Глаз как оптический прибор доклад

Обновлено: 18.05.2024

Орган зрения, в функциональном отношении, подразделяется на светопроводящий и световоспринимающий отделы. Светопроводящий отдел включает прозрачные среды органа зрения - хрусталик, роговицу, влагу передней камеры, а также стекловидного тела. Сетчатка глаза является световоспринимающим отделом. Изображение любого из окружающих нас предметов оказываются на сетчатке пройдя оптическую систему глаза.

Луч света, отраженный от рассматриваемого предмета, проходит 4 преломляющие поверхности. Это поверхности роговицы (задняя и передняя), а также поверхности хрусталика (задняя и передняя). Каждая такая поверхность несколько отклоняет луч от его начального направления, собственно поэтому на конечном этапе зрительного пути - в фокусе появляется перевернутое, но реальное изображение наблюдаемого предмета.

Путь световых лучей и величины

Преломление света в средах глазной оптической системы носит название процесса рефракции. Учение о рефракции основано на законах оптики, дающих характеристики распространению световых лучей в различных средах.

Оптическая система глаза строение

Оптической осью глаза принято называть прямую линию, проходящую через центральные точки всех преломляющих поверхностей. Световые лучи, которые падают параллельно данной оси, преломляются и сходятся в основном фокусе зрительной системы. Лучи эти отражены от бесконечно удаленных объектов, поэтому, главным фокусом оптической системы, принято называть точку оптической оси, где возникают изображения бесконечно удаленных объектов.

Световые лучи, отраженные от предметов, находящихся на конечных расстояниях, сходятся в дополнительных фокусах. Дополнительные фокусы локализуются дальше основного, ведь фокусировка расходящихся лучей происходит с применением дополнительной преломляющей силы. При этом, чем сильнее расходятся лучи (чем ближе линза к источнику данных лучей), тем большая сила преломления необходима.

Основными характеристиками оптической системы глаза, принято считать: радиус кривизны поверхностей хрусталика и поверхностейроговицы, длину оси глаза, глубину передней камеры, показатели толщины хрусталика и роговицы, а также индекс преломления прозрачных сред.

Измерение данных величин (кроме данных преломления) выполняются с помощью методов офтальмологического обследования: ультразвуковых, оптических и рентгенологических. Ультразвуковые и рентгенологические исследования позволяют выявить длину оси глаза. Посредством оптических методов проводят измерение составляющих преломляющего аппарата, длина оси определяется путем вычислений.

В связи с широким распространением оптико-реконструктивной микрохирургии: лазерной коррекции зрения ( Lasik либо кератомилез, оптической кератотомии, имплантаций искусственного хрусталика, кератопротезирования), расчеты элементов оптической системы глаза необходимы в работе офтальмохирургов.

Видео об оптической системе глаза

Видео Оптическая система глаза

Формирование оптической системы

Давно доказано, что глаза новорожденных детей, обычно, имеют слабую рефракцию. Усиление ее происходить только в процессе развития. Таким образом степень дальнозоркости уменьшается, затем слабая гиперметропия постепенно становится нормальным зрением, а иногда переходит в миопию.
В течение первых трех лет жизни орган зрения ребенка интенсивно растет, увеличивается рефракция роговицы, вследствие удлинения переднее-задней глазной оси. К семи годам глазная ось достигает 22 мм, что составляет уже 95% размера глаз взрослого человека. При этом, глазное яблоко продолжает расти до 15 лет.

Линзы являются главной частью оптических приборов. Существуют две группы оптических приборов: 1) приборы, вооружающие глаз, к которым относятся очки, лупа, микроскоп, телескоп, 2) оптические приборы, которые формируют изображение без участия глаза: фотоаппарат, проекционный аппарат и пр.

Оптическая схема фотоаппарата представлена на рисунке а). Предмет находится от линзы на расстоянии, большем двойного фокусного расстояния, а уменьшенное изображение формируется на плёнке, которая помещается на задней стенке фотоаппарата на расстоянии от линзы, близком к фокусному. Проекционный аппарат позволяет получать на экране действительное увеличенное изображение предметов. Предмет помещается между фокусом и двойным фокусом линзы, чем ближе к фокусу, тем больше размер изображения. Оптическая схема проекционного аппарата показана на рисунке б).

Глаз как оптическая система

Роль линзы в оптической системе глаза играет хрусталик — прозрачное тело, которое может быть более или менее выпуклым, т.е. его фокусное расстояние может изменяться. За хрусталиком расположено стекловидное тело, заполняющее остальную часть глаза. Хрусталик и стекловидное тело играют роль линзы, преломляющей падающие лучи. На задней стенке глаза находится сетчатка, на которой после преломления получается действительное уменьшенное, перевёрнутое изображение. Нервные волокна сетчатки передают ощущение света в мозг.

Существуют 2 основных дефекта зрения: дальнозоркость и близорукость. Близорукий человек хорошо видит близкие предметы и плохо — удалённые. У него изображение предмета формируется за сетчаткой. Для коррекции зрения в этом случае необходимы очки с рассеивающими линзами, делающие входящий в глаз световой пучок расходящимся. В этом случае глаз соберёт лучи на сетчатке.

Дальнозоркий человек хорошо видит удалённые предметы и плохо — близкие. У него изображение предмета формируется за сетчаткой. Для коррекции зрения в этом случае необходимы очки с собирающими линзами. На хрусталик в этом случае падает сходящийся световой пучок, который он преломляет так, что лучи собираются на сетчатке.

Глаз как оптическая система

Глаз — это система линз. Диаметр глаза ≈ 23 мм. Через глаз мы получаем до 90% информации.

Состоит из склеры 1 (за­щитная оболочка из эластичной ткани), роговицы. 1, каме­ры 3 (полость, заполненная прозрачной жидкостью), сосудистой оболочки 4, радужной оболочки 5, зрачка 6 (d от 2 до 8 мм), хрусталика 7 (n=1,44), мышц, изменяющих оптические свойства глаза 8,прозрачной студенистой массы 9 (глазное дно), сетчатки 10 (7 млн. колбочек, 130 млн. палочек, которые реагируют на свет разной частоты неодинаково), разветвлений зрительного нерва 11.

Основные свойства и оптические характеристики глаза:

Аккомодация—свойство глаза, обеспечивающее четкое восприятиеразноудаленных предметов. Изменяется главный фокус глаза от 16 до13 мм. Оптическая сила глаза от 60 до 75 дптр.

Предельный угол зрения (φ=1') c приближением предмета увеличивается угол зрения, под которым мы видим две близкие точки предмета.

Адаптация—приспосабливаемость к различным условиям освещенности: диаметр зрачка меняется от 2 до 8 мм.

Поле зрения: по оси ОХ 150°, по оси OY 125°. Спектральная чувствительность от 380 до 760 нм. Самая большая чувствительность 555 нм (зеленый цвет).

Острота зрения — свойство глаза раздельно различать две близкие точки.

Расстояние наилучшего зрения d0=250 мм. Дальние предметы глаз видит без напряжения.

Дефекты зрения: глаз не может создать резкое изображение на сетчатке.

Дальнозоркость — дефект зрения, состоящий в том, что изоб­ражение предмета в ненапряженном состоянии глаза получается за сетчаткой. При рассматривании близких предметов предел аккомодации исчерпывается при расстояниях больше 25 см. Исправляется ношением очков с собирающими линзами.

Близорукость — дефект зрения, при котором глаз в ненапряженном состоянии создает изображение удаленного предмета не на сетчатке, а перед ней, т. е. не может видеть удаленные предметы. Исправляется ношением очков с рассеивающими линзами.

Подбор очков

где f - глубина глаза; dгл - расстояние, на которое видит глаз без очков; d0=25 см — расстояние наилучшего зрения глаза;

Близорукость и дальнозоркость могут быть исправлены с по­мощью современной хирургии по изменению формы роговицы или хрусталика, а также подбором контактных линз.

Оптические приборы

Лупа

Увеличить угол зрения можно, используя лупу, микро­скоп:

Так как OB2=d0,, a OB1≈ F, то

Фотоаппарат (1837)

К — светонепроницаемая камера; О — объектив (может перемещаться относительно пленки); /7 — пленка или светочувствительная пластина; ВА предмет; А1В1 изображение. Как и в глазу, в фотоаппарате получается действительное, перевернутое, уменьшенное изображение. Основное отличие заключается в том, что фокусное расстояние зрачка меняется (аккомодация), а у фотоаппарата меняется расстояние от линзы до изображения.

Проекционный аппарат

S - источник света; R рефлектор (вогнутое зеркало). Кконденсатор (плосковыпуклые линзы), собирает лучи в пучок; D прозрачный диапозитив; О — объектив, расположенный в фокусе конденсатора, который проецирует освещенный диапозитив на экран. Для получения четкого изображения на экране диапозитив помещают от объектива на расстоянии d, удовлетворяющем условию: F

Нажмите, чтобы узнать подробности

Органы зрения являются одними из важнейших органов чувств человека и большинства животных. Органы зрения также называют зрительными анализаторами. Органы зрения — это не только глаза. Люди видят благодаря тому, что информация, полученная посредством глаза, передаётся в определённые области коры головного мозга, где и формируется та картина внешнего мира, которую мы видим.

УСТРОЙСТВА ГЛАЗА ЧЕЛОВЕКА

Глаз человека является сложным оптическим прибором, состоящим из двух линз с переменным фокусным расстоянием. Глаз, или глазное яблоко, имеет почти шарообразную форму. Снаружи глаз покрыт прочной белой оболочкой — склерой, которая защищает его от повреждений. Передняя часть склеры прозрачна для света и называется роговицей. За роговицей расположена прозрачная водянистая масса, а за ней — радужная оболочка. Она определяет цвет глаз. В радужной оболочке есть отверстие — зрачок. Диаметр зрачка может изменяться: увеличиваться в темноте и уменьшаться на свету. После зрачка свет проходит через хрусталик — прозрачное тело, напоминающее двояковыпуклую линзу. Хрусталик окружён мышцами, прикрепляющими его к склере. За хрусталиком расположено стекловидное тело, заполняющее всю остальную часть глаза. Таким образом хрусталик разделяет внутреннюю поверхность глаза на две камеры: переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом. Задняя стенка склеры — сетчатка — состоит из разветвлений волокон зрительного нерва, чувствительных к свету. Светочувствительные клетки (палочки и колбочки), содержащиеся в клетчатке, называются фоторецепторами.

КАК МЫ ВИДИМ РАЗЛИЧНЫЕ ПРЕДМЕТЫ?

Оптическая система глаза состоит из роговицы, передней камеры, заполненной водянистым веществом, хрусталика и стекловидного тела. Световые лучи, попадая в глаз, преломляются в оптической системе глаза, и на сетчатке глаза появляется изображение. Можно сказать, что сетчатка является шарообразным экраном, на который проецируется окружающий нас мир. Изображение предмета, возникающее на сетчатке глаза, является действительным, уменьшенным и перевёрнутым.

Почему же мы видим предметы такими, какие они есть на самом деле? Дело в том, что в сетчатке оптическая информация воспринимается светочувствительными нервными клетками и передаётся в мозг. Обрабатывая сигналы, мозг снова переворачивает изображение.

Если изображения двух точек будут попадать на одну фоторецепторную клетку (колбочку) глазного дна, мы будем воспринимать их как одну точку. Если расстояние между точками увеличится настолько, что их изображения попадут на две соседние рецепторные клетки, мы увидим линию, то есть будем воспринимать их слитно. Чтобы точки воспринимались раздельно, их изображения должны попадать на две рецепторные клетки, разделённые хотя бы ещё одной.

Остротой зрения называют способность различать границы и детали видимых объектов. Острота зрения определяется по минимальному угловому расстоянию между двумя точками, при котором они воспринимаются раздельно.

За норму, соответствующую остроте зрения 1.0, принимается такая различительная способность глаза, при которой две точки видны как раздельные, если угол между лучами, идущими от них в глаз, равен 1° (1 градус = 60 минут).

При такой остроте зрения величина изображения на сетчатке равна 0,004 мм, что соответствует диаметру колбочки. Чем меньше диаметр колбочки, тем больше разрешающая способность глаза.

Для того, чтобы проверить остроту зрения, можно воспользоваться звездой Сименса. Если чёткость зрения неидеальна, то, не доходя до центра, лучи расплываются и начинают перекрываться между собой.

На очень коротком участке они могут как бы слиться с фоном. Однако по мере дальнейшего продвижения к центру лучи вдруг снова оказываются чётко видны. При этом изображение превращается как бы в свой негатив. На месте чёрного луча оказывается белый фон, а на месте белого фона — чёрный луч.

Люди с хорошим зрением могут наблюдать этот эффект, если поднесут картинку очень близко к глазам. Однако на большом расстоянии от картинки лучи для них будут сливаться в сплошную серую массу.

Звезда Сименса даёт прекрасную возможность наблюдать, как острота зрения постоянно меняется, причём эти изменения отчасти подчиняются волевому контролю.

Известны опыты по изучению того, как изменится зрительное восприятие человека, если с помощью специальных очков перевернуть световые лучи ещё на пути к глазу так, чтобы изображение на сетчатке было не перевёрнутым, а прямым. В начале эксперимента испытуемые, надев такие очки, видели все предметы перевёрнутыми, что доставляло им массу неудобств. Но спустя некоторое время участники эксперимента вновь начинали правильно ориентироваться в окружающей обстановке. При этом они начинали вновь видеть предметы правильно, как если бы очки не искажали видимое ими окружение.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (или бинокулярным), то есть сформировать трёхмерное изображение. Проводящие пути зрительной системы устроены так, что в левое полушарие головного мозга попадает информация о том, что справа от нас, а в правое полушарие — о том, что слева от нас. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

У большинства животных глаза расположены по разные стороны головы, поэтому они видят каждым глазом свою картину. Видимые ими предметы не отличаются рельефностью, к которой мы привыкли, но поле зрения гораздо обширнее.

Способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза, называется аккомодацией (от лат. accomodatio — приспособление).

Когда человек смотрит на удалённые предметы, он не напрягает зрение, мышцы, удерживающие хрусталик, расслаблены, и изображение оказывается на сетчатке. Когда же человек переводит взгляд на близкие к нему предметы, изображение должно сместиться за сетчатку. Чтобы изображение не было размытым, глазные мышцы сжимают хрусталик, делая его более выпуклым. При этом его кривизна, а значит и оптическая сила увеличиваются, и изображение опять оказывается на сетчатке.

Рыбы, насекомые, рептилии, птицы, кролики и лошади проводят свою жизнь на открытых пространствах, где необходимо видение всего, что происходит вокруг — панорамное зрение. И именно этому способствует их боковое расположение глаз. Люди и крупные млекопитающие (приматы, тигры, медведи) подчас проживают в среде, перегруженной мелкими деталями и препятствиями. Их глаза устремились к передней части головы и стали смотреть вперёд прямо перед собой. И хотя они утратили возможность видеть то, что происходит у них за спиной, они получили способность смотреть, например, сквозь листву, что находится перед ними.

БЛИЗОРУКОСТЬ И ДАЛЬНОЗОРКОСТЬ

У человека с хорошим (нормальным) зрением глаз в ненапряжённом состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Наиболее распространены два недостатка зрения — близорукость и дальнозоркость.

Близорукость — это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Близорукие люди не могут чётко видеть удалённые предметы. Расстояние наилучшего зрения для близорукого глаза меньше 25 см.

Дальнозоркость — это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а за ней.

Дальнозорким людям трудно сфокусировать взгляд на близких предметах. Расстояние наилучшего зрения для дальнозоркого глаза больше 25 см.

Близорукость и дальнозоркость исправляют с помощью соответствующих линз. При близорукости для того, чтобы изображение отодвинулось от хрусталика и переместилось на сетчатку, следует уменьшить оптическую силу преломляющей системы глаза. Для этого применяют рассеивающие (вогнутые) линзы. При дальнозоркости изображение оказывается за сетчаткой. Оптическую силу системы дальнозоркого глаза надо увеличить. Для этого используют собирающие (выпуклые) линзы.

Аккомодация имеет предел. Если расположить предмет совсем близко, то мышцы не способны сжать хрусталик до получения на сетчатке чёткого изображения. Нормальный глаз может длительно без особого напряжения рассматривать предметы, расположенные от него не ближе 25 см. Это расстояние называют расстоянием наилучшего видения.

Зрение — очень сложный процесс. Это особенно ясно, когда сталкиваешься с неожиданными эффектами зрительного восприятия. Сегодня существует большое количество разнообразных изображений, которые принято называть зрительными иллюзиями или невозможными фигурами.

Глаз можно сравнить с техническим устройством, предназначенным для передачи изображений — фото- или кинокамерой, передающим устройством телевизионной системы.

Анатомически глазное яблоко человека представляет собой почти правильную сферу диаметром около 25 мм. Оно состоит из трех оболочек — наружной фиброзной, средней сосудистой и внутренней (сетчатки), которые окружают ядро глаза. Оно включает водянистую влагу, хрусталик и стекловидное тело.

Строение глазного яблока


Строение глазного яблока

В свою очереди, фиброзная оболочка состоит из непрозрачной части — склеры, охватывающей большую часть глазного яблока, и передней прозрачной части — роговицы. Роговица слегка возвышается над уровнем сферы глазного яблока, так как радиус ее кривизны меньше (около 8 мм), чем радиус склеры (около 12 мм).

В сосудистой оболочке выделяют три части: наибольшая по площади, собственно сосудистая, выстилает изнутри примерно 2/3 склеры. Спереди она переходит в более толстое ресничное (цилиарное) тело, а еще дальше кпереди, на уровне перехода склеры в роговицу, в радужку. Она представляет собой лежащую во внутриглазной жидкости круглую мембрану с отверстием в центре — зрачком. Радужка имеет две мышцы, одна из которых расширяет, а другая — сужает зрачок. Внутренняя оболочка глазного яблока— сетчатка — выстилает в виде тонкой пленки всю сосудистую оболочку от заднего полюса глаза до ресничного тела. Она является той оболочкой, на которой изображение формируется и преобразуется в нервный сигнал.

Клетки, в которых свет преобразуется в нервный импульс, называются фоторецепторами. Они бывают двух видов: палочки, которые чувствительны к слабому свету и возбуждаются при низкой освещенности; колбочки, которые чувствительны к перепадам освещенности при высоких ее значениях, обладают высокой разрешающей способностью и способностью воспринимать цвет.

Палочки рассредоточены по всей периферии сетчатки. В центральной ее части, занимающей задний полюс глазного яблока, расположены колбочки. Они заполняют особую зону сетчатки — овал размером примерно 3x2 мм. Эта зона называется желтым пятном. В центре его находится особо чувствительный к перепадам освещенности участок диаметром 0,3 мм — центральная ямка.

Центральная ямка обеспечивает способность к различению мелких деталей видимых предметов, т. е. остроту зрения. Острота зрения измеряется в десятичных дробях 0,1; 0,2. 1,0; 1,1; 1,2 и т. д. За норму, соответствующую остроте зрения 1,0, принимается такая различительная способность глаза, при которой две точки видны как раздельные, если угол между лучами, идущими от них в глаз, равен 1'.

Механизм остроты зрения


Механизм остроты зрения

При этом лучи от двух точек попадают как раз на две колбочки, между которыми расположена еще одна колбочка (невозбужденная). Острота зрения может быть гораздо выше, и это зависит от условий, в которых она исследуется. Но гипотеза двух несмежных колбочек не утратила своей силы.

Если угол между минимально различимыми точками равен 2', то острота зрения равна 0,5, если 10', то 0,1, и т. д. Иначе говоря, острота зрения равна обратной величине предельного угла различения, выраженного в минутах. Острота зрения — основная функция глаза, на которую ориентируются при подборе очков.

Внутренняя часть глазного яблока заполнена прозрачными внутриглазными средами: сегмент между роговицей и радужкой (передняя камера) заполнен водянистой влагой. Непосредственно за радужкой находится эластичное. плотное чечевицеобразное образование — хрусталик. Он подвешен к ресничному телу при помощи густой сети фиброзных тяжей, называемых ресничной (цинновой) связкой. Большая часть глазного яблока, находящаяся за хрусталиком, заполнена студнеобразной массой — стекловидным телом.

Роговица, водянистая влага, хрусталик и стекловидное тело являются преломляющими свет средами. Вместе они образуют оптическую систему глаза.

Приближенно можно считать, что преломляющие поверхности роговицы и хрусталика сферичны и их оптические оси совпадают, т. е. глаз является системой центрированной.

Наиболее удачное описание оптической системы среднего нормального человеческого глаза принадлежит шведскому оптику Гулльстранду.

Строение глаза по Гулльстранду


Строение глаза по Гулльстранду:
F1 — передний главный фокус; F2 — задний главный фокус; f1 — переднее фокусное расстояние; f2 — заднее фокусное расстояние; Н1 и Н2— передняя и задняя главные плоскости; fвп — переднее вершинное (т. е. отсчитанное от вершины роговицы) фокусное расстояние; fвз — заднее вершинное фокусное расстояние

Предложены и более простые схемы оптической системы глаза, в которых имеется только одна преломляющая поверхность — передняя поверхность роговицы — и одна среда — усредненная внутриглазная субстанция. Показатели редуцированного глаза были рассчитаны советским офтальмологом В.К. Вербицким. Его основные характеристики: главная плоскость касается вершины роговицы, радиус кривизны роговицы составляет 6,82 мм, длина переднезадней оси — 23,4 мм, показатель преломления внутриглазной среды — 1,4, общая преломляющая сила глаза — 58,82 дптр.

Редуцированный глаз (по В.К. Вербицкому)


Редуцированный глаз (по В.К. Вербицкому)

Все эти характеристики относятся к среднему глазу. В действительности они значительно варьируют. Так, преломляющая сила роговицы колеблется в пределах 38—46 дптр, хрусталика — 15—23 дптр, общая преломляющая сила глаза — 52—71 дптр, длина оси глаза — 19—30 мм.

Как уже говорилось, глаз может быть сравним с прибором для передачи изображений, например с телевизионной передающей камерой — видиконом.

Сравнение строения глаза и технического устройства для передачи изображения


Сравнение строения глаза и технического устройства для передачи изображения

Как и технические оптические камеры, глаз снабжен устройством для наведения объектива на объект — глазодвигательным аппаратом — и регулирования резкости изображений предметов, находящихся на разном расстоянии,— аппаратом аккомодации.

Глазодвигательный аппарат включает наружные мышцы глаза — по 6 мышц в каждом глазу: внутреннюю, наружную, верхнюю и нижнюю прямые, верхнюю и нижнюю косые. Благодаря их согласованной работе глаз постоянно совершает поисковые движения и при появлении в поле зрения какого-либо нового объекта, привлекающего внимание, совершает поворот (скачок) таким образом, чтобы изображение этого объекта попало на центральную ямку.

Читайте также: