается газообразного хладагента, то он из кипятильника направляется в конденсатор, конденсируется там и затем поступает через ТРВ в испаритель на повторное испарение. Применение абсорбционных машин весьма выгодно на предприятиях, где имеются вторичные энергоресурсы (отработанный пар, горячая вода, отходящие газы промышленных печей и т.д.). Абсорбционные Х. м. изготавливают одно- или двухступенчатыми.

Пароэжекторная Х. м. состоит из эжектора, испарителя, конденсатора, насоса и ТРВ. Хладагентом служит вода, в качестве источника энергии используется пар давлением 0,3-1 Мн/м2 (3-10 кгс/см2), который поступает в сопло эжектора, где расширяется. В результате в эжекторе и, как следствие, в испарителе машины создаётся пониженное давление, которому соответствует температура кипения воды несколько выше 0 °С (обычно порядка 5 °С). В испарителе за счёт частичного испарения происходит охлаждение подаваемой потребителю холода воды. Отсосанный из испарителя пар, а также рабочий пар эжектора поступает в конденсатор, где переходит в жидкое состояние, отдавая теплоту охлаждающей среде. Часть воды из конденсатора подаётся в испаритель для пополнения убыли охлаждаемой воды.

Воздушно-расширительные холодильные машины относятся к классу холодильно-газовых машин. Хладагентом служит воздух. В области температур примерно до -80 °С экономическая эффективность воздушных машин ниже, чем парокомпрессионных. Более экономичными являются регенеративные воздушные холодильные машины, в которых воздух перед расширением охлаждается либо в противоточном теплообменнике, либо в теплообменнике-регенераторе. В зависимости от давления используемого сжатого воздуха воздушные холодильные машины подразделяются на машины высокого и низкого давления. Различают воздушные машины, работающие по замкнутому и разомкнутому циклу.

Похожие страницы:

Проектирование цикла холодильной машины

. ПОЛУЧЕНИЕ ХОЛОДИЛЬНОГО ЦИКЛА 2.1 Постановка задачи Расчет холодильного цикла одноступенчатой холодильной машины. Используется . используемых в современных холодильных установках. Выполнен расчет холодильной машины с заданной холодопроизводительностью. .

Расчет цикла одноступенчатой паровой холодильной машины, определение параметров хладагента

. /кг), Теоретический холодильный коэффициент:  = q0/qвн, =1110/ 360= 3,1 Холодильный коэффициент холодильной машины, что работает . При расчете рабочего режима холодильной машины и подбирая к ней холодильное оборудование, я освоил основу и принципы .

Тепловые двигатели. Холодильные машины. Цикл Карно и его КПД

. . Обход против часовой стрелки соответствует холодильной машине, когда некоторое количество теплоты отбирается . обратимой тепловой машиной. В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на .

Холодильные установки

. холодильной техники и холодильной технологии: Мещеряков Ф.Е.-М. 3. Якобсон В.Б. Малые холодильные машины. 4. Зеликовский И.Х., Каплан Л.Г.Малые холодильные машины и установки: Малые холодильные .

Холодильні установки на залізничному транспорті

. Мпа. У випадку порушення герметичності системи холодильної машини зарядка хладоном виробляється тільки . ітря (газу). Додавати спирт у холодильну машину забороняється. 6.Несправності холодильних установок і їхнє усунення .

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Холодильные машины Подготовили: учащиеся І курса политехнического лицея УВ.

Описание презентации по отдельным слайдам:

Холодильные машины Подготовили: учащиеся І курса политехнического лицея УВ.

Холодильные машины
Подготовили:
учащиеся І курса
политехнического лицея
УВК г. Курахово
Баглай Д., Дуков М.
Учитель Антикуз Е. В.

Понятие холодильной машиныХолодильная машина - устройство, служащее для отвод.

Понятие холодильной машины
Холодильная машина - устройство, служащее для отвода теплоты от охлаждаемого тела при температуре более низкой, чем температура окружающей среды. Холодильная машина используются для получения температур от 10 °С до —150 °С.
Область более низких температур относится к криогенной технике.

Принцип работы холодильных машинХолодильные машины работают по принципу тепло.

Принцип работы холодильных машин
Холодильные машины работают по принципу теплового насоса — отнимают теплоту от охлаждаемого тела и с затратой энергии (механической, тепловой и т.д.) передают её охлаждающей среде (обычно воде или окружающему воздуху), имеющей более высокую температуру, чем охлаждаемое тело.
Работа холодильных машин характеризуется их холодопроизводительностью, которая для современных машин лежит в пределах от нескольких сотен Вт до нескольких МВт.

В холодильной технике находят применение несколько систем парокомпрессионн.

В холодильной технике находят применение несколько систем
парокомпрессионные
абсорбционные
пароэжекторные
воздушно-расширительные

Их работа основана на том, что рабочее тело (холодильный агент) за счёт затра.

Их работа основана на том, что рабочее тело (холодильный агент) за счёт затраты внешней работы совершает обратный круговой термодинамический процесс (холодильный цикл).
В парокомпрессионных, абсорбционных и пароэжекторных холодильных машинах для получения эффекта охлаждения используют кипение низкокипящих жидкостей.
В воздушно-расширительных холодильных машинах охлаждение достигается за счёт расширения сжатого воздуха в детандере.

Из истории создания Первые холодильные машины появились в середине XIX в. Одн.

Из истории создания
Первые холодильные машины появились в середине XIX в. Одна из старейших холодильных машин — абсорбционная. Её изобретение и конструктивное оформление связано с именами Дж. Лесли (Великобритания, 1810), Ф. Карре (Франция, 1850) и Ф. Виндхаузена (Германия, 1878).
Первая парокомпрессионная машина, работавшая на эфире, построена Дж. Перкинсом (Великобритания, 1834).
Позднее были созданы аналогичные машины с использованием в качестве хладагента метилового эфира и сернистого ангидрида.
В 1874 К. Линде (Германия) построил аммиачную парокомпрессионную Холодильная машина, которая положила начало холодильному машиностроению.

Парокомпрессионные холодильные машины Парокомпрессионные холодильные машины —.

Парокомпрессионные холодильные машины
Парокомпрессионные холодильные машины — наиболее распространённые и универсальные холодильные машины.
Основными элементами машин данного типа являются испаритель, холодильный компрессор, конденсатор и терморегулирующий (дроссельный) вентиль — ТРВ, которые соединены трубопроводом, снабженным запорной, регулирующей и предохранительной арматурой. Ко всем элементам холодильной машины предъявляется требование высокой герметичности.
В зависимости от вида холодильного компрессора парокомпрессионные машины подразделяются на поршневые, турбокомпрессорные, ротационные и винтовые.

Схема парокомпрессионной холодильной машины 1 — испаритель; 2 — компрессор;.

Схема парокомпрессионной холодильной машины
1 — испаритель; 2 — компрессор; 3 — конденсатор; 4 — теплообменник; 5 — терморегулирующий вентиль.

Принцип действия парокомпрессионных ХМВ парокомпрессионной холодильной машине.

Принцип действия парокомпрессионных ХМ
В парокомпрессионной холодильной машине осуществляется замкнутый цикл циркуляции хладагента. В испарителе хладагент кипит (испаряется) при пониженном давлении и низкой температуре. Необходимая для кипения теплота отнимается от охлаждаемого тела, вследствие чего его температура понижается (вплоть до температуры кипения хладагента). Образовавшийся пар отсасывается компрессором, сжимается в нём до давления конденсации и подаётся в конденсатор, где охлаждается водой или воздухом. Вследствие отвода теплоты от пара он конденсируется. Полученный жидкий хладагент через ТРВ, в котором происходит снижение его температуры и давления, возвращается в испаритель для повторного испарения, замыкая таким образом цикл работы машины. Для повышения экономической эффективности холодильной машины (снижения затрат энергии на единицу отнятого от охлаждаемого тела количества теплоты) иногда перегревают пар, всасываемый компрессором, и переохлаждают жидкость перед дросселированием. По этой же причине для получения температур ниже —30 °С используют многоступенчатые или каскадные холодильные машины.

Абсорбционные холодильные машины Абсорбционная холодильная машина состоит из.

Абсорбционные холодильные машины
Абсорбционная холодильная машина состоит из кипятильника, конденсатора, испарителя, абсорбера, насоса и ТРВ.
Рабочим веществом в абсорбционных холодильных машинах служат растворы двух компонентов (бинарные растворы) с различными температурами кипения при одинаковом давлении. Компонент, кипящий при более низкой температуре, выполняет функцию хладагента; второй служит абсорбентом (поглотителем).
В области температур от 0 до —45 °С применяются машины, где рабочим веществом служит водный раствор аммиака (хладагент — аммиак). При температурах охлаждения выше 0 °С преимущественно используют абсорбционные машины, работающие на водном растворе бромида лития (хладагент — вода).
Применение абсорбционных машин весьма выгодно на предприятиях, где имеются вторичные энергоресурсы (отработанный пар, горячая вода, отходящие газы промышленных печей и т.д.).

Схема абсорбционной холодильной машины 1 — испаритель; 2 — абсорбер; 3 — на.

Схема абсорбционной холодильной машины
1 — испаритель;
2 — абсорбер;
3 — насос;
4 — терморегулирующий вентиль;
5 — кипятильник;
6 — конденсатор.

Принцип работы абсорбционных холодильных машин В испарителе абсорбционной хол.

Принцип работы абсорбционных холодильных машин
В испарителе абсорбционной холодильной машины происходит испарение хладагента за счёт теплоты, отнимаемой от охлаждаемого тела.
Образующиеся при этом пары поглощаются в абсорбере.
Полученный концентрированный раствор перекачивается насосом в кипятильник, где за счёт подвода тепловой энергии от внешнего источника из него выпаривается хладагент, а оставшийся раствор вновь возвращается в абсорбер.
Что касается газообразного хладагента, то он из кипятильника направляется в конденсатор, конденсируется там и затем поступает через ТРВ в испаритель на повторное испарение.

Пароэжекторные холодильные машины Состоит из эжектора, испарителя, конденсато.

Пароэжекторные холодильные машины
Состоит из эжектора, испарителя, конденсатора, насоса и ТРВ.
Хладагентом служит вода, в качестве источника энергии используется пар давлением 0,3—1 Мн./м2 (3—10 кгс/см2)

Принцип действия пароэжекторной холодильной машины Пар поступает в сопло эжек.

Принцип действия пароэжекторной холодильной машины
Пар поступает в сопло эжектора, где расширяется.
В результате в эжекторе и, как следствие, в испарителе машины создаётся пониженное давление, которому соответствует температура кипения воды несколько выше 0 °С (обычно порядка 5 °С).
В испарителе за счёт частичного испарения происходит охлаждение подаваемой потребителю холода воды.
Отсосанный из испарителя пар, а также рабочий пар эжектора поступает в конденсатор, где переходит в жидкое состояние, отдавая теплоту охлаждающей среде.
Часть воды из конденсатора подаётся в испаритель для пополнения убыли охлаждаемой воды.

Схема пароэжекторной холодильной машины1 — эжектор; 2 — испаритель; 3 — пот.

Схема пароэжекторной холодильной машины
1 — эжектор;
2 — испаритель;
3 — потребитель холода;
4 — насос;
5 — терморегулирующий вентиль;
6 — конденсатор.

Холодильная машина – устройство для отвода теплоты от охлаждаемого тела, температура которого должна быть ниже, чем температура окружающей среды. Холодильные машины используются для получения температур от 10 до -150 0 С.Область более низких температур относится к криогенной технике. Холодильные машины отнимают теплоту от охлаждаемого тела и передают охлаждающей среде (воде или окружающему воздуху) с затратой энергии.

Применяются несколько типов холодильных машин:

- воздушные холодильные машины;

- паровые компрессорные холодильные машины;

- абсорбционные холодильные машины.

Воздушная холодильная машина. Хладагентом в ней служит воздух. Принцип ее действия заключается в следующем. Воздух из охлаждаемой камеры 3 засасывается компрессором 1, где подвергается адиабатическому сжатию. Сжатый воздух поступает затем в теплообменник 2, где охлаждается водой. Далее воздух направляется в расширительную машину – детандер 4, где расширяется и производит полезную работу. Температура воздуха при расширении снижается до -60…-70 0 С. Охлажденный воздух затем поступает в холодильную камеру 3, где отнимает тепло от охлаждаемого тела.

Холодильный коэффициент теоретического цикла воздушной холодильной машины равен

где q1 - количество теплоты, отнимаемого от охлаждаемого тела, ;

q2 - количество теплоты, передаваемое охлаждающей воде, .


Рис.3.4-Схема воздушной холодильной машины

Паровая компрессорная холодильная машина. Рабочим телом такой машины являются низкокипящие тела: аммиак, фреоны и др. При атмосферном давлении температура их кипения ниже 0 0 С. Компрессор 1 сжимает пары рабочего тела, которые затем поступают в конденсатор 2, где отдают теплоту при постоянном давлении. Пары при этом конденсируются, превращаясь в жидкость за счет охлаждения водой. Далее жидкость проходит через дроссельный клапан 4, где расширяясь, превращается в пар. Затем рабочее тело виде пара поступает в охлаждаемую камеру 3 (испаритель), где при постоянных давлении и температуре насыщенный пар превращается в нагретый, отнимая теплоту от охлаждаемого тела. Далее пар подается в компрессор и цикл повторяется.

Холодильный коэффициент машины равен

где q2 – количество теплоты, отнимаемое от охлаждающего тела, ;

l – затраченная работа, ;

i1 и i2 – энтальпия рабочего тела на входе и выходе из компрессора, ;

i - энтальпия рабочего тела на входе в испаритель, .


Рис.3.5-Схема паровой компрессорной холодильной машины

Паровая компрессорная холодильная машина имеет более высокий КПД, чем воздушная.

Абсорбционная холодильная машина. В основу принципа действия абсорбционной холодильной машины положено свойство растворов изменять температуру кипения в зависимости от концентрации. В этих машинах в качестве рабочего тела используется водно-аммиачный раствор, температура которого снижается с повышением концентрации аммиака в растворе (рис.3.12.).

Абсорбционная холодильная машина работает следующим образом. Пары аммиака из генератора 1 сжижаются в конденсаторе 2 и через редукционный вентиль 3 поступают в испаритель 4, находящийся в охлаждаемой камере. При дросселировании давление паров падает от рк до давления в испарителе рх, а температура снижается от t1 до t4 . Рабочее тело при этом переходит в газожидкостное состояние, отнимая теплоту Qx.


1 – генератор; 2 – конденсатор; 3 – редукционный вентиль;

4 – испаритель; 5 – абсорбер; 6 – насос.

Рис.3.6-Схема абсорбционной холодильной машины

Образовавшиеся в испарителе пары аммиака направляются в абсорбер 5, где поглощаются слабым водно-аммиачным раствором. Здесь использовано свойство слабого аммиачного раствора поглощать холодные пары аммиака. В абсорбер 5 из генератора 1 поступает слабый раствор аммиака, который по мере поглощения паров NH3 понижает свою концентрацию, а также давление паров рх и температуру t5. Насыщенный раствор аммиака насосом 6 перекачивается в генератор 1. В генераторе 1, благодаря подводу извне теплоты Qген, происходит кипение раствора при давлении рк с выделением почти чистого аммиака NH3. По мере отгонки аммиака раствор обедняется и отводится через редукционный вентиль в абсорбер 5. Выделенные пары аммиака поступают в конденсатор 2, где сжижаются путем отвода теплоты Qk. Перекачивающий насос 6 повышает давление раствора от Рх до Рк. Теплота растворения аммиака в абсорбере Qa отводится охлаждающей водой или воздухом.

Эффективность работы абсорбционной холодильной установки оценивается коэффициентом использования тепла

где qx – холодопроизводительность, т. е. тепло, отбираемое в испарителе;

q1 – количество тепла, подведенное греющим паром в генераторе;

qH – затраты тепла на работу насоса.

Абсорбционная холодильная машина имеет ряд преимуществ, благодаря которым они получили широкое распространение: простота обслуживания, невысокая стоимость, возможность использования отработанного тепла. К недостаткам относятся низкий КПД, большой расход воды.

Производственные процессы, торговля и быт редко обходятся без установок для охлаждения. Даже посреди зимы поддерживать стабильную температуру продуктов питания без охладителя сложно. Кратко рассмотрим принцип работы (действия) холодильной машины – холодильника.

Как работает холодильник простыми словами

Принцип работы холодильника основан на испарении и выработке конденсата хладагента, зачастую – жидкого фреона. Охладитель поглощает вырабатываемую машиной тепловую энергию вследствие кипения холодильного агента. В его роли преимущественно выступает фреон.

Энергия у системы забирается (образуется холод), когда изменяется давление хладагента, приводящее к корректировке температуры его кипения. Для испарения жидкости её необходимо нагреть, конденсация наблюдается при отборе тепла из парообразной среды.

Холодильные машины в физике представлены четырьмя узлами:

  • Двигатель-компрессор – обеспечивает движение фреона по трубопроводу установки. Электромотор трансформирует электроэнергию в механическую, заставляя механический поршень компрессора двигаться и перекачивать хладагент. Холодильники комплектуются комбинированными мотор-компрессорами – два устройства в одном корпусе. Обычно агрегат подвешивается на пружине, поглощающей вибрации.
  • Конденсатор – теплообменник, где тепловая энергия паров фреона передаётся окружающей среде с переходом хладагента из газообразного в жидкое состояние. Бытовые холодильники оснащаются змееобразным конденсатором, расположенным на задней стенке устройства. В крупных промышленных установках используют теплообменники с радиаторами или вентиляторами, повышающими эффективность охлаждения.
  • Испаритель – аппарат, охлаждающий сам продукт, активно поглощающий тепловую энергию.
  • Дросселирующая капиллярная трубка из меди диаметром 0,6-0,85 см (терморегулирующий вентиль) – регулирует поток или давление фреона, который поступает из конденсатора в испаритель.

Роль холодильника в тепловом двигателе

Тепловой двигатель – агрегат, преобразующий тепловую энергию в механическую. Тепло он получает из внешней среды или использует образующееся вследствие сгорания топлива в камерах двигателей внутреннего сгорания. Часто возникает логический вопрос: зачем в тепловом двигателе нужен холодильник, какова его роль?


Работа тепловым двигателем совершается при разности давлений с обеих сторон поршня. Оно создаётся путём повышения температуры внутри агрегата на сотни градусов. Газ при этом совершает работу – расширяется, двигая поршень. Холодильник этот газ охлаждает, чтобы работа на сжатие была меньше, чем на декомпрессию.

Принцип работы холодильной машины основывается на охлаждении – отборе тепла у рабочей машины посредством кипения жидкости.

Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).

Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.

Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.

Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.

Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.

2. Термодинамические циклы холодильных установок

Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.

2.1. Воздушные холодильные установки


Схема воздушной холодильной установки

Рис. 14. Схема воздушной холодильной установки: ХК - холодильная камера; К - компрессор; ТО - теплообменник; Д - расширительный цилиндр (детандер)

Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 - 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается - теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра - детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.

2.2. Парокомпрессорные холодильные установки

В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.

Читайте также: