Доклад на тему формула кардано

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Диспут. Формула Кардано

Диспуты в средние века всегда представляли собой интересное зрелище, привлекавшие праздных горожан от мала до велика. Темы диспутов носили разнообразный характер, но обязательно научный. При этом под наукой понимали то, что входило в перечень так называемых семи свободных искусств было, конечно, и богословие. Богословские диспуты были наиболее частыми. Спорили обо всем. Например, о том , приобщать ли мышь к духу святому, если съест причастие, могла ли Кумская сивилла предсказать рождение Иисуса Христа, почему братья и сестры спасителя не причислены к лику святых и т. д.

О споре, который должен был произойти между прославленным математиком и не менее прославленным врачом, высказывались лишь самые общие догадки, так как толком никто ничего не знал. Говорили, что один из них обманул другого (кто именно и кого именно, неизвестно). Почти все те, кто собрались на площади имели о математике самые смутные представления, но каждый с нетерпением ожидал начала диспута. Это всегда было интересно, можно было посмеяться над неудачником, независимо от того, прав он или нет.

Когда часы на ратуше пробили пять, врата широко распахнулись, и толпа бросилась внутрь собора. По обе стороны от осевой линии, соединяющей вход с алтарем, у двух боковых колонн были воздвигнуты две высокие кафедры, предназначенные для спорщиков. Присутствующие громко шумели, не обращая никакого внимания на то, что находились в церкви. Наконец, перед железной решеткой, отделявшей иконостас от остальной части центрального нефа, появился городской глашатай в черно-фиолетовом плаще и провозгласил: “Достославные граждане города Милана! Сейчас перед вами выступит знаменитый математик Никколо Тарталья из Брении. Его противником должен был быть математик и врач Джеронимо Кардано. Никколо Тарталья обвиняет Кардано в том, что последней в своей книге “Ars magna” опубликовал способ решения уравнения 3-Й­­ степени, принадлежащий ему, Тарталье. Однако сам Кардано на диспут прийти не смог и поэтому прислал своего ученика Луидже Феррари. Итак, диспут объявляется открытым, участники его приглашаются на кафедры”. На левую от входа кафедру поднялся неловкий человек с горбатым носом и курчавой бородой, а на противополжную кафедру взошел молодой человек двадцати с небольшим лет, с красивым самоуверенным лицом. Во всей его манере держаться сказывалась полная уверенность в том, что каждый его жест и каждое его слово будут приняты с восторгом.

Тарталья замолчал. Молодой человек, посмотрев на несчастного Тарталью, произнес:

Мой противник обвинил меня и моего учителя в том, что мы будто бы дали не верное решение его задач. Но как может быть неверным корень уравнения, если подставляя его в уравнение и выполняя все предписанные в этом уравнении действия, мы приходим к тождеству? И уже если сеньор Тарталья хочет быть последовательным, то он должен был ответить на замечание, почему мы, укравшие, но его словами, его изобретение и использовавши его для решения предложенных задач, получили неверное решение. Мы – мой учитель и я – не считаем, однако изобретение синьора Тартальи маловажным. Это изобретение замечательно. Более того, я, опираясь в значительной мере на него, нашел способ решения уравнения 4-й степени, и в “Ars magna” мой учитель говорит об этом. Что же хочет от нас сеньор Тарталья? Чего он добивается диспутом?

Господа, господа, - закричал Тарталья, - я прошу вас выслушать меня! Я не отрицаю того, что мой молодой противник очень силен в логике и красноречии. Но этим нельзя заменить истинное математическое доказательство. Задачи, которые я дал Кардано и Феррари, решены не правильно, но и я докажу это. Действительно, возьмем, например, уравнение из числа решавшихся. Оно, как известно …

В церкви поднялся невообразимый шум, поглотивший полностью окончание фразы, начатой незадачливым математиком. Ему не дали продолжать. Толпа, требовала от него, чтобы он замолчал, и чтобы очередь была предоставлена Феррари. Тарталья, видя, что продолжение спора совершенно бесполезно, поспешно опустился с кафедры и вышел через северный притвор на площадь. Толпа бурно приветствовала “победителя” диспута Луиджи Феррари.

…Так закончился этот спор, который и сейчас продолжает вызывать все новые и новые споры. Кому в действительности принадлежит способ решения уравнения 3-й степени? Мы говорим сейчас – Никколо Тарталье. Он открыл , а Кардано выманил у него это открытие. И если сейчас мы называем формулу, представляющую корни уравнения 3-й степени через его коэффициенты, формулой Кардано, то это - историческая несправедливость. Однако, несправедливость ли? Как подсчитать меру участия в открытии каждого из математиков? Может быть, со временем кто-то и сможет ответить на этот вопрос совершенно точно, а может быть это останется тайной …

Если воспользоваться современным математическим языком и современной символикой, то вывод формулы Кардано может быть найден с помощью следующих в высшей степени элементарных соображений:

Пусть нам дано общее уравнение 3-й степени:

ax 3 +3bx 2 +3cx+d=0 (1)

, то мы приведем уравнение (1) к виду

Введем новое неизвестное U с помощью равенства

(Произведение кубических радикалов в последнем равенстве должно равняться p ).

Это и есть знаменитая формула Кардано. Если перейти от y вновь к x, то получим формулу, определяющую корень общего уравнения 3-й степени.

Молодой человек, так безжалостно обошедшийся с Тарталья, разбирался в математике столь же легко, как и в правах неприхотливой тайны. Феррари находит способ решения уравнения 4-й степени. Кардано поместил этот способ в свою книгу. Что же представляет собой этот способ?

то уравнение (1) можно привести к виду

Получили полное кубическое уравнение, которое мы уже можем решить. Найдем какой либо его корень и внесем его в уравнение (3), теперь примет вид

При вычислении x нам приходится извлекать в начале квадратный корень, а затем кубический. Мы сможем извлечь квадратный корень, оставаясь в вещественной области, если . Исследуя график кубического трехчлена . При . Оказывается. Что если при этом уравнение с целыми коэффициентами имеет целочисленный корень, при вычислении его по формуле могут возникнуть промежуточные иррациональности. Например, уравнение имеет единственный корень (вещественный) – x=1. Формула Кардано дает для этого единственного вещественного корня выражение

. Если же не угадать того, при преобразовании будут возникать неистребимые кубические радикалы.

О проблеме Кардано – Тартальи вскоре забыли. Формулу для решения кубического уравнения связали с “Великим искусством” и постепенно стали называть формулой Кардано.

У многих возникало желание восстановить истинную картину событий в ситуации, когда их участники несомненно не говорили всей правды. Для многих было важно установить степень вины Кардано. К концу XIX века часть дискуссий стала носить характер серьезных историко-математических исследований. Математики поняли, какую большую роль в конце XVI века сыграли работы Кардано. Стало ясно то, что еще раньше отмечал Лейбниц: “Кардано был великим человеком при всех его недостатках; без них он был бы совершенством”.

Нажмите, чтобы узнать подробности

Индивидуальный проект по математике "Великое искусство и жизнь Джероламо Кардано" выполнил ученик 10 класса под руководством учителя. Рассмотрен способ решения уравнений третьей степени методом Кардано.Дляучащихся материал дополнительный. Вклад учёного,медика по профессии,в развитие математики.

Муниципальное автономное общеобразовательное учреждение

Великое искусство и жизнь

Джероламо Кардано

Выполнил: Кузин Андрей

обучающийся 10 класса

Наставник: Поздеева Л.И.

1. Цель проекта. Задача. 3

3.ДжероламоКардано. Биография……………………………………….…….5

Краткая биография Д. Кардано………………………………….….5

Математические работы Д. Кардано…………………………….…9

5.Свойства поворотной решетки……………………………….………. ….14

6.Формула Кардано: история и применение…………………….……..…..15

Несколько слов из истории формулы кубических уравнений…………………………………………………………15

Математические споры (диспуты) в среднеи века…….…….17

Примеры универсальных способов решения кубических уравнений………………………………………………………….23

7.Кубические уравнения и способы его решения…………………..…..…..16

Цель работы:

Узнать о жизни Джероламо Карадано и о влияние его исследований на математику.

Разобрать решение уравнений по способу Джероламо Кардано

Проанализировать вклад Д. Кардано в развитие математики, криптографии, техники.

Актуальность проблемы

Меня заинтересовало что, Джероламо Карданов учился в университете Павии на медицинском факультете, занимался сначала исключительно медициной. И через несколько лет стал профессором по математике. Данная работа открывает перед учащимися уникальную возможность научиться решать уравнения по способу Кардано.

ДжероламоКардано. Биография

Краткая биография Д. Кардано

24 сентября 1501 года в Павии родился будущий итальянский математик, механик и врач Кардано Джироламо (Джеронимо или Иеронимус). Кардано получил образование в университетах Павии и Падуи. В 1534 г. стал профессором математики в Милане и Болонье.

В 1539 его приняли в Коллегию врачей, специально изменив для этого правила приема. Вскоре Кардано стал ректором Коллегии и знаменитым врачом. Слава Кардано - врача была несомненной: его приглашали лечить таких знатных особ, как шотландский архиепископ Гамильтон, кардинал Марон и т.д.

Ученый занимался экспериментальными исследованиями и конструированием различных механизмов.

Последние годы жизни Кардано были омрачены трагическими событиями. Его сын, тоже миланский врач, был казнен в 1560 за отравление неверной жены. В 1562 Кардано был назначен профессором в Болонью, где его в 1570 арестовала инквизиция. В чем он обвинялся, точно не известно. Приговор был относительно мягким, но ему запрещалось публиковать своисочинения. Остаток жизни он провел в Риме, пытаясь добиться прощения.

Умер Кардано в Риме 20 сентября 1576.

Изобретения в технике

Например, Кардано принадлежит также целый ряд мелких изобретений:

масляный светильник с автоматической подачей масла,

камера – обскура с установленной линзой у выходного отверстия и т.д.

В области механики Кардано занимался теорией рычагов и весов. Он изобрел шарнирный механизм, предназначенный для передачи вращения между пересекающимися осями, названный впоследствии карданным механизмом. Ему принадлежит изобретение устройства, позволяющего сохранить неизменным положение тела при любых поворотах кинематической системы. С именем Кардано связаны такие понятия, как карданный вал и карданная передача автомобиля.

Он указывал, что добиться равномерности хода часов на протяжении суток невозможно: зубья колес неодинаковы, а натяжение пружины вначале сильнее, чем в конце. Грязь и пыль со временем ослабляют пружину, поэтому все часовые механизмы со временем идут медленнее и ни один не движется быстрее.

Математические работы Д. Кардано

Анализ этих работ представляет немалые трудности, так как Кардано писал почти обо всем, что знала математика Возрождения, перемежая новые, собственные, результаты с теми, которые уже были полученыдругими авторами. Однако, ни в одной из областей математики его достижения не являются столь весомыми и неоспоримыми, как в алгебре: даже многочисленные враги и критикине отказывали ему в славе крупнейшего алгебраиста XVI века.

Выполнив, например, преобразования уравнения х 2 + 2х - 5х = 4

Основная алгебраическая проблема, занимавшая Кардано, - нахождение способов решений уравнений третьей и четвертой степеней. В соответствии с математическими традициями своего времени он рассматривал только уравнения с положительными коэффициентами, поэтому, например, уравнение x 3 + qx + r = 0 распадалось у него на три отдельныхслучая:

Крометого, он следил, чтобы коэффициент при старшей степени неизвестной был равен единице.

Например, если в обе части уравнения2х 3 + 4х 2 + 25 = 16х + 55 добавить 2х 2 + 10х + 5, то после простейших преобразованийможно получить (2х + 6) (х 2 + 5) = (2х + 6) (х + 10) или х 2 + 5 = х +10, откуда далее находится значение переменной x.

Кардано одним из первых в Европе допускал существование отрицательных корней уравнений. В его работе впервые появляются мнимые величины. Кардано также обнаружил, что кубическое уравнение может иметь три вещественных корня (этот факт остался незамеченным даже в трудах Омара Хайяма), причём сумма этих корней всегда равна коэффициенту при x 2 (одна из формул Виета).

Кардано первым из математиков нетолько дал способы решения уравнений, но и попытался проникнуть в их природу, сформулировать положения, общие для всех алгебраических уравнений.

Определенных успехов Кардано достиг и в других областях математики.

С помощью решетки секретное послание оказывалось сокрытым внутри более длинногои совершенно невинно выглядевшего открытого текста. В простейшем варианте она представляла собой лист плотного материала (картона или пергамента), в котором через неправильные интервалы прорезаны прямоугольные отверстия постоянной высоты и переменной длины, расположенные на различном расстоянии друг от друга (трафарет).

Подобным криптографическим методом пользовались многие известные исторические лица,например кардинал Арман Жан дюПлесси Ришелье и А. С. Грибоедов (во время своейдипломатической миссии).

Свойства поворотной решетки

Формула Кардано: история и применение

Несколько слов из истории формулы кубических уравнений

Первые попытки найти решения задач, сводящихся к кубическим уравнениям, были сделаны математиками древности (например, задачи об удвоении куба и трисекции угла).

В Европе впервые в тригонометрической форме решение одного случая кубического уравнения дал Виет (1593).


Первое решение в радикалах одного из видов кубических уравнений удалось найти С. Ферро (около 1515 года), однако оно не было опубликовано. Открытие независимо повторил Н. Тарталья (1535 г.), указав правило решения еще двух других видов кубических уравнений. Опубликованы эти открытия были в 1545 году Дж. Кардано, который упомянул об авторстве Н. Тартальи.


24 сентября 1501, Павия — 21 сентября 1576, Рим) — итальянский математик, инженер, философ, медик и астролог.

Никколо Фонтана Тарталья (итал. NiccolòFontanaTartaglia, 1499—1557) — итальянский математик.

Вообще история рассказывает, что формула изначально была открыта именноТартальей и передана Кардано уже в готовом виде, однако сам Кардано отрицал этот факт, хотя и не отрицал причастность Тартальи к созданию формулы.

Математические споры (диспуты) в средние века.

Диспуты в средние века всегда представляли собой интересное зрелище, привлекавшие праздных горожан от мала до велика. Темы диспутов носили разнообразный характер, но обязательно научный. При этом под наукой понимали то, что входило в перечень так называемых семи свободных искусств было, конечно, и богословие. Богословские диспуты были наиболее частыми. Спорили обо всем. Например, о том, приобщать ли мышь к духу святому, если съест причастие, могла ли Кумская сивилла предсказать рождение Иисуса Христа, почему братья и сестры спасителя не причислены к лику святых и т. д.

О споре, который должен был произойти между прославленным математиком и не менее прославленным врачом, высказывались лишь самые общие догадки, так как толком никто ничего не знал. Говорили, что один из них обманул другого (кто именно и кого именно, неизвестно). Почти все те, кто собрались на площади имели о математике самые смутные представления, но каждый с нетерпением ожидал начала диспута. Это всегда было интересно, можно было посмеяться над неудачником, независимо от того, прав он или нет.

Тарталья замолчал. Молодой человек, посмотрев на несчастного Тарталью, произнес:

- Господа, господа, — закричал Тарталья, — я прошу вас выслушать меня! Я не отрицаю того, что мой молодой противник очень силен в логике и красноречии. Но этим нельзя заменить истинное математическое доказательство. Задачи, которые я дал Кардано и Феррари, решены неправильно, но и я докажу это. Действительно, возьмем, например, уравнение из числа решавшихся. Оно, как известно.

Так закончился этот спор, который и сейчас продолжает вызывать все новые и новые споры. Кому в действительности принадлежит способ решения уравнения 3-й степени? Мы говорим сейчас — Никколо Тарталье. Он открыл, а Кардано выманил у него это открытие. И если сейчас мы называем формулу, представляющую корни уравнения 3-й степени через его коэффициенты, формулой Кардано, то это — историческая несправедливость. Однако, несправедливость ли? Как подсчитать меру участия в открытии каждого из математиков? Может быть, со временем кто-то и сможет ответить на этот вопрос совершенно точно, а может быть это останется тайной.

Рассмотрим кубическое уравнение:
(1) ,
где . Разделим его на :
(2) ,
где , , .
Далее считаем, что , и – есть действительные числа.

Приведем уравнение (2) к более простому виду. Для этого сделаем подстановку
.
;
;
.
Приравняем коэффициент при к нулю. Для этого положим
:
;
;
.
Получаем уравнение приведенного вида:
(3) ,
где
(4) ; .

Вывод формулы Кардано

Решаем уравнение (3). Делаем подстановку
(5) :
;
;
;
.
Чтобы это уравнение удовлетворялось, положим
(6) ;
(7) .

Решаем квадратное уравнение.
(8) .
Возьмем верхний знак “+”:
,
где мы ввели обозначение
.
Из (6) имеем:
.

Итак, мы нашли решение приведенного уравнения в следующем виде:
(5) ;
(9) ;
(10) ;
(7) ;
(11) .
Такое решение называется формулой Кардано.

Если мы, при выборе знака квадратного корня в (8), возьмем нижний знак, то и поменяются местами и мы не получим ничего нового. Величины и равны кубическим корням, поэтому они имеют по три значения. Из всех возможных пар и нужно выбрать такие, которые удовлетворяют уравнению (7).

Итак, алгоритм решения приведенного кубического уравнения
(3)
следующий.
1) Вначале мы определяем любое значение квадратного корня .
2) Вычисляем три значения кубического корня .
3) Используя формулу (7), для каждого значения , вычисляем значение :
.
В результате получаем три пары величин и .
4) Для каждой пары величин и , по формуле (5) находим значения корней приведенного уравнения (3).
5) Рассчитываем значения корней исходного уравнения (1) по формуле
.
Таким способом мы получаем значения трех корней исходного уравнения. При два или три корня являются кратными (равными).

На шаге 3) данного алгоритма можно поступить по другому. Мы можем вычислить три значения величины по формуле (10). И далее составить три пары корней и так, чтобы для каждой пары выполнялось соотношение
(7) .

Случай Q ≥ 0

Рассмотрим случай . При этом и являются действительными числами. Введем обозначения. Пусть и обозначают действительные значения кубических корней.

Найдем остальные значения корней и . Запишем и в следующем виде:
; ,
где – есть целое число;
– мнимая единица, .
Тогда
.
Присваивая значения , получаем три корня:
, ;
, ;
, .
Точно также получаем три корня :
;
;
.

Теперь группируем и в пары, чтобы, для каждой пары выполнялось соотношение
(7) .
Поскольку , то
.
Тогда
.
Отсюда получаем первую пару: .
Далее замечаем, что
.
Поэтому
; .
Тогда и являются еще двумя парами.

Теперь получаем три корня приведенного уравнения:
;
;
.
Их также можно записать в следующем виде:
(12) ; .
Эти формулы называются формулой Кардано.

При , . Два корня являются кратными:
; .
При все три корня являются кратными:
.

Случай Q . То есть и могут быть комплексными. Тогда для и можно выбрать любые значения кубических корней, между которыми выполняется соотношение
.

Формула Кардано для решения кубического уравнения

Итак, мы установили, что корни приведенного кубического уравнения

можно найти по формуле Кардано:
, ,
где
; ; ;
.

Однако, при , формула Виета являются более удобной.

Формула Кардано - методика определения корней кубического уравнения в поле комплексных чисел.

Впервые была опубликована в 1545 году итальянским математиком Джероламо Кардано.

Кубическое уравнение, выраженное в общем виде, как ах 3 +b х 2 +cx+d =0 в результате подстановки переменной:

 Формула Кардано для решения кубических уравнений.

приводится к виду неполного кубического уравнения, в котором не присутствует слагаемое, содержащее вторую степень: y 3 +b y +q=0,

где члены p и q приведены ниже:

 Формула Кардано для решения кубических уравнений.

 Формула Кардано для решения кубических уравнений.

Когда члены кубического уравнения вещественны, то и Q вещественное число, а по его знаку можно установить тип корней кубического уравнения.

Когда Q > 0 у кубического уравнения будет один вещественный корень и два сопряженных комплексных корня.

Когда Q = 0 у уравнения один однократный вещественный корень и один двукратный корень, или, в случае если p = q = 0, то получаем один трёхкратный вещественный корень.

Когда Q 3 + py + q в этом случае будет равняться:

 Формула Кардано для решения кубических уравнений.

.

Используя формулы Кардано, для всех найденных значений нужно выбрать такое , для которого осуществляется необходимое требование (такое значение всегда есть).

 Формула Кардано для решения кубических уравнений.

Когда искомое решение кубического уравнения вещественное число, то желательно отдавать преимущество вещественным значениям .

Читайте также: