Доклад на тему синергетика и самоорганизация природы кратко

Обновлено: 08.07.2024

Концепция синергетики в современной науке широко применяется для исследования самых разнообразных явлений:

  • биологических,
  • химических,
  • социальных,
  • физических и т.д.

Кроме этого, синергетика позволяет построить общую картину эволюции на единой основе, а также выявить основные закономерности развития Вселенной.

Если посмотреть на историю Вселенной, можно заметить постоянный рост сложности всех подсистем. Изначально появились элементарные частицы, потом самые простые атомы гелия и водорода, далее более сложные атомы, из которых состоят первые живые клетки и т.д. Последней ступенью в эволюции живого является человек.

Говоря другими словами, история Вселенной – это некая борьба негэнтропии и энтропии – порядка с хаосом. и пока эта борьбы была довольно успешной, так как процессы самоорганизации приводили к возникновению все более сложных структур.

Самоорганизация физических систем началась задолго до того, как началась разработка теории самоорганизации. Такое явление экспериментальным путем было зафиксировано Х. Бернаром в процессе опыта с образованием призматических ячеек в вязкой жидкости. Для этого Берна налива ртуть в плоский сосуд, который подогревался снизу. По достижении критического значения разницы температур нижнего и верхнего слоя ртути верхний слов распадался на большое количество шестигранных призм, сторона и высота которых имела определенное соотношение. Такие структуры стали называться ячейками Бернара и являются классическим примером самоорганизации.

Образование облаков, снежинок, галактик и Вселенной являются другими примерами самоорганизации в неорганической природе.

Самоорганизация в живой природе и в социальной жизни

Процесс самоорганизации в живой природе является типичным процессом, так как сама жизнь возникла в результате самоорганизации неорганической материи. Живые организмы являются сильно неравновесными системами и потребляют энергию и вещество из окружающей среды. Образование популяций и биогеоценозов также является примером процесса самоорганизации. Мозг человека с процессами творчества и мышления тоже рассматривается в качестве самоорганизующейся системы.

Готовые работы на аналогичную тему

В общественной жизни в качестве диссипативной системы рассматривается экономика, где аналогичную диссипации функцию выполняет конкуренция. На сегодняшний день понятия и образы синергетики активно применяются в процессе исследования идеальных образований, таких как язык, искусство, знание и т.д.

Благодаря синергетике можно рассмотреть универсальную схему процесса эволюции, которая выглядит следующим образом.

На начальной стадии эволюции происходит медленное развитие свойств системы. Данный процесс является достаточно предсказуемым. В определенный момент происходит кумуляция внутренних сил либо внешнее воздействия доходит до критического значения, либо оба этих процесса вместе. При этом происходит быстрое изменение параметров системы, а состояние системы, ранее стабильное, резко снижает степень стабильности. В такой ситуации даже малейшее воздействие способно перевести этап эволюции на новый путь, а развитие потом пойдет по другой линии. Снова наступит спокойный участок, который затем в определенный момент вновь сменится новым бифуркационным процессом.

Бифуркация в общей эволюционной схеме

Механизм бифуркации имеет большое значение в общей эволюционной схеме. Именно такой механизм является источником роста многообразия разного вида форм организации материи, и, соответственно, непрерывно увеличивающейся сложности ее организации. Помимо этого, ввиду вероятностного характера процесса бифуркации, вероятность обратного эволюционного хода стремится к нулю. А это связано с еще одним фундаментальным фактом –невозможна обратимость не только эволюционного процесса, но и времени. общая направленность эволюционного процесса заключается именно в этом.

Так выглядит общая схема самоорганизационных процессов, которые в общих чертах справедливы и для живой материи, и для общества, и для неживой материи. Несмотря на общность, эта схема отражает такую особенность процессов эволюции, как направленность. Все эти процессы направлены в сторону усложнения организации Вселенной и роста разнообразия организационных форм. В эволюционной теории Дарвина отмечалось, то это положение справедливо для живого мира. Однако, это является справедливым для всех процессов самоорганизации, включая и Вселенную.

Таким образом, в ходе самоорганизации непрерывно разрушаются старые и появляются новые структуры, новые формы организации материи, которые обладают новыми свойствами. Следует отметить, что качественно это те же самые образования, которые отличаются только геометрическими формами, размерами или другими физическими особенностями. Во Вселенной происходит возникновение уникальных образований, возникновение новых бифуркаций, в результате чего формируются новые структуры, аналогов которым еще не было.

Процессы объединения элементов происходят непрерывно и на всех уровнях организации материального мира. данный процесс является универсальным. Все уровни мироздания пронизывает тенденция к кооперативности. Поэтому гипотеза, согласно которой процесс формирования новых форм организации материи подчиняется тем же фундаментальным законам, имеет право на существование. Механизмы, определяемые этими фундаментальными законами, называются механизмами сборки. Под действием этих механизмов появляются новые образования, которые обладают новыми свойствами. В ряде случаев эти свойства можно предсказать исходя из свойств элементов данных систем. Однако, это возможно далеко не во всех случаях.

Наиболее ярким примером является вода, которая обладает зависимостью плотности от температуры. Данное свойство невозможно вывести из свойств атомов кислорода и водорода. Таких примеров бесчисленное множество в сфере живого вещества и социальных отношений.

Синергетика — наука о законах самоорганизации сложных развивающихся систем.

Основоположники ( Пригожин, Хакен , в россии Курдюмов).

Термин “синергетика” (греч. — содействие, сотрудничество) использовал Г. Хакен. Она изучает любые самоорганизующиеся системы, состоящие из многих подсистем (электроны, атомы, молекулы, клетки, нейроны, органы, сложные многоклеточные организмы, люди, сообщества людей).

Стремится показать, как из хаоса возникают многообразные формы сложноорганизованной физической реальности. Тем самым перебрасывается как бы мостик между физикой и биологией.

Биологическая теория говорила о созидании в процессе эволюции все более сложных и упорядоченных живых систем, а термодинамика — о разрушении. Эти коллизии между физикой и биологией требовали своего разрешения.

Современные концепции самоорганизации позволяют устранить традиционный парадигмальный разрыв между эволюционной биологией и физикой.

Синергетика призвана решить задачу, как из хаоса возникает порядок. Ведь суть всякой организации состоит в упорядоченности элементов системы.

В процессе порождения хаосом упорядоченных организованных систем обязательно появятся качественные переходы, т.е. возникнут такие ситуации, когда непрерывность прерывается, а качественная определенность процесса преобразуется. В синергетике для обозначения такого скачкообразного преобразования вводится название бифуркация. В процессе движения от хаоса к порядку, который представляет собой процесс преобразования качественной определенности, спонтанно возникает неопределенность, порождаемая бифуркациями.

Характер направленности самоорганизации связан с АТТРАКТОРОМ — некоторое определенное состояние , к которому стремится эволюция системы.

Аттрактор обоснован законами природы. Он неидеален. Аттракторов множество. Можно говорить только о вероятности определенного аттрактора.

Исходя из реального состоянии системы в данный момент времени мы можем определить основной аттрактор, в большинстве случаев мы не можем точно определить какой из аттракторов будет реализован.

Каждый прогноз носит вероятностный характер.

Странный аттрактор позволил сделать вывод, что система способна к непредсказуемому изменению.

Флуктуация — случайное отклонение физических величин от их средних значений.

Синергетика перебросила двойной мостик от мира неорганического к живым системам:

1. Она выявила аналогию структур функционирования физико-химических и биологических систем.

2. Показала необходимость эволюции неорганических систем в направлении к органическим.

Благодаря математической форме используемых моделей синергетика открыла новые перспективы использования знания, полученного при исследовании физико-химических систем, для изучения органических и социальных систем.

Понятие хаоса играло немаловажную роль на протяже­нии всей истории развития человеческой мысли. С хаосом связывались представления о гибельном беспорядке, о не­различимой пучине, зияющей бездне. Собственно, такое представление является наиболее распространенным и в обыденной жизни.

Процессы, протекающие в различных явлениях приро­ды, следует разделять на два класса. К первому классу от­носятся процессы, протекающие в замкнутых системах. Они развиваются в направлении возрастания энтропии и приводят к установлению равновесного состояния в систе­мах. Ко второму классу относятся процессы, протекающие в открытых системах. В соответствующие моменты — мо­менты неустойчивости — в них могут возникать малые возмущения, флуктуации, способные разрастаться в макро­структуры.

Управление такой систе­мой может рассматриваться лишь как способствование соб­ственным тенденциям развития системы, с учетом прису­щих ей элементов саморегуляции. Во-вторых, для самоор­ганизующихся систем существует несколько различных путей развития. В равновесном или слаборавновесном со­стоянии в системе существует только одно стационарное состояние, которое зависит от некоторых управляющих параметров. Изменение этих управляющих параметров будет уводить систему из равновесного состояния. В кон­це концов, вдали от равновесия система достигает некото­рой критической точки, называемой точкой бифуркации.

Начиная с этого момента на дальнейший ход эволюции системы могут оказывать воздействия даже ничтожно ма­лые флуктуации, которые в равновесом состоянии системы попросту неразличимы. Поэтому невозможно точно пред­сказать, какой путь эволюции выберет система за порогом бифуркации. В параграфе 6 главы 7 этой книги будет рассмотрен сценарий эволюций Вселенной через призму синер­гетики.

Следует отметить высокий темп идей и открытий при описании синергетических явлений во всех отраслях науки. Важное значение синергетики состоит в том, что она указывает границы применимости II начала термодинами­ки и, более того, делает его элементом более широкой тео­рии необратимых процессов, в которой предполагается ес­тественное описание с единой точки зрения обоих классов явлений природы.

Синергетика - наука о самоорганизации простых систем, о превращении хаоса в порядок. Возникшие сложные упорядоченные системы попадают под действие конкуренции и отбора. Как утверждает Хакен, это приводит в определенном смысле к обобщенному дарвинизму, действие которого распространяется не только на органический, но и на неорганический мир.

Объект изучения синергетики, независимо от его природы, должен удовлетворять следующим требованиям:

1. Система должна быть открытой, т. е. обмениваться веществом и энергией с окружающей средой;

2. Система должна быть достаточно далеко от точки термодинамического равновесия, т. е. в состоянии, близком к потере устойчивости;

3. Обладать достаточным количеством элементов, взаимодействующих между собой;

4. Иметь положительную обратную связь, при котором изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что приводит к возникновению нового порядка и структуры;

5. Сопровождаться нарушением симметрии, т. к. изменения приводят к разрушению старых и образованию новых структур;

6. Скачкообразно выходить из критического состояния при переходе на более высокий уровень упорядоченности. Скачок - это крайне нелинейный процесс, при котором малые изменения параметров системы вызывают очень сильные изменения ее состояния и переход в новое качество.

Примеры синергетики существуют во всех естественных науках:

- лазер, создающий высокоорганизованное оптическое излучение;

- эффект Бенара - при нагревании силиконового масла на его поверхности возникает динамическая упорядоченная структура, напоминающая кристалл в виде сеточки с ячейками гексагональной формы.

- реакция Белоусова-Жаботинского - это автоколебательные процессы при окислении-восстановлении солей церия: Се 3+ « Се 4+ . На стадии окисления жидкость становится красной, при восстановлении - синей. Окраска раствора постоянно периодически изменяется.

- в биологии к числу синергетических явлений относятся мышечные сокращения, электрические колебания в коре головного мозга и т. д.

Постепенно предмет синергетики распределился между различными направлениями:

- теория динамического хаоса исследует сверхсложную упорядоченность, напр. явление турбулентности;

- теория детерминированного хаоса исследует хаотические явления, возникающие в результате детерминированных процессов (в отсутствие случайных шумов);

- теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации, процесс самоорганизации также может быть фрактальным;

- теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость;

- лингвистическая синергетика и прогностика.

Стартовой точкой для всех исследований в области синергетики является адекватное описание состояния системы на разных уровнях.

Важно иметь в виду, однако, что описание таких состояний системы на различных уровнях может относиться к совершенно разным количествам объектов, а также к абстрактным понятиям, например, к мнению или поведению людей или целых социальных групп. Описание поведения системы на различных уровнях может быть выполнено с помощью так называемого вектора состоянии.

Следующее понятие, используемое в синергетике - управляющий параметр (императив, доминанта, идея, миссия, философема, постулат), который может быть представлен как одиночным, так и несколькими управляющими параметрами. Их количество фиксировано и налагается на систему извне - управляющие параметры не меняются по мере изменения системы.

Синергетика фокусирует свое внимание на тех ситуациях, в которых поведение системы изменяется качественно при изменении управляющих параметров.

Если структура сохраняется при изменении условий среды, т. е. управляющих параметров, то эта структура называется устойчивой или структурно устойчивой. Но если структура изменяется, мы говорим об относительной неустойчивости. Как было сказано прежде, синергетика фокусирует свое внимание на качественных изменениями тех случаях неустойчивости, которые вызваны изменением параметров управления. В условиях нового управляющего параметра система сама создает специфические структуры, что и называется самоорганизацией.

Во многих случаях поведение системы, близкое к таким точкам неустойчивости, может зависеть от поведения очень немногих переменных, можно даже сказать, что поведение отдельных частей системы просто определяется этими немногими факторами. Эти факторы называются параметрами порядка, и здесь нужно избегать представления о том, что эти параметры заботятся только о порядке; они могут также представлять или управлять беспорядочные, хаотические состояния или управлять ими.

Параметры порядка играют доминирующую роль в концепции синергетики. Они “подчиняют” отдельные части, т. е. определяют поведение этих частей. Связь между параметрами порядка и отдельными частями системы называется принципом подчинения. С определением параметров порядка поведение системы можно считать описанным. Отпадает необходимость описания поведения системы посредством описания отдельных ее частей, нам нужно иметь дело или описывать поведение только параметров порядка. Другими словами, мы получаем здесь огромное информационное сжатие. Такое информационное сжатие, между прочим, типично для любого языка.

Отдельные части в свою очередь сами генерируют параметр порядка своим коллективным поведением. Это называется круговая причинная связь. В технических системах такая круговая причинная связь известна как обратная связь.

Однако, в отличие от технических систем, в которых параметр порядка фиксирован с самого начала (инженером), например, в форме устройства управления, в синергетических системах параметры порядка создаются отдельными частями системы.

Систематическое представление дает представление о поведении параметров порядка, поскольку от них исходят типичные виды поведения систем. Понятие информационного сжатия, упомянутое выше, исходит из принципа подчинения и дает огромное преимущество для описания поведения сложной системы в относительно простых условиях.

Существует фундаментальное различие между поведением параметров порядка и подчиненных частей с течением времени. Параметры порядка реагируют на возмущения извне медленно, а части - быстро. Можно было бы даже сказать: параметры порядка живут дольше, части же живут меньше (в своей поведенческой динамике).


Материя располагает дееспособность к самоорганизации - это непредсказуемый переход публичной неравновесной системы от меньшей ступени к более сложной и упорядоченной. Самоорганизация отличается от процесса организации тем, что сущность представленного хода разъясняется природой самой системы. Другими словами, организация, будто система - самоорганизующаяся, ежели она без вспомогательных воздействий находит пространственную или функциональную структуру. Самоорганизацию как явление, свойственное открытым системам, изучает наука-синергетика.

Синергетика - научное направление, которое исследует процессы взаимодействия, коллаборации, эволюции сложных и динамичных систем. Термин был введен Германом Хакеном в начале 1970 года. Конечно, некоторые сообщества упрекали, возражали этому направлению. Критики утверждали, что синергетика - пустое понятие, которое излишне математизировано и представляет собой один из видов физики, развивающейся экстенсивно. Через несколько лет все сомнения развеялись, и синергетика стала общепризнанным направлением.

Наименование теории Г.Хакен объяснял это так, что он искал такое слово, которое бы объединяло совместную деятельность, то есть общую энергию. Заметим, что синергетика-это особый язык, посредством которого можно описать жизнь сложных систем.

Очевидно, что системы, которые существуют в природе, безоговорочно не похожи на те, которые созданы человеком.

Системы, в естественной среде, характеризуются устойчивостью к внешним воздействиям, способностью развиваться и расти. А системы, которые созданы человеческим трудом, часто имеют свои особенности: резкое ухудшение функционирования и ошибки в управлении.

Можно сделать вывод, что необходимо заимствовать опыт построения организации, накопленный природой и использовать его в своей деятельности.

Задачи синергетики.

Задача первая: выяснение закономерностей построения организации и возникновение порядка. В отличие от кибернетики, большое внимание уделяется принципу построения и развития организации.

Наличие решения вопросов в различных областях от физики и химии до экономики и экологии, создание и поддержание организации, формирование упорядоченности - это либо цель деятельности, либо ее значимый шаг.

Вторая важная задача для синергии - найти ответ. Необходимость решения ряда задач науки и техники, анализа сложных процессов различной природы с использованием новых математических методов.

Дисциплина поиска математических моделей физики связана с линейными уравнениями. По порядку это уравнения, в которых неизвестные включены только в первой степени. Но на самом деле они описывают процессы, протекающие одинаково при различных внешних воздействиях. При увеличении интенсивности воздействия изменения остаются количественными и новые качества не возникают.

Тем не менее, ученым и по сей день часто приходится иметь дело с явлениями, когда более интенсивные внешние воздействия приводят к качественно новому поведению системы. Здесь нам нужны нелинейные математические модели, а их анализ. Это дело намного сложнее, но оно необходимо, чтобы решить множество проблем.

Это приводит к появлению широкого фронта изучения нелинейных явлений, к попыткам сформировать унифицированные комбинации, которые будут применимы к большинству систем. Именно такие подходы используются в синергетике.

Ключевые положения синергетики

В отличие от других наук, которые, возникали на основе двух ранее существовавших наук и характеризовались проникновением метода одной науки в другую, синергетика опирается на внутренние точки. Например, физики, микробиологи, химики, математики видят свои собственные задачи, и каждый из них применяет свой собственный метод науки, обогащая общий запас мыслей и методов этой науки.

Эту особенность синергетики подробно описал Хакен, будто данная конференция, как и все предыдущие, показала, что существуют удивительные аналоги между поведением абсолютно разных систем. С этой точки зрения данная конференция служит примером существования новой области науки - синергетики. Конечно, синергетика не существует сама по себе, но она связана с другими науками по крайней мере, двумя путями. Во-первых, изучаемые синергетикой системы относятся к компетенции разных наук. Во-вторых, многие другие науки воплощают свои идеи в синергетику. Можно сделать вывод: синергетика как наука делает первые шаги и существует сразу в нескольких версиях, которые отличаются названиями и степенью общности.

Когда Г. Хакена попросили назвать ключевые положения синергетики, он перечислил их в следующем порядке:

1. Изучаемые системы строятся из нескольких идентичных или неидентичных частей, которые друг с другом взаимодействуют.

2. Эти системы нелинейные.

3. Увидев физические, химические и биологические системы, мы говорим об публичных системах, которые не близки от теплового равновесия.

4. Эти системы подвержены внутренним и внешним колебаниями.

5. Системы могут быть нестабильными.

6. Совершаются качественные изменения.

7. В этих системах создаются новые качества.

8. Возникают пространственно-временные структуры.

9. Структуры могут быть либо упорядоченными, либо хаотичными.

В этих десяти позициях Хакену действительно удалось в очень лаконичной форме выразить основное содержание синергетики. Рассмотрим это содержание для полноты картины.

Содержание синергетики

Хакен в первую очередь подчеркивает, что части систем взаимодействуют друг с другом для того, чтобы появились новые системы. Обычно они думают так: сложное возникает из простого, но это так. Логика Хакена идет немного в другую сторону. Фундаментальный системный фактор - это не хаос, а динамика.

Важнейшее понятие синергетики - нелинейность. Синергетика фокусируется на изучении нелинейных математических соотношений, требуемые значения в степенях не равны 1. Линейность делает движение бесспорным и абсолютным. Нелинейность отражает разнообразие и нестабильность, бифуркации.

Точка бифуркации - это состояние максимального хаоса в неравновесном процессе. Из-за хаоса дальнейшее развитие процесса имеет много возможных путей от зоны ветвления. Её можно сравнить с положением шара на выпуклой поверхности, например, сферической, которая достаточно нестабильна.

Любой удар может вывести шарик из неустойчивого состояния, после этого он начнет катиться вниз, но по какой именно траектории он пойдет от точки бифуркации, предположить точно невозможно. Это так называемый случайный процесс.

Имея дело с открытыми нелинейными системами, синергетика утверждает, что мир возникает в результате спонтанных и самоорганизующихся механизмов. В их основе лежит равномерная симметрия форм живой и неживой природы.

Синергетика имеет дело с публичными системами, которые совсем далеки от равновесия. Открытость системы показывает наличие в ней источников и стоков, например, информация.

Чтобы сформировать систему, необходим соответствующий динамический источник. К примеру, без снабжения энергией организмы вымирают; любая социальная система, которая обесточена с точки зрения информации, безжизненна. Когда наступает равновесие, самоорганизация прекращается.

Самостоятельные системы подвержены колебаниям, потому что во время колебаний система движется к стабильной конструкции. Нелинейные уравнения обычно описывают колебательные процессы. Эта теория колебаний важна в радиотехнике и в системных процессах.

Если параметры системы достигают критических значений, то система переходит в состояние нестабильности. Благодаря этим изменениям и возникают новые качества. Новое возникает быстро, однако развитие идет через неустойчивость и часто посредством малых возбуждений.

Одним из больших открытий было открытие Лоренцем сложного поведения по отношению к простой динамической системе. При конкретных значениях параметров траектория системы вела себя настолько сложно, что внешний наблюдатель мог принять ее характеристики как случайные.

Синергетика, как показал И. Пригожин во многих своих работах, позволяет нам понять два самых главных фактора существования нашего окружения. Это время и необратимость. Во-первых, необратимость играет важную роль, а во-вторых, необходимо заново открыть для себя понятие времени. Можно посмотреть на суть проблемы.

В свое время теория Чарльза Дарвина послужила хорошим толчком для раскрытия исследований в области развития природных систем. Эволюционная концепция заставила даже физиков посмотреть на свой предмет с другой стороны, да и в принципе природу в целом. Дело в том, что биологи и физики придерживались совершенно противоположных взглядов на эволюцию природы.

В биологии время необратимо, его стрела идет от рождения человека к его смерти, но нет связи между необратимостью и временем, как в термодинамических системах. Живые существа более упорядочены, чем неживые.

В термодинамике при выравнивании температур энтропия в замкнутой системе всегда возрастает. По мнению Л. Больцмана, термодинамическое время необратимо и это стрела времени.

Однако в классической механике время считается обратимым. Прямое и обратное течение времени эквивалентны. Всегда считалось, что для описания движения достаточно задать начальные условия. А это, прежде всего координаты и скорость. Тогда по законам механики можно будет определить положение движущегося тела в любой момент будущего и прошедшего времени. Иными словами, фактор времени здесь не сыграл большой роли.

Несмотря на это, возникает непонятная ситуация: в одной физической теории, а именно в механике, время считается обратимым, а в другой, в термодинамике, время, наоборот, признается необратимым. Такая непоследовательность вызывает подозрение у ученых, они стремятся преодолеть эти противоречия.

Пригожин приходит к выводу, что время всегда необратимо, а сама необратимость связана только с самоорганизацией систем и составляет основу эволюции. Открытие времени вынуждает человечество с новым взглядом проанализировать свое будущее.

Аналогично этому, кибернетике Винера предшествовала нейрокибернетика Ампера, которая обладала непрямым подходом к "Науке управления в кибернетических системах", синергетика Хакена обладала собственными "предшественниками" согласно имени: синергетика Ч. Шеррингтона, Со. Улана и Забуского.

Английский физик Ч.Шеррингтон разработал концепцию нервной системы. Он называл синергетическим согласованное воздействие нервной системы при управлении мышечными движениями.

В случае если учесть нелегкость систем, изучаемых синергетикой Хакена, то становится ясно, что синергетический подход И.Забуского займет заслуженное место среди прочих средств и методов.

Синергетические понятия дают возможность оценить характер эволюции и развития человека. Таким образом, мы приходим к большому выводу:

Во-первых, неудивительно, что давно взорвался протовакуум, потому что находился в неравновесном состоянии и скатился в состояние аттрактора, которое сопровождалось расширением и охлаждением Вселенной.

Во-вторых, всем известно, что живые организмы способны сохранять свою устойчивость. Именно этот процесс происходит благодаря обратным отрицательным связям.

В-четвертых, с синергетических позиций эволюция мира привела к становлению человека как биологического вида. Это представляется вполне закономерной характеристикой.

В-пятых, возникновение политических, экономических и религиозных составляющих также укладывается в картину синергетических представлений.

Мировоззренческая сила синергетического подхода такова, что он используется в качестве междисциплинарного средства для описания всех сложных систем.

Синергетика позволяет с новых позиций понять время и необратимость. Стратегия человечества должна предполагать его коэволюцию с природой. Синергетика очерчивает возможности людей согласно по познанию нелинейных открытых систем и выработке новой стратегии поведения.

Синергетика дает представление о возможностях и ограничениях нашего познания. «Мы не должны отступать, ибо пережим, как и отказ от воздействия, могут толкнуть систему из одного хаотического состояния в другое. Мы должны быть смелыми – в соответствии с условиями нелинейности и сложности эволюции.

Список литературы

1. [Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — 622с]

2. [Карпенко С.Х. Концепции современного естествознания: Учебник для вузов. - М.: Академический проспект; Фонд "Мир"]

4. [Северцов А.С. Теория эволюции.(м.:ВЛАДОС,2005)]

5. [Аршинов В.И.. Синергетика как феномен постнеоклассической науки, М. ИФРАН, 1999 ]

Синергетика и законы природы. Синергетика как наука. Синергетика как научный подход и метод. Универсальная теория эволюции - синергетика.

Синергетика и законы природы. Универсальная теория эволюции - синергетика

Синергетика. Наука синергетика.

Синергетика, или теория сложных систем, - это междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации.

Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.

Синергетика. История синергетики. История современной синергетики.

В течение своей жизни Ричард Фуллер задавался вопросом относительно того, есть ли у человечества шанс на долгосрочное и успешное выживание на планете Земля и если да, то каким образом. Считая себя заурядным индивидом без особых денежных средств или учёной степени, Ричард Фуллер решил посвятить свою жизнь этому вопросу, пытаясь выяснить, что личности вроде него могут сделать для улучшения положения человечества из того, что большие организации, правительства или частные предприятия не могут выполнить в силу своей природы.

Сэр Чарльз Скотт Шеррингтон, британский учёный в области физиологии и нейробиологии, лауреат Нобелевской премии по физиологии и медицине 1932 года, называл в рамках своих исследований синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

Синергетика. Предмет синергетики.

Область исследований синергетики чётко не определена и вряд ли может быть ограничена какими-то рамками, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций.

Математический аппарат синергетики, который кстати продолжает развиваться, скомбинирован из разных инновационных отраслей теоретической физики и математики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики.

Синергетика. Школы синергетической науки.

В мире существуют несколько школ, в рамках которых активно развивается синергетический подход:

1.Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте.

В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.

2.Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы, разрабатывалась математическая теория поведения диссипативных структур (термин Пригожина), раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма.

3.Российская школа синергетики и её представители. У российской школы синергетики есть свои богатые традиции и достижения.

Так, академик Н. Н. Моисеев дополнил теоритические основы синергетики идеями универсального эволюционизма и коэволюции человека и природы.

Российским математиком В. И. Арнольдом совместно с французским математиком Рене Томом, разработан и предложен математический аппарат теории катастроф, пригодный для описания многих процессов самоорганизации.

В рамках школы, руководимой академиком А. А. Самарским и членом-корреспондентом РАН С. П. Курдюмовым, разработана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением).

Синергетика. Синергетический подход в естествознании.

Основные принципы, сформированные синергетической наукой для синергетических исследований в естествознании:

- Природа иерархически структурирована в несколько видов открытых нелинейных систем разных уровней организации: в динамически стабильные, в адаптивные, и наиболее сложные - эволюционирующие системы.

- Связь между открытыми системами осуществляется через хаотическое, неравновесное состояние систем соседствующих уровней.

- Неравновесность является необходимым условием появления новой организации, нового порядка, новых систем, то есть - развития.

- Когда нелинейные динамические системы объединяются, новое образование не равно сумме частей, а образует систему другой организации или систему иного уровня.

- Общее для всех эволюционирующих систем: неравновесность, спонтанное образование новых микроскопических (локальных) образований, изменения на макроскопическом (системном) уровне, возникновение новых свойств системы, этапы самоорганизации и фиксации новых качеств системы.

- При переходе от неупорядоченного состояния к состоянию порядка все развивающиеся системы ведут себя одинаково (в том смысле, что для описания всего многообразия их эволюций пригоден обобщённый математический аппарат синергетики).

- Развивающиеся системы всегда открыты и обмениваются энергией и веществом с внешней средой, за счёт чего и происходят процессы локальной упорядоченности и самоорганизации.

- В сильно неравновесных состояниях системы начинают воспринимать те факторы воздействия извне, которые они бы не восприняли в более равновесном состоянии.

- В состояниях, далёких от равновесия, начинают действовать бифуркационные механизмы - наличие кратковременных точек раздвоения перехода к тому или иному относительно долговременному режиму систем, аттрактору. Заранее точно невозможно предсказать, какой из возможных аттракторов займёт система.

Синергетика. Синергетические принципы самоорганизации.

Синергетика объясняет процесс самоорганизации в сложных системах и определяет его возможности следующими условиями:

- Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции.

- Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации. В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние. Ни одна открытая система не может бесконечно сохранять своё равновесие. Ни одна закрытая система не может бесконечно оставаться закрытой. Абсолютное равновесие природой не допустимо.

- Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации. Недостаточно сложные системы не способны ни к спонтанной адаптации ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются.

- Этап самоорганизации наступает только в случае преобладания положительных обратных связей, действующих в открытой системе, над отрицательными обратными связями. Функционирование динамически стабильных, неэволюционирующих, но адаптивных систем - а это и гомеостаз в живых организмах и автоматические устройства - основывается на получении обратных сигналов от рецепторов или датчиков относительно положения системы и последующей корректировки этого положения к исходному состоянию исполнительными механизмами. В самоорганизующейся, в эволюционирующей системе возникшие изменения не устраняются, а накапливаются и усиливаются вследствие общей положительной реактивности системы, что может привести к возникновению нового порядка и новых структур, образованных из элементов прежней, разрушенной системы. Таковы, к примеру, механизмы фазовых переходов вещества или образования новых социальных формаций.

Синергетика. Современная синергетика.

Синергетика - универсальная теория эволюции!

Современная синергетика – это междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем); - наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы.

Основное понятие синергетики - определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния.

В обозначенных структурах и системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может и должно привести к образованию новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

Феномен появления новых природных структур часто трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного к сложносоставному и более совершенному.

Современная синергетика. Глобальный эволюционизм.

Синергетика и законы природы. Синергетика как наука. Синергетика как научный подход и метод. Универсальная теория эволюции – синергетика.

Во-первых, принципы синергетики могут находиться в отношении кольцевой причинности, т.е. могут быть определяемы друг через друга, что не является порочным логическим кругом, но герменевтическим кругом, с которым мы часто сталкиваемся при описании развивающихся систем.

Во-вторых, принципов не должно быть слишком много. Человек, их использующий, просто не сможет одновременно уследить за их соблюдением в реальной модельной деятельности.

7 основных принципов синергетики: два принципа Бытия, и пять Становления.


Два принципа Бытия: 1-гомеостатичность, 2-иерархичность.

Гомеостатичность. Гомеостаз это поддержание программы функционирования системы в некоторых рамках, позволяющих ей следовать к своей цели. Согласно Н. Винеру всякая система имеет цель существования. Цель-программу поведения системы в состоянии гомеостаза в синергетике называют аттрактор. В пространстве состояний системы аттрактор является некоторым множеством, размерности меньшей, чем само пространство, к которому со временем притягиваются близлежащие состояния.Этот принцип объединяет многие идеи кибернетики, системного анализа и синергетики.

Иерархичность. Наш мир иерархизован по многим признакам. Например, по масштабам длин, времен, энергий. Основным смыслом структурной иерархии, является составная природа вышестоящих уровней по отношению к нижестоящим. То, что для низшего уровня есть структура-порядок, для высшего есть бесструктурный элемент хаоса, строительный материал. Существуют и не материальной иерархии: в языке (слова, фразы, тексты), в мире идей (мнения, взгляды, идеологии, парадигмы), в уровнях управления.

Пять принципов Становления: 3—нелинейность, 4—неустойчивость, 5—незамкнутость, 6-динамическая иерархичность, 7— наблюдаемость.

Нелинейность. Линейность — один из идеалов простоты и вожделение многих поколений математиков и физиков, пытавшихся свести реальные задачи к линейному поведению. Образы такого поведения всем хорошо знакомы: малые (гармонические) колебания маятника, или грузика на пружинке, а также равномерное или равноускоренное движение тел, известные нам со школы..

Незамкнутость (открытость). Невозможность пренебрежения взаимодействием системы со своим окружением. Для замкнутой физической системы справедливы фундаментальные законы сохранения (энергии, импульса, момента импульса), радикально упрощающие описание простых систем.

Неустойчивость.Последнее из трех "НЕ"-принципов (нелинейность, незамкнутость, неустойчивость) содержит в себе два предыдущих, и, вообще, долгое время считалось дефектом, недостатком системы. Так было до недавнего времени, пока не понадобились роботы нового поколения, перестраеваемые с одной программы-гомеостаза на другую; обучающиеся системы, воспринять разные модели поведения.

Динамическая иерархичность. Этот принцип описывает возникновение нового качества системы по горизонтали, т.е. на одном уровне, когда медленное изменение управляющих параметров мегауровня приводит к, неустойчивости системы на макроуровне и перестройке его структуры.

Наблюдаемость. Принцип, наблюдаемости подчеркивает ограниченность и относительность наших представлений о системе в конечном эксперименте.

Дата публикования: 2015-01-26; Прочитано: 2392 | Нарушение авторского права страницы

Читайте также: