Этапы развития понятий натурального числа и нуля доклад

Обновлено: 13.05.2024

Глава III. НАТУРАЛЬНЫЕ ЧИСЛА И НУЛЬ
Лекция 31. Аксиоматический метод построения теории в математике

1. Из истории развития понятия числа.

В нашем курсе мы рассмотрим аксиоматическое определение сис­темы натуральных чисел, отвечающее на вопрос, что представляет собой число как элемент натурального ряда; затем построим ее теоретико-множественную модель и выясним, что представляет собой нату­ральное число как мера величины, и, наконец, изучим способы записи чисел и алгоритмы действий над ними.

§ 13. И з истории возникновения понятия натурального числа

Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития.

Арифметика возникла в странах Древнего Востока: Вавилоне. Китае. Индии и Египте. Накопленные в этих странах математические знания были развиты и продолжены учеными Древней Греции. В сред­ние века большой вклад в развитие арифметики внесли математики Индии, стран арабского мира и Средней Азии, а начиная с XIII века – европейские ученые.

Во второй половине XIX века натуральные числа оказались фун­даментом всей математической науки, от состояния которого зависела и прочность всего здания математики. В связи с этим появилась необ­ходимость в строгом логическом обосновании понятия натурального числа, в систематизации того, что с ним связано. Так как математика XIX века перешла к аксиоматическому построению своих теорий, то была разработана аксиоматическая теория натурального числа. Большое влияние па исследование природы натурального числа оказала и созданная в XIX веке теория множеств. Конечно, в созданных теориях понятия натурального числа и действий над ними получили большую абстрактность, но этим всегда сопровождается процесс обобщения и систематизации отдельных фактов.

§ 14.АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ СИСТЕМЫ НАТУРАЛЬНЫХ ЧИСЕЛ

Как уже было сказано, натуральные числа получаются при счете предметов и при измерении величин. Но если при измерении появляются числа, отличные от натуральных, то счет приводит только к числам натуральным. Чтобы вести счет, нужна последовательность числительных, которая начинается с единицы и которая позволяет

осуществлять переход от одного числительного к другому и столько раз, сколько это необходимо. Иначе говоря, нужен отрезок натурального ряда. Поэтому, решая задачу обоснования системы натуральных чисел, в первую очередь надо было ответить на вопрос о том, что же представляет собой число как элемент натурального ряда. Ответ на него был дан в работах двух математиков - немца Грассмана и итальянца Пеано. Они предложили аксиоматику, в которой натуральное число обосновывалось как элемент неограниченно продолжающейся последовательности.
59. Об аксиоматическом способе построения теории

При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

- некоторые понятия теории выбираются в качестве основных и принимаются без определения;

- каждому понятию теории, которое не содержится в списке основ­ных, дается определение, в нем разъясняется его смысл с помощью ос­новных и предшествующих данному понятий;

- формулируются аксиомы - предложения, которые в данной тео­рии принимаются без доказательства; в них раскрываются свойства основных понятий;

- каждое предложение теории, которое не содержится в списке ак­сиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рас­сматриваемой.

Если построение теории осуществляется аксиоматическим мето­дом, т.е. по названным выше правилам, то говорят, что теория по­строена дедуктивно.

При аксиоматическом построении теории по существу все утверж­дения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она долж­на быть непротиворечивой и независимой.

Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения.

Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других акси­ом этой системы.

При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равно­сильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор акси­ом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.

Аксиоматическое построение системы натуральных чисел осуществ­ляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в нашем курсе будет не всегда строгим - некоторые доказательства мы опускаем в силу их большой сложности, но каждый такой случай будем оговаривать.

Лекция 32. Аксиоматическое построение множества целых неотрица­тельных чисел

1. Основные понятия и аксиомы Пеано. Определение целого неотрицательного числа

2. Сложение целых неотрицательных чисел. Таблицы сложения и умножения.

3. Умножение целых неотрицательных чисел. Законы сложения и умножения.

60. Основные понятия и аксиомы. Определение натурального числа

Элемент, непосредственно следующий за элементом а, обозначают а'.

Аксиома 1. В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества. Будем назы­вать его единицей и обозначать символом 1.

Аксиома 2 . Для каждого элемента а из N существует единствен­ный элемент а, непосредственно следующий за а.

Аксиома 3. Для каждого элемента а из N существует не более од­ного элемента, за которым непосредственно следует а.

Аксиома 4. Всякое подмножество М множества N совпадает с N, если обладает свойствами: 1) 1 содержится в М; 2) из того, что а со­держится в М, следует, что и а' содержится в М.

Сформулированные аксиомы часто называют аксиомами Пеано.

Каждое число этого ряда имеет свое обозначение и название, кото­рое мы будем считать известными.

Вообще моделью системы аксиом Пеано может быть любое счет­ное множество, например:

один, два, три, четыре, …

Рассмотрим, например, последовательность множеств, в которой множество есть начальный элемент, а каждое последующее мно­жество получается из предыдущего приписыванием еще одного круж­ка (рис. 108,а). Тогда N есть множество, состоящее из множеств опи­санного вида, и оно является моделью системы аксиом Пеано. Дейст­вительно, в множестве N существует элемент , непосредственно не следующий ни за каким элементом данного множества, т.е. вы­полняется аксиома 1. Если счи­тать обведенные кружки за один элемент (рис. 108.6), то для каждого

множества А рассматриваемой совокупности существует единст­венное множество, которое получается из А добавлением одного круж­ка, т.е. выполняется аксиома 2. Для каждого множества А существует не более одного множества, из которого образуется множество А добавле­нием одного кружка, т.е. выполняется аксиома 3. Если МN и из­вестно, что множество А содержится в М, следует, что и множество, в котором на один кружок больше, чем в множестве А, также содер­жится в N, то М




Заметим, что в определении натурального числа ни одну из аксиом опустить нельзя - для любой из них можно построить множество, в котором выполнены остальные три аксиомы, а данная аксиома не вы­полняется. Это положение наглядно подтверждается примерами, приве­денными на рисунках 109 и 110. На рисунке 109, а) изображено множе­ство, в котором выполняются аксиомы 2 и 3, но не выполнена ак­сиома 1 (аксиома 4 не будет иметь смысла, так как в множестве нет эле­мента, непосредственно не следующего ни за каким другим). На рисун­ке 109, 6) показано множество, в котором выполнены аксиомы 1, 3 и 4, но за элементом а непосредственно следуют два элемента, а не один, как требуется в аксиоме 2. На рисунке 109, в) изображено множество, в котором выполнены аксиомы 1, 2, 4, но элемент с непосредственно следует как за элементом а, так и за элементом b. На рисунке 110 пока­зано множество, в котором выполнены аксиомы 1, 2, 3, но не выпол­няется аксиома 4 - множество точек, лежащих на луче, содержит 1 и вместе с

Рис. 110
каждым числом оно содержит непосредственно следующее за ним чис­ло, но оно не совпадает со всем множест­вом точек, показанных на рисунке.

В настоящее время наше общество постоянно пользуются числами. Мы их используем, чтобы измерить время, купить или продать, позвонить, посмотреть телевизор, вести автомобиль. К тому же у каждого человека есть различные цифры, опознающие его: в удостоверении личности, в паспорте, банковском счёте, кредитной карточке и т. д.
Больше того, сегодня в компьютерном мире вся информация передаётся посредством числовых кодов.

Содержание работы

Введение;
2. История возникновения и развития натуральных чисел;
3. История появления нуля;
4. Заключение;
5. Список использованной литературы.

Файлы: 1 файл

математика.docx

Министерство образования и науки Удмуртской Республики

Бюджетное общеобразовательное учреждение

Среднего профессионального образования

Контрольная работа по учебной дисциплине

Курс 1, группа 33

Дегтярева Анастасия Геннадьевна

Каримуллина Г. Ф.

2. История возникновения и развития натуральных чисел;

3. История появления нуля;

5. Список использованной литературы.

В настоящее время наше общество постоянно пользуются числами. Мы их используем, чтобы измерить время, купить или продать, позвонить, посмотреть телевизор, вести автомобиль. К тому же у каждого человека есть различные цифры, опознающие его: в удостоверении личности, в паспорте, банковском счёте, кредитной карточке и т. д.

Больше того, сегодня в компьютерном мире вся информация передаётся посредством числовых кодов.

Мы встречаемся с числами на каждом шагу и настолько с этим свыклись, что почти не отдаём себе отчёта, насколько важны они в нашей жизни. Числа составляют часть человеческого мышления. С их помощью мы оцениваем свое состояние или достоинство банкноты, измеряем скорость автомобиля, определяем дни недели и месяцы или вычисляем количество калорий в нашем дневном рационе. С помощью чисел мы пересчитываем множество однородных вещей.

На протяжении истории каждый народ писал числа, считал и вычислял в самых различных формах. Но когда же впервые люди стали считать? Кто же их этому научил? Мне стало очень интересно это и я решила изучить данную тему, но чисел на свете очень много , мне пришлось остановиться на числах , которые мы изучаем в начальной школе, то есть на натуральных числах.

Цель: изучить историю развития натуральных чисел и нуля, и выделить основные этапы развития.

1) Изучить, что такое натуральное число.

2) Ознакомиться с историей появления нуля.

История возникновения и развития натуральных чисел.

Натуральные числа могут использоваться для счета (одно яблоко, два яблока, три яблока, …). Натуральные числа – числа, возникающие естественным образом при счете. Это числа: 1, 2, 3, 4, ….
Существуют два основных подхода к определению натуральных чисел:
отрицательные и дробные числа не являются натуральными числами.
Существует бесконечное количество натуральных чисел: для любого натурального числа найдется другое натуральное число, большее его. Ноль, обычно, не относят к натуральным числам. (Хотя существуют так называемые французские натуральные числа – это обычные натуральные числа плюс ноль.

Источником возникновения понятия отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона.

Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея – обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.

Важным шагом в развитии понятия натурального числа является осознание

бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.

Натуральные числа, кроме основной функции – характеристики количества предметов, несут ещё другую функцию – характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.).

Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких- либо более простых понятий.

Термин "натуральное число" впервые потребил римский ученый А. Боэций (ок.480 524 г.г.). Числа стали предметом изучения и возникла наука арифметика. Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии, Египте, развивалась учеными Древней Греции, стран Арабского мира, а начиная с 18 в. — европейскими учеными.

В настоящее время свойства натуральных чисел, действия над ними изучаются в разделе математики который называется теорией чисел.
Процесс формирования представлений о числе у дошкольников в общих чертах повторяет основные этапы исторического развития этого понятия. Сначала дети сравнивают множества приемами наложения и приложения, затем соотносят с количеством пальцев на руке, затем используют натуральные числа при счете.

История появления нуля.

Нуль бывает разный. Во-первых, нуль – это цифра, которая используется для обозначения пустого разряда; во-вторых, нуль – это необычное число, так как на нуль делить нельзя и при умножении на нуль любое число становиться нулем; в-третьих, нуль нужен для вычитания и сложения, иначе, сколько будет, если из 5 вычесть 5?

Впервые нуль появился в древневавилонской системе счисления, он использовался для обозначения пропущенных разрядов в числах, но такие числа как 1 и 60 у них записывали одинаково, так как нуль в конце числа у них не ставился. В их системе нуль выполнял роль пробела в тексте.

Изобретателем формы нуля можно считать великого греческого астронома Птолемея, так как в его текстах на месте знака пробела стоит греческая буква омикрон, очень напоминающая современный знак нуля. Но Птолемей использует нуль в том же смысле, что и вавилоняне.

На стенной надписи в Индии в IX веке н.э. впервые символ нуля встречается в конце числа. Это первое общепринятое обозначение современного знака нуля. Именно индийские математики изобрели нуль во всех его трех смыслах. Например, индийский математик Брахмагупта еще в VII века н.э. активно стал использовать отрицательные числа и действия с нулем. Но он утверждал, что число, деленное на нуль, есть нуль, что конечно ошибка, но настоящая математическая дерзость, которая привела к другому замечательному открытию индийских математиков. И в XII веке другой индийский математик Бхаскара делает еще попытку понять, что же будет при делении на нуль. Он пишет: "количество, деленное на нуль, становится дробью, знаменатель которой равен нулю. Эту дробь называют бесконечностью"

Таким образом, чтобы прийти к понятию числа, человек в своем развитии прошел несколько этапов:

  1. Множества сравнивались непосредственно путем установления взаимно однозначного соответствия между их элементами. ("Яблок столько, сколько человек за столом"). Неудобство заключается в том, что оба

множества должны быть одновременно обозримы.

  1. Вводятся множества—посредники (камешки, зарубки, узелки, пальцы. ). Человек не отвлекается от конкретных предметов, но уже выделяет общие свойства рассматриваемых множеств ("иметь поровну элементов").
    3. Происходит отвлечение от природы множеств—посредников, возникает понятие натурального числа. При счете человек уже не говорил: "Один камешек, два камешка. ", а проговаривал числа: "Один, два, три. ". Это был

важнейший этап в развитии понятия числа.

И.Н.Лузин (крупнейший математик современности):

"Мы должны склониться перед гением Человека, создавшего (не открывшего, а именно создавшего) понятие единицы. Возникло Число, а вместе с ним возникла Математика. Идея Числа — вот с чего начиналась история величайшей из наук".

4. Числа стали не только называть, но записывать и выполнять с ними действия. Появились различные системы счислений.


В заключении я хочу сказать что без чисел сейчас некуда и я считаю что тема моего реферата очень важна для меня и всех остальных людей, числа это наше все Часто говорят, что цифры управляют миром; по крайней мере нет сомнения в том, что цифры показывают, как им управлять. Я полностью согласен с этим утверждением.

1. История математики, т. 1—3, М., 1970—72.

2. И.Я.Депман. Н.Я.Виленкин: За страницами учебника математики. Пособие для учащихся 5-6 классов. - "Просвещение", 1989г..

Числа 1, 2, 3. называют натуральными. Понятие натурального числа является одним из основных математических понятий. Возникло оно из потребности практической деятельности людей. Чтобы прийти к понятию числа, человек в своем развитии прошел несколько этапов:

I. Множества сравнивались непосредственно путем установления взаимно однозначного соответствия между их элементами. ("Яблок столько, сколько человек за столом"). Аналогично дошкольники сравнивают множества способом наложения и приложения.

Неудобство заключается в том, что оба множества должны быть одновременно обозримы.

II. Вводятся множества—посредники (камешки, зарубки, узелки, пальцы. ). Человек не отвлекается от конкретных предметов, но уже выделяет общие свойства рассматриваемых множеств ("иметь поровну эле­ментов").

III. Происходит отвлечение от природы множеств—посредников, возникает понятие натурального числа. При счете человек уже не говорил: "Один камешек, два камешка. ", а проговаривал числа: "Один, два, три. ". Это был важнейший этап в развитии понятия числа.

IV. Числа стали не только называть, но записывать и выполнять с ними действия. Появились различные системы счислений.

Числа стали предметом изучения и возникла наука арифметика. Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии, Египте, развивалась учеными Древней Греции, стран Арабского мира, а начиная с 18 в. — европейскими учеными. Термин "натуральное число" впервые употребил римский ученый А. Боэций (ок.480 — 524 г.г.).

В настоящее время свойства натуральных чисел, действия над ними изучаются в разделе математики, который называется теорией чисел.

Нуль бывает разный. Во-первых, нуль - это цифра, которая используется для обозначения пустого разряда; во-вторых, нуль - это необычное число, так как на нуль делить нельзя и при умножении на нуль любое число становиться нулем; в-третьих, нуль нужен для вычитания и сложения, иначе, сколько будет, если из 5 вычесть 5?

Впервые нуль появился в древневавилонской системе счисления, он использовался для обозначения пропущенных разрядов в числах, но такие числа как 1 и 10 у них записывали одинаково, так как нуль в конце числа у них не ставился. В их системе нуль выполнял роль пробела в тексте.

Изобретателем формы нуля можно считать великого греческого астронома Птолемея, так как в его текстах на месте знака пробела стоит греческая буква омикрон, очень напоминающая современный знак нуля. Но Птолемей использует нуль в том же смысле, что и вавилоняне.

На стенной надписи в Индии в IX веке н.э. впервые символ нуля встречается в конце числа. Это первое общепринятое обозначение современного знака нуля. Именно индийские математики изобрели нуль во всех его трех смыслах. Например, индийский математик Брахмагупта еще в VII века н.э. активно стал использовать отрицательные числа и действия с нулем. Но он утверждал, что число, деленное на нуль, есть нуль, что конечно ошибка, но настоящая математическая дерзость, которая привела к другому замечательному открытию индийских математиков. И в XII веке другой индийский математик Бхаскара делает еще попытку понять, что же будет при делении на нуль. Он пишет: "количество, деленное на нуль, становится дробью, знаменатель которой равен нулю. Эту дробь называют бесконечностью".

Нуль - это уникальный знак. Нуль - это чисто абстрактное понятие, одно из величайших достижений человека. Его нет в природе окружающей нас. Без нуля можно спокойно обойтись в устном счете, но невозможно обойтись для точной записи чисел. Кроме этого, нуль находится в противовесе всем остальным числам, и символизирует собой бесконечный мир. И если “все есть число”, то ничто есть все!

Этапы развития понятия натурального числа и нуля. Натуральный ряд и его свойства. Счет.

ЭТАПЫ РАЗВИТИЯ ПОНЯТИЯ НАТУРАЛЬНОГО ЧИСЛА.

Числа 1, 2, 3. называют натуральными. Понятие натурального числа является одним из основных математических понятий. Возникло оно из потребности практической деятельности людей Чтобы прийти к понятию числа, человек в своем развитии прошел несколько этапов:

I. Множества сравнивались непосредственно путем установления взаимно однозначного соответствия между их элементами. ("Яблок столько, сколько человек за столом"). Аналогично дошкольники сравнивают множества способом наложения и приложения.

Неудобство заключается в том, что оба множества должны быть одновременно обозримы.

Вводятся множества—посредники (камешки, зарубки, узелки, пальцы. ). Человек не отвлекается от конкретных предметов, но уже выделяет общие свойства рассматриваемых множеств ("иметь поровну эле­ментов").

Происходит отвлечение от природы множеств—посредников, возникает понятие натурального числа. При счете человек уже не говорил: "Один камешек, два камешка. ", а проговаривал числа: "Один, два, три. ". Это был важнейший этап в развитии понятия числа.

И.Н.Лузин (крупнейший математик современности):

"Мы должны склониться перед гением Человека, создавшего (не открывшего, а именно создавшего) понятие единицы. Возникло Число, а вместе с ним возникла Математика. Идея Числа — вот с чего начиналась история величайшей из наук".

Числа стали не только называть, но записывать и выполнять с ними действия. Появились различные системы счислений.

Числа стали предметом изучения и возникла наука арифметика. Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии, Египте, развивалась учеными Древней Греции, стран Арабского мира, а начиная с 18 в. — европейскими учеными. Термин "натуральное число" впервые употребил римский ученый А. Боэций (ок.480 — 524 г.г.).

В настоящее время свойства натуральных чисел, действия над ними изучаются в разделе математики который называется теорией чисел.

Процесс формирования представлений о числе у дошкольников в общих чертах повторяет основные этапы исторического развития этого понятия. Сначала дети сравнивают множества приемами наложения и приложения, затем соотносят с количеством пальцев на руке, затем исполь­зуют натуральные числа при счете.

НАТУРАЛЬНЫЙ РЯД И ЕГО СВОЙСТВА. СЧЕТ.

К возникновению понятия числа приводят два вида деятельности: счет и измерение. Счет ведет к натуральному числу, измерение — к действительному числу.

Множество натуральных чисел называют натуральным рядом . Он обладает свойствами:

имеется начальное число (1),

за каждым числом следует только одно число,

каждое последующее число на 1 больше предыдущего, а предыдущее на 1 меньше последующего (n ± 1).

натуральный ряд бесконечен.

При счете используются не все натуральные числа, а только их часть, достаточная для определения количества элементов в множестве.

Например, чтобы определить число элементов в множестве ( а..с.b.е ), нужен отрезок натурального ряда .

Отрезком натурального ряда N называется множество натуральных чисел, не превосходящих натурального числа а.

Во время счета мы следуем некоторым правилам:

считаем каждый элемент только один раз, не пропуская ни одного,

числа называем последовательно, начиная с единицы, не пропус­кая ни одного и не используя дважды.

Счетом элементов множества А называется установление вза­имно однозначного соответствия между множеством А и отрезком 1 натурального ряда N a

Число а называют числом элементов в множестве А. оно единствен­ное для данного множества и является характеристикой количества эле­ментов в множестве А или, короче, количественным натуральным числом.

В процессе счета происходит также упорядочивание элементов множества А (первый элемент, второй, третий. ), т.е. натуральное число можно рассматривать и как характеристику порядка элементов в множестве А или короче, как порядковое число. В этой роли натуральное число выступает, когда хотят узнать, каким по счету является тот или иной элемент множества.

Натуральное число как результат счета не зависит от того, в каком порядке пересчитывались элементы множества, важно, чтобы соблюдались правила счета.

Многие родители допускают ошибку, говоря, что ребенок умеет считать до ста, когда тот может только называть числа от 1 до 100, т.е. запомнил последовательность числительных/ При обучении дошкольника счету, необходимо научить его устанавливать взаимно однозначное со­ответствие между предметами и числами, чтобы избежать ошибок (пропуск предметов сосчитывание одного предмета несколько раз, непо­нимание сколько же всего предметов и др.).

Количественные и порядковые числа тесно связаны, и возможен пе­реход от одного к другому, в зависимости от цели счета. Сам счет служит для упорядочивания элементов множества или для определения их количества.

Способы записи чисел особенности десятичной системы счисления .

СПОСОБЫ ЗАПИСИ ЧИСЕЛ.

Человеку необходимо уметь правильно называть и записывать числа, уметь правильно выполнять действия над ними. Для решения этой про­блемы люди разных стран изобретали различные системы счисления.

Система счисления — язык для наименования, записи чисел и выполнения действий над ними.

Самой старой системой счисления считается двоичная. Человек вел счет не при помощи пальцев, а при помощи рук. Следы этой системы сохранились и сегодня в стремлении считать парами. В компьютерной технике также используется двоичная система счисления.

Переход к пальцевому счету привел к созданию пятеричной системы, десятеричной и др.

В Древнем Вавилоне считали группами по 60, система счисления была шестидесятеричная.

Сейчас наиболее широкое применение получила десятичная система счисления, хотя используются и другие:

шестидесятеричная — при измерении времени,

двенадцатеричная — при счете дюжинами,

двоичная — при счете парами и др.

Различают позиционные и непозиционные системы счисления. Примером непозиционной системы может быть римская нумерация. В ней 7 знаков:

I — один V — пять X — десять L — пятьдесят С — сто D— пятьсот М — тысяча

Все другие числа получаются из этих семи при помощи двух арифме­тических действий: сложения и вычитания. Например IV— четыре (5 — 1 = 4), VI — шесть (5 + 1 = 6). Записи IV и VI показывают, что римская система счисления непозиционная — где бы не стоял знак V или I — он всегда имеет одно и то же значение.

Примером позиционной системы счисления является используемая повсеместно десятичная система. В ней для записи чисел используется 10 цифр, и значение каждой цифры зависит от места (позиции), которое она занимает в записи числа. Например, в записи 253 цифра 2 обозначает сотни в записи 325 — цифра 2 обозначает десятки, а в записи 532 — цифра 2 обозначает единицы.

ОСОБЕННОСТИ ДЕСЯТИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ

Трудности в развитии науки были преодолены с созданием в Древней Индии десятичной системой записи чисел и понятия нуля. Ее завезли в Европу арабские купцы поэтому ее долго называли арабской.

В десятичной системе счисления для записи чисел используются 10 знаков (цифр): 0,1,2,3,4,5,6,7,8,9.

Для краткости записи цифры пишут друг за другом, а значение цифры зависит от ее места, считая справа налево.

Например: 5457 — краткая запись числа "пять тысяч четыреста пятьдесят семь". Подробная запись этого числа выглядит так: 5000 + 400 + 50 + 7 или, более строго,

5- 10 3 + 4 10 2 +5- 10 + 7.

Краткая запись числа выглядит так: а а а

Числа 1,10,10 2 ,10 3 . 10 п называются разрядными единицами соответственно первого, второго и т.д. разряда.

10 единиц одного разряда составляют 1 единицу следующего высшего разряда.

10 — основание системы счисления, поэтому она называется деся­тичной.

Три первых разряда образуют класс единиц следующие три разряда — классом тысяч, затем идет класс миллионов и др.

Вы можете изучить и скачать доклад-презентацию на тему Тема 4. Возникновение понятия натурального числа. Освоение количественных. Презентация на заданную тему содержит 20 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Понятие натуральных чисел Натуральными называют числа, которые были придуманы людьми для счета элементов реальных множеств ( животных, людей, предметов), а также для фиксирования результатов измерения величин (размера, длины, массы, площади, времени). Как многие математические понятия, понятие натурального числа возникло из потребностей практики способом установления взаимно однозначного соответствия или несоответствия (пальцы рук, камешки, узелки и т.п).

Натуральные числа Числа которые используются при счете называются натуральными -1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16…… 1- самое маленькое число; самого большого числа не существует ; Число 0 (ноль)- означает отсутствие предмета; Ноль ( 0) не является натуральным числом

Свойства натурального ряда чисел В конце XIX века итальянским математиком Джузеппе Пеано были сформулированы свойства следования натуральных чисел: имеется начальное число (один); за каждым числом следует только одно число; каждое последующее число на единицу больше предыдущего, а предыдущее на единицу меньше последующего - формула (n ± 1); натуральный ряд бесконечен; при счете используются не все натуральные числа, а только их часть, достаточная для определения количества элементов в множестве.

Понятие счет. Задачи при обучении счету Счет - это процесс упорядочивания множества путем присвоения каждому элементу определенного номера. Дети дошкольного возраста знакомятся со счетом и числами в пределах первого десятка. Задачи при обучении счету: понимание образования чисел на основе сравнения множеств; овладение процессуальным и итоговым счетом; различением и овладением количественным и порядковым счетом, прямым и обратным счетом; счетом группами, счетом с участием различных анализаторов.

Этапы счетной деятельности Первый этап ( 2-3г.ж.). Основная цель этого этапа — ознакомление со структурой множества. Основные способы — выделение отдельных элементов в множестве и составление множества из отдельных элементов ( анализ, синтез). Дети сравнивают контрастные множества: много и один.

Этапы счетной деятельности Второй этап также дочисловой, однако в этот период дети овладевают счетом на специальных занятиях по математике. Цель — научить сравнивать смежные множества поэле­ментно, т. е. сравнивать множества, отличающиеся по количеству элементов на один. Основные способы — накладывание, прикладывание, сравнение. В результате этой деятельности дети должны научиться устанавливать равенство из неравенства, добавляя один элемент, т. е. увеличивая, или убирая, или уменьшая, множество.

Этапы счетной деятельности Третий этап условно соотносится с обучением детей 5-го года жизни. Основная цель — ознакомить детей с образованием числа. Характерные способы деятельности — сравнение смежных множеств, установление равенства из неравенства (добавили еще один предмет, и их стало поровну — по два, по четыре и т. д.). Результат — итог счета, обозначенный числом. Таким образом, ребенок вначале овладевает счетом, а затем осознает результат — число.

Этапы счетной деятельности Четвертый этап овладения счетной деятельностью осуществляется на 6-м году жизни. На этом этапе происходит ознакомление детей с отношениями между смежными числами натурального ряда. Результат — понимание основного принципа натурального ряда: у каждого числа свое место, каждое последующее число на единицу больше предыдущего, и наоборот, каждое предыдущее — на единицу меньше последующего.

Этапы счетной деятельности Шестой этап развития счетной деятельности связан с овладением детьми десятичной системой счисления. На 7- году жизни дети знакомятся с образованием чисел второго го десятка, начинают осознавать аналогию образования любого числа на основе добавления единицы (увеличения числа на единицу). Понимают, что десять единиц составляют один десяток. Если к нему прибавить еще десять единиц, то получится два десятка и т. д. Осознанное понимание детьми десятичной системы происходит в период школьного обучения.

Читайте также: