Генетика доклад по философии

Обновлено: 17.04.2024

Генетика (от греч. genesis- происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысяче­летий человек пользовался генетическими методами для улучшения домашних животных и возделывае­мых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разно­образным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из при­родных популяций и скрещивая их между со­бой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

С тех пор генетика достиг­ла больших успехов в объяснении природы наслед­ственности и на уровне организма, и на уровне гена. Роль генов в развитии организма огромна. Гены характеризуют все признаки будущего организма, такие, как цвет глаз и кожи, размеры, вес и многое другое. Гены являются носителями наследственной информации, на основе которой развивается организм.

В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. п., а в зависимости от используемых методов других дисциплин – биохимическую генетику, молекулярную генетику, экологическую генетику, и др.

Генетика вносит огромный вклад в развитие теории эволюций (эволюционная генетика, генетика популяций). Идеи методы генетики находят применение во всех областях человеческой деятельности, связанной с живыми организмами. Они имеют важное значение для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Новейшие достижения генетики связанны с развитием генетической инженерии.

В современном обществе генетические вопросы широко обсуждаются в разных аудиториях и с разных точек зрения, в том числе этической, очевидно, по двум причинам.

Во-первых, генетика затрагивает самые первичные свойства живой природы, как бы ключевые позиции в жизненных проявлениях. Поэтому прогресс медицины и биологии, а также все ожидания от него часто фокусируются на генетику. Во многом это фокусирование оправдано.

Во-вторых, в последние десятилетия генетика так бурно развивается, что порождает и научные, и околонаучные многообещающие прогнозы. Это особенно касается генетики человека, прогресс которой ставит этические проблемы острее, чем в других областях медико-биологической науки.

Необходимость осмысления этических аспектов использования новых технологий возникала всегда.

Отличие современного периода в том, что скорость реализации идеи или научной разработки в результат резко повысилась.

В генетике человека четко прослеживается непосредственная связь научных исследований с этическими вопросами, а также зависимость научных поисков от этического смысла их конечных результатов. Генетика шагнула настолько вперед, что человек находится на пороге такой власти, которая позволяет ему определять свою биологическую судьбу. Именно поэтому использование всех потенциальных возможностей медицинской генетики реально только при строгом соблюдении этических норм.

Генетика человека, быстро развиваясь в последние десятилетия, дала ответы на многие из давно интересовавших людей вопросы: от чего зависит пол ребенка? Почему дети похожи на родителей? Какие признаки и заболевания наследуются, а какие – нет, почему люди так не похожи друг на друга, почему вредны близкородственные браки?

Интерес к генетике человека обусловлен несколькими причинами. Во-первых, это естественное стремление человека познать самого себя. Во-вторых, после того как были побеждены многие инфекционные болезни – чума, холера, оспа и др., – увеличилась относительная доля наследственных болезней. В-третьих, после того как были поняты природа мутаций и их значение в наследственности, стало ясно, что мутации могут быть вызваны факторами внешней среды, на которые ранее не обращали должного внимания. Началось интенсивное изучение воздействия на наследственность излучений и химических веществ. С каждым годом в быту, сельском хозяйстве, пищевой, косметической, фармакологической промышленности и других областях деятельности применяется все больше химических соединений, среди которых используется немало мутагенов.

В связи с этим можно выделить следующие основные проблемы генетики.

Наследственные болезни и их причины.

Наследственные болезни могут быть вызваны нарушениями в отдельных генах, хромосомах или хромосомных наборах. Впервые связь между аномальным набором хромосом и резкими отклонениями от нормального развития была обнаружена в случае синдрома Дауна.

Помимо хромосомных нарушений, наследственные болезни могут быть обусловлены изменениями генетической информации непосредственно в генах.

Эффективных средств лечения наследственных болезней пока не существует. Однако существуют методы лечения, облегчающие состояние больных и улучшающие их самочувствие. Они основаны главным образом на компенсации дефектов метаболизма, обусловленных нарушениями в геноме.

Медико-генетические лаборатории. Знание генетики человека позволяет определять вероятность рождения детей, страдающих наследственными болезнями, в случаях, когда один или оба супруга больны или оба родителя здоровы, но наследственные заболевания встречались у их предков. В ряде случаев возможно прогнозирование рождения здорового второго ребенка, если первый был болен. Такое прогнозирование осуществляется в медико-генетических лабораториях. Широкое использование медико-генетических консультаций избавит многие семьи от несчастья иметь больных детей.

Наследуются ли способности? Ученые считают, что в каждом человеке есть зерно таланта. Талант развивается трудом. Генетически человек по своим возможностям богаче, но не реализует их полностью в своей жизни.
До сих пор еще нет методов выявления истинных способностей человека в процессе его детского и юношеского воспитания, а потому часто и не предоставляются соответствующие условия для их развития.

Действует ли естественный отбор в человеческом обществе? История человечества – это изменение генетической структуры популяций вида Homo sapiens под воздействием биологических и социальных факторов. Войны, эпидемии изменяли генофонд человечества. Естественный отбор за последние 2 тыс. лет не ослабел, а только изменился: на него наслоился отбор социальный.

Генная инженерия использует важнейшие открытия молекулярной генетики для разработки новых методов исследования, получения новых генетических данных, а также в практической деятельности, в частности в медицине.

Ранее вакцины изготовляли только из убитых или ослабленных бактерий или вирусов, способных вызывать у человека выработку иммунитета за счет образования специфических белков-антител. Такие вакцины приводят к выработке стойкого иммунитета, но у них есть и недостатки.

Безопаснее вакцинировать чистыми белками оболочки вирусов – они не могут размножаться, т.к. у них нет нуклеиновых кислот, но вызывают выработку антител. Получить их можно методами генной инженерии. Уже создана такая вакцина против инфекционного гепатита (болезни Боткина) – болезни опасной и трудноизлечимой. Ведутся работы по созданию чистых вакцин против гриппа, сибирской язвы и других болезней.

Коррекция пола. Операции по коррекции пола в нашей стране начали делать около 30 лет назад строго по медицинским показаниям.

Пересадка органов. Пересадка органов от доноров – очень сложная операция, за которой следует не менее сложный период приживления трансплантата. Очень часто трансплантат отторгается и пациент погибает. Ученые надеются, что эти проблемы можно будет решить с помощью клонирования.

Клонирование – метод генной инженерии, при котором потомки получаются из соматической клетки предка и поэтому имеют абсолютно такой же геном.

Клонирование животных позволяет решить многие проблемы медицины и молекулярной биологии, но вместе с тем порождает множество социальных проблем.

Ученые видят перспективу воспроизведения отдельных тканей или органов тяжело больных людей для последующей трансплантации – в этом случае не будет проблем с отторжением трансплантата. Клонирование можно использовать и для получения новых лекарств, особенно получаемых из тканей и органов животных или человека.

Однако, несмотря на заманчивые перспективы, вызывает беспокойство этическая сторона клонирования.

Уродства. Развитие нового живого существа происходит в соответствии с генетическим кодом, записанным в ДНК, которая содержится в ядре каждой клетки организма. Иногда под воздействием факторов среды – радиоактивных, ультрафиолетовых лучей, химических веществ – происходит нарушение генетического кода, возникают мутации, отступления от нормы.

Генетика и криминалистика. В судебной практике известны случаи установления родства, когда дети были перепутаны в роддоме. Иногда это касалось детей, которые росли в чужих семьях не один год. Для установления родства используют методы биологической экспертизы, которую проводят, когда ребенку исполнится 1 год и стабилизируется система крови. Разработан новый метод – генная дактилоскопия, который позволяет проводить анализ на хромосомном уровне. В этом случае возраст ребенка значения не имеет, а родство устанавливается со 100%-й гарантией.

Методы изучения генетики человека

Генеалогический метод состоит в изучении родословных на основе менделевских законов наследования и пoмoгaeт установить характер наследования признака (доминантный или рецессивный).

Близнецовый метод состоит в изучении различий между однояйцевыми близнецами. Этот мeтoд предоставлен самой природой. Он помогает выявить влияние условий среды на фенотип при одинаковых генотипах.

Популяционный метод. Популяционная генетика изучает генетические различия между отдельными группами людей (популяциями), исследует закономерности географического распространения генов.

Цитогенетический метод основан на изучении изменчивости и наследственности на уровне клетки и субклеточных структур. Установлена связь ряда тяжелых заболеваний с нарушениями в хромосомах.

Биохимический метод позволяет выявить многие наследственные болезни человека, связанные с нарушением обмена веществ. Известны аномалии углеводного, аминокислотного, липидного и других типов обмена веществ.

Роль воспроизводства в развитии живого.

Все этапы в жизни любого живого существа важны, в том числе и для человека. Все они сводятся к циклическому воспроизводству исходного живого организма. И начался это процесс циклического воспроизводства около 4 млрд. лет назад.

Рассмотрим его особенности. Из биохимии известно, что множество реакций органических молекул обратимы. Например, из аминокислот синтезируются молекулы белков, которые могут быть расщеплены на аминокислоты. То есть под влиянием каких-либо воздействий происходят как реакции синтеза, так и реакции расщепления. В живой природе любой организм проходит циклические стадии расщепления исходного организма и воспроизводства из отделившейся части новой копии исходного организма, которая затем снова дает зародыш для воспроизводства. Именно по этой причине взаимодействия в живой природе длятся непрерывно миллиарды лет. Свойство воспроизведения из расщепленных частей исходного организма его копии определяется тем, что новому организму передается комплекс молекул, который полностью контролирует процесс воссоздания копии.

Начался процесс с самовоспроизводства комплексов молекул. И путь этот достаточно хорошо зафиксирован в каждой живой клетке. Ученые уже давно обратили внимание на то, что в процессе эмбриогенеза повторяются этапы эволюции жизни. Но тогда следует обратить внимание и на то, что в самой глубине клетки, в ее ядре, находятся молекулы ДНК. Это самое лучшее доказательство того, что жизнь на Земле началась с воспроизводства комплексов молекул, которые обладали свойством сначала расщепить двойную спираль ДНК, а затем обеспечивали процесс воссоздания двойной спирали. Это и есть процесс циклического воссоздания живого объекта с помощью молекул, которые передавались в момент расщепления и которые полностью контролировали синтез копии исходного объекта. Поэтому определение жизни будет выглядеть так. Жизнь - это вид взаимодействия материи, основным отличием которого от известных видов взаимодейсвий является хранение, накопление и копирование объектов, которые вносят определенность в эти взаимодействия и переводят их из случайных в закономерные, при этом происходит циклическое воспроизводство живого объекта.

Любой живой организм имеет генетический набор молекул, который полностью определяет процесс воссоздания копии исходного объекта, то есть при наличии необходимых питательных веществ с вероятностью единица в результате взаимодействия комплекса молекул произойдет воссоздание копии живого организма. Но получение питательных веществ не гарантируется, происходят также вредные внешние воздействия и нарушения взаимодействий внутри клетки. Поэтому всегда суммарная вероятность воссоздания копии чуть меньше единицы.

Так вот, из двух организмов или живых объектов эффективнее будет копироваться тот организм, у которого больше суммарная вероятность осуществления всех необходимых взаимодействий. Это и есть закон эволюции живой природы. Другими словами, его можно сформулировать и так: чем больше необходимых для копирования объекта взаимодействий контролируются самим объектом, тем больше вероятность его циклического воспроизводства.

Очевидно при этом, что если суммарная вероятность осуществления всех взаимодействий увеличивается, то данный объект эволюционирует, если уменьшается, то инволюционирует, если не изменяется, то объект находится в стабильном состоянии.

Важнейшей функцией жизнедеятельности является функция самопроизводства. Иначе говоря, жизнедеятельность есть процесс удовлетворения потребности по воспроизводству человеком своего живого существа в рамках той системы, в которую он включен в качестве элемента, т.е. в условиях окружающей среды. Принимая в качестве исходного тезиса посылку, что жизнедеятельность имеет важнейшую потребность в воспроизводстве своего субъекта, как обладателя человеческого организма, следует отметить, что воспроизводство осуществляется двояким образом: во-первых, в процессе потребления вещества и энергии из окружающей среды, и во-вторых, в процессе биологического размножения, то есть рождения потомства. Первый вид реализации потребности в звене “внешняя среда-организм” можно выразить как воспроизводство “живого из неживого”. Человек существует на земле благодаря постоянному потреблению из среды необходимых веществ и энергии.

В.И. Вернадский в своем известном труде “Биосфера” представил процесс жизни на Земле как постоянный круговорот вещества и энергии, в который необходимо включен, наряду с другими существами и человек. Атомы и молекулы физических веществ, входящих в состав биосферы Земли, за время существования жизни миллионы раз включались в ее круговорот и выходили из него. Человеческий организм не является тождественным потребленному из внешней среды веществу и энергии, он суть преобразованный определенным образом предмет его жизнедеятельности. В результате реализации потребностей в веществах, энергии, информации из одного объекта природы возникает другой, обладающий свойствами и функциями вовсе не присущими исходному объекту. В этом проявляется особый, необходимо присущий человеку вид деятельности. Такую деятельность можно определить как потребность, направленную на вещественно-энергетическое воспроизводство. Содержанием реализации этой потребности является добывание средств жизни из окружающей среды. Добывание в широком смысле как собственно добывание, так и производство.

Данный вид воспроизводства не является единственно необходимым для существования жизни. В.И.Вернадский писал, что живой организм, “умирая, живя и разрушаясь отдает ей свои атомы и непрерывно берет их у нее, — но охваченное жизнью живое вещество всегда имеет начало в живом же”. Второй вид воспроизводства также необходимо присущ всему живому на Земле. Наукой с достаточной определенностью доказано, что непосредственное зарождение живого из неживой материи на данном этапе развития Земли невозможно.

После возникновения и распространения жизни на Земле ее возникновение в настоящее время на основе одной только неорганической материи оказывается уже невозможным. Все существующие на Земле живые системы возникают сейчас либо на основе живого, либо при посредстве живого. Таким образом, прежде, чем живой организм будет воспроизводить себя вещественно-энергетически, он должен быть воспроизведен биологически, то есть быть рожденным другим живым организмом. Воспроизводство живого живым есть, прежде всего, передача одним поколением другому генного материала, который детерминирует в потомстве явление определенной морфофизиологической структуры. Понятно, что генный материал не передается от поколения к поколению сам по себе, его передача также есть функция жизнедеятельности человека.

1. Артёмов А. Что такое ген. — Таганрог.: Изд-во “Красная страница”, 1989.

2. Биологический энциклопедический словарь. — М.: Сов. энциклопедия, 1989.

3. Вернадский В.И. Химическое строение биосферы Земли и ее окружения.- М.: Наука, 1965.

4. Гайсинович А. К. Зарождение и развитие генетики. — М., 1988.

5. Гершензон С. М. Основы современной генетики. — Киев, 1993.

6. Кибернштерн Ф. Гены и генетика. — М.: Изд-во Параграф, 1995.

7. Тулинов В.Ф. Концепции современного естествознания. -М. : ЮНИТИ, 2004.

Генетика – наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования – молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.).

Наследственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Нас интересует философский аспект проблемы клонирования и возможность решить её в рамках философии биологии.

Клон – совокупность клеток или организмов, генетически идентичных одной родоначальной клетке. Клонирование – метод создания клонов путем переноса генетического материала из одной (донорской) клетки в другую клетку (энуклеированную яйцеклетку).

Прежде всего, следует отметить, что клоны существуют в природе. Они образуются при бесполовом размножении (партеногенезе) микроорганизмов, вегетативном размножении растений. В генетике растений клонирование давно освоено и выяснено, что клоны значительно отличаются по многим признакам; более того, иногда эти различия даже больше, чем в генетически разных популяциях.

Общеизвестный пример естественного клонирования – однояйцовые близнецы. Но и однояйцовые близнецы, хотя и очень похожи друг на друга, далеко не идентичны.

Нынешний клональный бум связан с ответом на вопрос, можно ли не из половой, а из соматической клетки воссоздать организм?

В XX в. было проведено немало удачных экспериментов по клонированию животных (амфибий, некоторых видов млекопитающих), но все они были выполнены с помощью переноса ядер эмбриональных (недифференцированных или частично дифференцированных) клеток. При этом считалось, что получить клон с использованием ядра соматической (полностью дифференцированной) клетки взрослого организма невозможно. Однако в 1997 г. британские ученые объявили об успешном сенсационном эксперименте: получении живого потомства (овца Долли) после переноса ядра, взятого из соматической клетки взрослого животного (донорской клетке более 8 лет). Недавно в США (Университет Гонолулу) были проведены успешные эксперименты по клонированию на мышах. Таким образом, современная биология доказала, что получение клонов млекопитающих в лабораторных условиях принципиально возможно.

От применения технологии клонирования в научных исследованиях ожидается углубление понимания и решение проблем онкологии, учения об онтогенезе, молекулярной генетики, эмбриологии и др. Появление овцы Долли заставило по-новому взглянуть и на проблемы старения.

Особо острые дискуссии развиваются вокруг проблемы клонирования человека. Пока технически это трудно осуществимо, однако, принципиально клонирование человека выглядит вполне выполнимым проектом. И здесь возникает множество уже не только научных и технологических проблем, но и этических, юридических, философских, религиозных.

В этом смысле все проблемы (кроме чисто технических) к философии биологии отношения не имеют, здесь мы наблюдаем инертность социально-гуманитарного знания, которое пытается в новой реальности жить по старым законам. То же касается в частности религий – они приняли астрономию, физику, следовательно, примут и генную инженерию – только бы поменьше народу сожгли на этом пути.

Процесс познания мира не остановить. Очевидно, что исследования в области эмбриологии и клонирования человека очень важны для медицины, понимания путей достижения здоровья человека. Поэтому они должны проводиться. Непосредственное же клонирование человека (вплоть до обстоятельного уточнения правовых, этических, религиозных и других аспектов этой проблемы) будет сталкиваться с большими сложностями, не имеющими отношения к биологии. Рано или поздно настанет время, когда генно-инженерные технологии в области принципов клонирования людей войдут в повседневную жизнь.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.
Однако лишь в начале XX века ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе “задатки” того огромного множества признаков, из которых слагается каждый отдельный организм.

Оглавление

Введение……………………………………………………………………………………3
I. Предмет генетики…………………………………………………………………..…..5
II. Наследственность. Исследования Менделя………………………………….………10
III. Изменчивость и влияние среды. Виды и значение мутаций……………………….13
IV. Лечение и предупреждение некоторых наследственных болезней человека……..19
Заключение…………………………………………………………………………………21
Список используемой литературы……………………………………………………….22

Файлы: 1 файл

Генетика.doc

II. Наследственность. Исследования Менделя………………………………….………

III. Изменчивость и влияние среды. Виды и значение мутаций……………………….

IV. Лечение и предупреждение некоторых наследственных болезней человека……..

Список используемой литературы…………………………………………………… ….

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Однако лишь в начале XX века ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе “задатки” того огромного множества признаков, из которых слагается каждый отдельный организм.

Полным ходом идет секвенирование (установление порядка чередования нуклеотидов) ДНК хромосом важных культурных растений — риса, кукурузы, пшеницы. В начале 2001 года было торжественно возвещено о принципиальной расшифровке у человека всего генома — ДНК, входящей в состав всех 23 пар хромосом клеточного ядра. Эти биотехнологические достижения сравнивают с выходом в космос.

Дезоксирибонуклеиновая кислота, или ДНК, впервые была выделена из клеточных ядер. Поэтому ее и назвали нуклеиновой (греч. nucleus - ядро). ДНК состоит из цепочки нуклеотидов с четырьмя различными основаниями: аденином (А), гуанином (G), цитозином (С) и тимином (Т)[1]. ДНК почти всегда существует в виде двойной спирали, то есть она представляет собой две нуклеотидные цепи, составляющие пару. Вместе их удерживает так называемая комплементарность пар оснований. "Комплементарность" означает, что когда А и Т в двух цепях ДНК расположены друг против друга, между ними спонтанно образуется связь. Аналогично комплиментарную пару образуют G и С. В клетках человека содержится 46 хромосом. Длина генома человека (все ДНК в хромосомах) может достигать двух метров и состоит из трех миллиардов нуклеотидных пар. Ген - это единица наследственности. Он представляет собой часть молекулы ДНК и содержит закодированную информацию об аминокислотной последовательности одного белка или рибонуклеиновой кислоты (РНК).

I. Предмет генетики

Подобно тому, что в физике элементарными единицами вещества являются атомы, в генетике элементарными дискретными единицами наследственности и изменчивости являются гены. Хромосома любого организма, будь то бактерия или человек, содержит длинную (от сотен тысяч до миллиардов пар нуклеотидов) непрерывную цепь ДНК, вдоль которой расположено множество генов. Установление количества генов, их точного местоположения на хромосоме и детальной внутренней структуры, включая знание полной нуклеотидной последовательности, - задача исключительной сложности и важности. Ученые успешно решают ее, применяя целый комплекс молекулярных, генетических, цитологических, иммуногенетических и других методов.

Представители любого биологического вида воспроизводят подобные себе существа. Это свойство потомков быть похожими на своих предков называется наследственностью.

Несмотря на огромное влияние наследственности в формировании фенотипа живого организма, родственные особи в большей или меньшей степени отличаются от своих родителей. Это свойство потомков называется изменчивостью. Изучением явлений наследственности и изменчивости занимается наука генетика. Таким образом, генетика - наука о закономерностях наследственности и изменчивости. По современным представлениям, наследственность - это свойство живых организмов передавать из поколения в поколение особенности морфологии, физиологии, биохимии и индивидуального развития в определенных условиях среды. Изменчивость - свойство, противоположное наследственности, - это способность дочерних организмов отличаться от родителей морфологическими, физиологическими, биологическими особенностями и отклонениями в индивидуальном развитии. Наследственность и изменчивость реализуются в процессе наследования, т.е. при передаче генетической информации от родителей к потомкам через половые клетки (при половом размножении) либо через соматические клетки (при бесполом размножении).

Генетика как наука решает следующие основные задачи:

· изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и ее материальные носители;

· анализирует способы передачи наследственной информации от одного поколения организмов к другому;

· выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на их условий среды обитания;

· изучает закономерности и механизмы изменчивости и ее роль в приспособительных реакциях и в эволюционном процессе;

· изыскивает способы исправления поврежденной генетической информации.

Для решения этих задач используются разные методы исследования.

Метод гибридологического анализа был разработан Грегором Менделем. Этот метод позволяет выявить закономерности наследования отдельных признаков при половом размножении организмов. Сущность его заключается в следующем: анализ наследования проводится по отдельным независимым признака; прослеживается передача этих признаков в ряду поколений; проводится точный количественный учет наследования каждого альтернативного признака и характер потомства каждого гибрида в отдельности.

Цитогенетический метод позволяет изучать кариотип (набор хромосом) клеток организма и выявлять геномные и хромосомные мутации.

Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования (например, доминантный, рецессивный) того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях. Этот метод широко используется в селекции и работе медико-генетических консультаций.

Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.

Биохимические методы исследования основаны на изучении активности ферментов и химического состава клеток, которые определяются наследственностью. С помощью этих методов можно выявить генные мутации и гетерозиготных носителей рецессивных генов.

Популяционно-статистический метод позволяет рассчитывать частоту встречаемости генов и генотипов в популяциях.

Введем основные понятия генетики. При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными (взаимоисключающими) признаками (например, желтый и зеленый цвет, гладкая и морщинистая поверхность горошин). Гены, определяющие развитие альтернативных признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называют доминантным, а не проявляющийся (подавленный) называют рецессивными. Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных или два рецессивных), то такой организм называется гомозиготным. Если же в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм принято называть гетерозиготным по данному признаку. Он образует два типа гамет и при скрещивании с таким же по генотипу организмом дает расщепление.

Совокупность всех генов организма называется генотипом. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов.

Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.

Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа в результате взаимодействия с условиями внешней среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Отдельный признак называется феном. К фенотипическим признакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и тому подобное), но и анатомические (объем желудка, строение печени и тому подобное), биохимические (концентрация глюкозы и мочевины в сыворотке крови и так далее) и другие.

II. Наследственность. Исследования Менделя

Важный шаг в познании закономерностей наследственности сделал выдающийся чешский исследователь Грегор Мендель. Он выявил важнейшие законы наследственности и показал, что признаки организмов определяются дискретными (отдельными) наследственными факторами. Работа “Опыты над растительными гибридами” отличалась глубиной и математической точностью, однако она была опубликована в малоизвестных трудах Брюннскго общества естествоиспытателей и оставалась неизвестной почти 35 лет - с 1865 до 1900 г. Именно в 1900г. Г. де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга переоткрыли законы Менделя и признали его приоритет[3]. Переоткрытие законов Менделя вызвало стремительное развитие науки о наследственности и изменчивости организмов - генетики.

Успехи, достигнутые Менделем, частично обусловлены удачным выбором объекта для экспериментов - гороха огородного (Pisum sativum). Мендель удостоверился, что по сравнению с другими этот вид обладает следующими преимуществами:

1) имеется много сортов, четко различающихся по ряду признаков;

2) растения легко выращивать;

3) репродуктивные органы полностью прикрыты лепестками, так что растение обычно самоопыляется; поэтому его сорта размножаются в чистоте, то есть их признаки из поколения в поколение остаются неизменными;

4) возможно искусственное скрещивание сортов, и оно дает вполне плодовитые гибриды.

Из 34 сортов гороха Мендель отобрал 22 сорта, обладающие четко выраженными различиями по ряду признаков, и использовал их в своих опытах со скрещиванием. Менделя интересовали семь главных признаков: высота стебля, форма семян, окраска семян, форма и окраска плодов, расположение и окраска цветков. Следует отметить, что в выборе экспериментального объекта Менделю кое в чем просто повезло: в наследовании отобранных им признаков не было ряда более сложных особенностей, открытых позднее, таких как неполное доминирование, зависимость более чем от одной пары генов, сцепление генов[4]. Отчасти этим фактом объясняется то, что и до Менделя многие ученые проводили подобные эксперименты на растениях, но ни один из них не получил таких точных и подробных данных; кроме того они не смогли объяснить свои результаты с точки зрения механизма наследственности.

Потребность в диалектике как учении о всеобщей взаимосвязи и законах развития обнаруживается на протяжении всей истории генетики, начиная с момента ее зарождения и кончая современным этапом развития. По отношению к генетике диалектика как бы выполняет функцию ариадниной нити, помогающей ученым найти выход из кризисных состоянии науки и отыскать в лабиринте научных поисков путь к истине.

Зарождение генетики создало в биологии острую проблемную ситуацию, характеризующуюся комплексом противоречий: во-первых, в области гносеологии — между менделизмом и дарвинизмом как биологическими теориями вообще и целостно-непрерывной и дискретной концепциями наследственности в частности; во-вторых, в области методологии — между редукционистской, аналитической программой Г. Менделя, построенной по типу физической науки, и композиционистским традиционно биологическим подходом Ч. Дарвина, в котором доминировал синтез; и, в-третьих, в области мировоззренческих взглядов на органический мир — между принципами изменчивости (дарвинизм) и устойчивости, постоянства (менделизм).

Эти противоречия могли быть правильно разрешены лишь с позиций диалектики, так как только она позволяла уяснить гносеологические возможности менделизма и дарвинизма. В то время биология нуждалась не в альтернативном выборе между редукционизмом или композиционизмом, а в их диалектическом единстве, в органическом дополнении синтетического подхода Дарвина аналитическим подходом Менделя. В мировоззренческом отношении перед биологами встала задача более глубокого осмысления диалектики органического мира как единства изменчивости и относительной устойчивости.

В отличие от Дарвина, который подчеркивал значение изменчивости биологического объекта в процессе эволюции, Мендель сосредоточил внимание на противоположном свойстве живого — устойчивости, которая проявляется в консерватизме наследственности. В его поле зрения попали константно различающиеся признаки, не изменяющие своих характеристик в процессе скрещивания. На этом основании первый биограф Менделя Г. Ильтис[231] сделал даже вывод о том, что Мендель тяготел к идее неизменяемости видов. Данное мнение не соответствует истине[232], хотя Мендель и склонен был придавать большое значение устойчивости признаков. Это важно подчеркнуть, особенно если принять во внимание, что опыты над культурными растениями по изменению наследственности в духе идей ламаркизма не дали положительных результатов и что в то время не было еще достоверных данных о мутационном процессе.

Акцент Менделя на устойчивости живого был абсолютизирован его последователями, не владевшими диалектическим способом мышления.

Однако вернемся к первому этапу становления генетики как науки — менделизму.

Фактически такие же представления о наследственности развивались и Менделем, заложившим научный фундамент корпускулярной теории наследственности. Поставив задачу выяснить количественные отношения наследования отдельных морфологических признаков по поколениям, Мендель экспериментально обосновал представление о наследственности как статическом свойстве организма. Это нашло свое отражение, в частности, в его гипотезе о чистоте гамет, т. е. несмешиваемости между собой наследственных задатков, полученных гибридами от родителей. Если Дарвин обнаружил в объективном процессе развития органического мира способность организмов постоянно изменяться, приспосабливаясь к вечно изменяющейся среде обитания, то Мендель показал, что им столь же свойственно и прямо противоположное качество — сохранение относительного постоянства живой системы. В единстве с эволюционным учением Дарвина идеи Менделя способствовали созданию естественнонаучного фундамента диалектика-материалистической теории развития, согласно которой само развитие понимается как противоречивое единство постоянной изменчивости и относительной устойчивости, взаимополагающих и вместе с тем взаимоисключающих друг друга.

Таким образом, философское значение законов Менделя состояло в том, что они нацеливали исследователей на уяснение важной диалектической мысли, согласно которой для адекватного отражения объективного процесса развития необходимо осознать объективно присущую ему противоречивость. В то время как в учении Дарвина основное внимание было сосредоточено на познании динамической стороны эволюции, законы Менделя выражали ее статическую сторону. В объективной действительности эти два момента неразрывно связаны, и разделение их есть лишь упрощающая абстракция, прием исследования сложного процесса эволюции.

Открытие в объективном процессе эволюции статического момента, вытекающего из сущности наследственности, явилось объективной предпосылкой для утверждения экспериментального метода в качестве главного метода познания в генетике. В то же время использование исторического метода, объективным основанием которого, как известно, выступает динамический момент эволюции, было весьма ограниченным, поскольку эволюционная проблематика исчерпала свои возможности в плане макроэволюции, в котором она разрабатывалась в XIX в. Более того, последующее возрождение эволюционной проблематики, а тем самым и расширение сферы познавательных возможностей исторического метода во многом оказались в зависимости от результатов, добытых с помощью экспериментального метода. Анализ объективной основы экспериментального и исторического методов показывает, что доминирование экспериментального метода в начальный период развития генетики было результатом перенесения центра научных исследований с изучения динамической стороны живой системы на статическую. На том уровне развития эксперимента можно было установить наличие у гена лишь таких свойств, как константность, цельность, независимость от изменений внешней и внутренней среды, т. е. он выступал в эксперименте как лишенный способности изменяться. Однако необходимой предпосылкой применения исторического метода является, как известно, наличие в изучаемом объекте изменений. Концепция постоянства наследственного фактора исключала применение исторического метода.

Вместе с тем незнание диалектико-материалистической методологии мешало многим естествоиспытателям правильно понять соотношение экспериментального и исторического методов, препятствовало оценке их истинной роли в процессе познания, что нередко приводило к антидарвинистской интерпретации полученных экспериментальных данных.

6.2. Борьба за философию марксизма. Становление философских основ ленинизма. Книга "Материализм и эмпириокритицизм"

6.2. Борьба за философию марксизма. Становление философских основ ленинизма. Книга "Материализм и эмпириокритицизм" 6.2.1. Кризис в философии русского марксизма, связанный с революцией в научной картине мира в начале ХХ векаОтступление революции породило у части участников

2. Проблема синтеза генетики и дарвинизма

2. Проблема синтеза генетики и дарвинизма Вызванная к жизни закономерным ходом прогрессивного развития науки потребность в накоплении эмпирического материала о природе наследственности при упрощенном, недиалектическом мышлении превращалась в односторонний эмпиризм,

1. Борьба философских идей и противоречия в становлении генетики как науки

1. Борьба философских идей и противоречия в становлении генетики как науки Потребность в диалектике как учении о всеобщей взаимосвязи и законах развития обнаруживается на протяжении всей истории генетики, начиная с момента ее зарождения и кончая современным этапом

2. Проблема синтеза генетики и дарвинизма

2. Проблема синтеза генетики и дарвинизма Вызванная к жизни закономерным ходом прогрессивного развития науки потребность в накоплении эмпирического материала о природе наследственности при упрощенном, недиалектическом мышлении превращалась в односторонний эмпиризм,

а) Первое неверное истолкование: рассмотрение философских проблем как чего-то наличного в широком смысле. Формальное указание как основная особенность философских понятий

а) Первое неверное истолкование: рассмотрение философских проблем как чего-то наличного в широком смысле. Формальное указание как основная особенность философских понятий Мы хотим вкратце остановиться на этом моменте, тем более что, остановившись на нем, мы не можем

1. Особенности развития философских идей в России в первой половине XIX века

1. Особенности развития философских идей в России в первой половине XIX века XIX век открывает новый этап в истории русской философии, характеризующий ее усложнением, появлением ряда философских направлений, связанных как с идеализмом, так и с материализмом. Возрастает роль

Эпизод в становлении палеогеографии

Эпизод в становлении палеогеографии Начнём с анализа небольшого эпизода, сыгравшего, однако, основополагающую роль в становлении палеогеографии. Этот эпизод – появление в геологии понятия о фациях. Термин этот в его почти современном понимании был введён швейцарским

V. РАЗВИТИЕ ФИЛОСОФСКИХ ИДЕЙ ПОСЛЕ ДЕКАРТА В СРАВНЕНИИ С СОВРЕМЕННЫМ ПОЛОЖЕНИЕМ В КВАНТОВОЙ ТЕОРИИ

V. РАЗВИТИЕ ФИЛОСОФСКИХ ИДЕЙ ПОСЛЕ ДЕКАРТА В СРАВНЕНИИ С СОВРЕМЕННЫМ ПОЛОЖЕНИЕМ В КВАНТОВОЙ ТЕОРИИ В течение двух тысяч лет, последовавших за расцветом греческой науки и культуры V — VI веков до н. э., человеческая мысль была занята прежде всего проблемами, сильно

Загадки генетики

Загадки генетики К заключению о существовании в мироздании Высшего Разума приводят не только достижения современной физики и астрофизики, но и новейшие исследования в области генетики. Уже сравнительно давно было установлено, что у всех живых организмов Земли в

ГЛАВА XIV О СТАНОВЛЕНИИ ГРАНИЦ

ГЛАВА XIV О СТАНОВЛЕНИИ ГРАНИЦ Если бы мы смогли, скажем, в духе Ратцеля и Мауля увидеть органично ход становления границ в их географическом проявлении, развитии и возвратном образовании от неопределенного пограничного пространства к пограничному предполью, от него к

РАЗВИТИЕ ФИЛОСОФСКИХ ИДЕЙ

РАЗВИТИЕ ФИЛОСОФСКИХ ИДЕЙ Таким образом, мы познакомились с тем важным фактом, что все эти идеи – метафизические, космологические и иные – появились в Индии в большом изобилии, без всякой системы и представляли настоящий хаос.Мы не должны предполагать, чтобы эти идеи

Заключительное примечание к разрешению математически трансцендентальных идей и предварительное замечание, касающееся разрешения динамически трансцендентальных идей

Заключительное примечание к разрешению математически трансцендентальных идей и предварительное замечание, касающееся разрешения динамически трансцендентальных идей Выше мы изобразили в виде таблицы антиномию чистого разума во всех трансцендентальных идеях, указав

Тысячи лет философы различных школ решали его по-разному, каждый раз надеясь, что теперь в мире философии воцарится одно направление. Но постоянная смена исторических эпох приводила к появлению новых течений и новых бескомпромиссных споров.

Но неужели на этот раз так случилось, что пока вечно неповоротливая философская мысль только определялась с очередным предметом спора, судьбу одной из ее школ разрешили генетики?

Что ж, посмотрим, что нового в этом деле поведали нам харьковские ученые.

Харьков остается лидером украинской генетики

Для начала немного об авторах: Любовь Атраментова -- доктор биологических наук, профессор кафедры генетики и цитологии Харьковского национального университета им. В.Н. Каразина, член Европейского антропологического общества. Ольга Филипцова -- кандидат биологических наук, старший научный сотрудник кафедры биологии, физиологии и анатомии человека Национального фармацевтического университета.

Обе они известны своими трудами в области нового и неизведанного для нашей страны научного направления -- психологической генетики, а также уникальными исследованиями генетико-демографических процессов в городских популяциях Харьковской области и других регионов восточной Украины.

Генетико-демографические исследования харьковской популяции, проведенные Любовью Атраментовой, также стали первыми в независимой Украине и положили начало исследованиям населения других регионов, в частности, Донецкой, Полтавской, Луганской областей и Автономной Республики Крым.

Как видим, Харьков был и остается лидером в Украине по целому ряду направлений генетики человека. Это во-первых, и во-вторых он в своих исследованиях вышел на мировой уровень научных достижений не только в области медицинской и клинической генетики, изучающей различные болезненные проявления наследственных особенностей, но и психогенетики, и демографической генетики, которая уделяет внимание генетическим особенностям, в целом свойственным населению украинских регионов.

Генетический подход и сущность человека

Чтобы понять насколько авторы повлияли на решение извечного философского спора, надо сначала разобраться в их методе исследования. Его можно условно назвать генетическим подходом в социологии. Посмотрим, что о нем пишут наши исследователи:

«Долгое время сама идея использовать генетический подход к анализу поведения человека считалась неприемлемой. Этому мешало широко распространенное мнение о том, что наследственное -- значит неизменное. Такое убеждение сложилось в науке в то время, когда генетики изучали наследования простых и стабильных признаков. Только позже ученые пришли к пониманию того, что наследуется не признак, а способность к его формированию, то есть генетическая программа. И эта программа неодинаково реализуется в разных условиях.

Наше поведение -- это реакция организма на внешние воздействия. Но только на первый взгляд кажется, что оно бесконечно изменчиво и не зависит от нашей индивидуальной генетической программы. В то время накапливаются факты, которые можно объяснить, только допустив, что поведение находится под генетическим контролем - имеет наследственную основу.

Зная свои наследственные задатки, человек способен избегать ситуаций, которые с высокой степенью вероятности могут привести к нежелательным последствиям для его жизни и карьеры. К примеру, люди, наследственно предрасположенные к формированию химической зависимости, должны активно избегать ситуаций, где им может быть предложен алкоголь.

Резюмировав вышеизложенное, мы можем прийти к выводу, что на основании данных, полученных генетиками в результате исследования, различные стороны поведения человека формируются не самим обществом, а заложены в нем изначально и передаются по наследству. А это, если мы перейдем на философский язык, означает, что школа материализма, благодаря выводам наших ученых, может потерпеть серьезное поражение.

Ведь что говорит последняя? Общественное бытие -- определяет общественное сознание. Но как же оно определяет, если сама генетика экспериментально доказала обратное: что это пресловутое бытие абсолютно не при чем, ибо есть генетическая информация, которая передается по наследству. И именно она является причиной определенного человеческого сознания!

Чтобы разобраться в таком важном и интригующем нас вопросе, как отношение мышления к бытию в свете последних достижений генетики, надо рассмотреть саму сущность человека. А она заключается в том, что человек есть биосоциальное существо.

Когда мы касаемся вопроса его происхождения, то важно понимать, что причина этого - результат активного взаимоотношения человека с природой. Рассматривая в этом контексте концепцию эволюции живых организмов, следует подчеркнуть, что принципиально в этом отношении не то, что человек произошел от обезьяны, а то, что он вообще вышел из животного мира.

Человек - венец биологической эволюции и, вместе с тем, начало эволюции социальной. Оказавшись наиболее развитым в биологическом смысле, человеческий род смог эти преимущества воплотить в своей социальной организации. Научившись преобразовывать природную окружающую среду в соответствии со своими потребностями, он, таким образом, смог выйти победителем из царства природы. И в этом смысле человечество всегда будет революционно в своей основе, так как в истории всегда выступает создателем своего собственного мира.

Но не будем переутомлять нашего читателя. Ведь ему, наверное, намного интересней, как же вопрос о происхождении человека касается нашего философского спора? А он, как будет видно дальше, касается еще и как!

Итак, человек вышел из природного мира, благодаря своему труду. Именно то, что он смог жить не за счет природы, а благодаря своей деятельности, предопределило все его дальнейшие победы: овладение огнем; изготовление пищи; дифференциация и одновременное осмысление производственных процессов и предметов труда, и как результат - появление речи[1], классовое расслоение, создание общества и государства и т.д.

В этом отношении, как говорил Фридрих Энгельс, вся человеческая история начинается от превращения механической формы движения материи в тепловую энергию (овладение огнем), и заканчивается созданием паровой машины - то есть обратным превращением тепловой энергии в механическую форму движения материи. Как видим, всего-то по-Энгельсу, мы прожили только один период диалектического закона отрицания!

Как известно, первое орудие труда, с которого человек, по сути, начал свою человеческую историю, была сама его рука. Тысячи лет используя ее в соответствии с потребностью производить себе пищу и предметы быта, человек смог саму биологическую форму руки преобразовать. То есть эволюция в таком случае имеет социально-биологический характер. А если говорить конкретнее, то результаты социальной эволюции проявляются в человеческом организме в биологической форме. Следовательно, если во многом нынешние природные свойства руки - результат ее векового социального использования, то по такой же аналогии можно предположить, что и различные психологические особенности человека, которые воспроизводятся самим обществом на протяжении тысячелетий, тоже могут закрепляться в человеке в биологической форме, а значит - и передаваться по наследству.

О чем и говорят результаты исследований ученых. Так, еще в 1983 году Говард Гарднер, американский психолог, предложил теорию множественного интеллекта. Согласно этой теории в ходе эволюции в человеческом мозгу возникли отдельные системы, отвечающие за разные виды адаптивных способностей, которые он назвал разными видами интеллекта.

Согласно классификации Гарднера - это лингвистический, логико-математический, пространственный, музыкальный, телесно-кинестетический (спортивный), внутрииндивидуальный и межиндивидуальный интеллекты. В основе каждого интеллекта, по мнению Гарднера, лежат определенные структуры мозга и нервные пути. При их нарушении страдают соответствующие стороны интеллекта.

Существование противоположного типа людей подтверждает теорию Гарднера. У таких людей сильно выражены отдельные способности и почти неразвиты другие, они могут отлично рисовать, но абсолютно неспособны читать, могут перемножать в уме огромные числа, но не могут правильно воспроизвести ни одного танцевального движения. Неравные профили специфических тестов IQ часто встречаются у людей, одаренных в музыке или рисовании. К примеру, у Бетховена почти полностью отсутствовали математические способности.

От генетики поведения к философии отчуждения

Вышеприведенная концепция Гарднера имеет огромное значение, как фактический материал, доказывающий существование в результате эволюции различного типа интеллекта. Но она не в силах объяснить причины такого состояния. А здесь уже философское поле игры. И первый вопрос, который должен разрешить исследователь - это выяснение сущности самого мышления и форм его проявления.

То, что он родился и вобрал в себя все биологические предпосылки для человеческого развития, еще не означает, что человек станет человеком. Ему еще придется пройти огромный путь освоения человеческой культуры (в широком смысле). Исследования антропологов показывают, что история с Маугли - обычная фантазия. Попав к животным, человеческий детеныш не становится человеком, ибо нет там того, что делает его таким. А именно - самого общества, как вечного хранителя и наследника всего человеческого.

Так решает вопрос о наследственности интеллекта философская концепция отчуждения, разработанная в деталях Гегелем и Марксом. Интересно будет узнать, что пишут в связи с этим Любовь Атраментова и Ольга Филипцова:

«Раньше считалось, что интеллект зависит исключительно от образования человека. Уже доказано, что больших успехов добивается человек, хорошо приспособленный к социальной нише, в которой он оказался. Кто-то лучше всего пишет стихи, кто-то метает молот, а у кого-то в уме мгновенно умножаются многозначные числа

Таким образом, в свете рассматриваемого нами философского спора, новые данные генетиков показывают, что передаваться по наследству может лишь та или иная способность к формированию сознания, реальная же практика общественных отношений дает свой окончательный вердикт: развивать ее или нет. А это, в конечном счете, означает, что общественное бытие определяет общественное сознание.

Читайте также: