Доклад на тему алкадиены каучуки и резина их применение

Обновлено: 18.04.2024

Алкадиены, или диеновые углеводороды, — не ­ предельные углеводороды, содержащие в углеродной цепи молекулы две двойные связи.

а) молекулярное

C 4 H 6 – бутадиен

C 5 H 8 - пентадиен

б) структурное

CH 2 = CH – CH = CH 2

CH 2 = CH – CH = CH 2

CH 2 = CH – CH = CH 2

Атомы углерода в молекуле бутадиена-1,3 находятся в состоянии sp ­ 3 -гибридизации. За счет гибридных sp 3 -орбиталей, оси симметрии которых лежат в одной плоскости, в молекуле возникают σ -связи между всеми атомами углерода и σ -связи угле ­ род – водород. Центры всех атомов в молекуле бута ­ диена-1,3 лежат в одной плоскости. Негибридные p-орбитали атомов углерода (по одной у каждого атома) рас ­ положены перпендикулярно к плоскости молекулы и перекрываются не только между атомами 1,2 и 3,4, но и между атомами 2,3. Электроны на таких орбиталях образуют общую π -электронную систему однако перекрывание p - орбиталей между ато ­ мами углерода 2 и 3 менее полное, чем 1,2- и 3,4-перекрывание.

Общая формула диеновых углеводородов C n H 2n-2

C 3 H 4 – пропадиен

C 4 H 6 – бутадиен

C 5 H 8 – пентадиен

C 6 H 10 – гексадиен

C 7 H 12 – гептадиен

C 8 H 14 – октадиен

C 9 H 16 – нонадиен

C 10 H 18 – декадиен

I. Структурная:

а) C-скелет:

CH 2 = CH – CH = CH – CH 3 CH 2 = CH – C = CH 2

CH 3 2-метилбутадиен-1,3

б) двойная связь

CH 2 = CH – CH = CH – CH 3 CH 2 = C = CH – CH 2 – CH 3

в) межклассовая (с алкинами)

C 3 H 4 C 3 H 4

CH ≡ C – CH 3 CH 2 = C = CH 2

II. Пространственная

CH 3 – CH = CH – CH = CH 2

CH 3 CH=CH 2 H CH=CH 2

а) физические

Бутадиен-1,3 (Дивинил) – бесцветный газ с неприятным запахом, температурой плавления – 4,5 � C. Практически нерастворим в воде.

2-Метилбутадиен-1,3 (Изопрен) – при обычных условиях – жидкость с температурой кипения 34 � C.

б) химические

Алкаднены могут присоединять водород (в момент выделения, т е. водород в виде атомов Н) и галогены. Обычно атомы водорода или галогена присоединяются к атомам углерода, занимающим в цепи положения 1 и 4 (так называемое 1,4-присоединение). При этом образуется новая двойная связь между углеродными атомами. Атомы водорода или галогена могут присоединяться так ­ же к атомам углерода 1 и 2 (1,2-присоединение), при этом вторая двойная связь в алкадиене не изменяется.

CH 2 = CH – CH = CH 2 + H 2 ­ → CH 3 – CH = CH – CH 3

CH 2 = CH – CH = CH 2 + Br 2 ­ → CH 2 Br – CH = CH – CH 2 Br

Присоединение хлороводорода к бутадиену-1,3 приводит к образованию продуктов 1,2- и 1,4-присоединения:

→ CH 2 Cl – CH = CH – CH 3

CH 2 = CH – CH = CH 2 + HCl – |

→ CH 2 = CH – CHCl – CH 3

  1. Полимеризация
  2. Горение
  1. Получение
  1. Дегидрирование алканов
CH 3 – CH 2 – CH 2 – CH 3 → CH 2 = CH – CH = CH 2 + 2H 2
  1. Реакция Лебедева (дегидрирование и дегидратация)
ZnO и Al 2 O 3 – католизаторы
C 2 H 5 OH + C 2 H 5 OH → CH 2 = CH – CH = CH 2 + 2H 2 O + H 2

Алкадиены применяются для производства каучука.

В современной промышленности важную роль играю эластомеры – высокомолекулярные вещества, сохраняющие эластичность в широком интервале температур Эластомеры легко изменяют фирму при внешнем воздействии, а после окончания воздействия принимают исходную форму. Типичными эластомерами являются каучуки.

Натуральный каучук . Натуральный каучук получается из природного сырья — сока дерева гевеи, распространенного в Южной Америке (главным образом в Бразилии). На воздухе белый млечный сок этого дерева быстро твердеет и темнеет, превращаясь в эластичную массу.

Натуральный каучук представляет собой полимер изопрена, его состав отвечает формуле:


Синтетический каучук. Большие потребности промышленности в каучуке обусловили разработку синтетических способов его получения.

В СССР синтетический каучук начал впервые производиться в промышленных масштабах в 19321 по способу С. В. Лебедева. Этот способ заключался в полимеризации бутадиена-1,3 в присутствии металлического натрия в качестве катализатора:

nСН 2 = СН – СН =CH 2 → ( – СН 2 – СН = СН – СН 2 – ) n

бутадиен-1,3 бутадиеновый каучук

Такой каучук уступает по свойствам натуральному: он менее эластичен, изделия из него быстрее изнашиваются.

Каучук используют в производстве шин, резинотехнических изделий, клеев, эбонита, медицинских и бытовых изделий.

Для превращения каучука в резину проводят вулканизацию каучука. Резина отличается от каучука большей эластичностью и прочностью. Она устойчивее к действию температуры и растворите ­ лей.

Алкадиены — ациклические углеводороды , содержащие в молекуле, помимо одинарных связей, две двойные связи между атомами углерода и соответствующие общей формуле С n Н 2n-2 .

В зависимости от взаимного расположения двойных связей различают три вида диенов:

• алкадиены с кумулированным расположением двойных связей

• алкадиены с сопряженными двойными связями

• алкадиены с изолированными двойными связями

Эти три вида алкадиенов существенно отличаются друг от друга по строению и свойствам. Центральный атом углерода (атом, образующий две двойные связи) в алкадиенах с кумулированными связями находится в состоянии ер-гибридизации. Он образует две Þ-связи, лежащие на одной прямой и направленные в противоположные стороны, и две я-связи, лежащие в перпендикулярных плоскостях.п-Связи образуются за счет негибридизованных р-орбиталей каждого атома углерода .

Свойства алкадиенов с изолированными двойными связями практически ничем не отличаются от свойств алкенов, разве что алкадиены вступают в соответствующие реакции в две ступени. Атомы углерода, образующие двойные связи, находятся в sр 2 -гибридизации.

Свойства алкадиенов с сопряженными связями весьма специфичны, так как сопряженные л-связи существенно влияют друг на друга.

р-Орбитали, образующие сопряженные п-связи, фактически составляют единую систему (ее называют п-системой), так как р-орбитали соседних л-связей частично перекрываются.

Длины двойных связей (1 и 3) составляют 0,137 нм (двойная связь в алкенах — 0,132 нм), а одинарной (2) — 0,146 нм (0,154 нм у алканов). Таким образом, можно считать, что кратность связей 1 и 3 несколько меньше двух, а связи 2 больше единицы.

Иногда алкадиены с сопряженными связями изображают следующим образом:

Изомерия и номенклатура

Для алкадиенов характерна как структурная изомерия, так и цис-транс-изомерия. Структурная изомерия :

• изомерия углеродного скелета:

Алкадиены

При формировании названия алкадиена указывают номера двойных связей. Главная цепь должна обязательно содержать обе кратные связи.

1. Метод Лебедева. В 1932 г. в нашей стране было налажено производство бутадиена из этилового спирта методом, разработанным С. В. Лебедевым. В основе метода лежит реакция

425 °С, Аl2O3, ZnO
2СН3—СН2—ОН -----------------> СН9=СН-СН=СН9 + 2Н2O + Н2

Серге́й Васи́льевич Ле́бедев

Советский химик, академик. Основные научные исследования посвящены полимеризации, изомеризации и гидрогенизации непредельных углеводородов. Получил (1928) синтетический каучук полимеризацией 1,3-бутадиена под действием натрия.

Этиловый спирт одновременно претерпевает и дегидратацию, и дегидрирование.

2. Способ дегидрирования. Одним из самых распространенных способов получения бутадиена-1,3 является двухстадий-ное каталитическое дегидрирование н-бутана:

СН3—СН2—СН2—СН3 —> CH2=CH—СН=СН2 + 2Н2

На первой стадии этого процесса образуется как бутен-1, так и бутен-2.

Алкадиены

Не менее важное, чем бутадиен-1,3, другое соединение — изопрен (2-метилбутадиен-1,3) получают аналогичным способом — дегидрированием 2-метилбутана.

Алкадиены

При действии на дибромалканы спиртового раствора щелочи происходит отщепление двух молекул галогеноводорода и образование двух двойных связей:

Физические свойства

В обычных условиях пропадиен-1,2, бутадиен-1,3 — газы, 2-метилбутадиен-1,3 — летучая жидкость. Алкадиены с изолированными двойными связями (простейший из них — пен-тадиен-1,4) — жидкости. Высшие диены — твердые вещества.

Химические свойства

Напомним, что свойства алкадиенов с изолированными двойными связями мало отличаются от свойств алкенов. Алкадиены с сопряженными связями обладают некоторыми особенностями.

1. Реакции присоединения. Алкадиены способны присоединять водород, галогены, галогеноводороды.

Особенностью присоединения к алкадиенам с сопряженными двойными связями является способность присоединять молекулы как в положения 1 и 2 (1,2-присоединение), так и в положения 1 и 4 (1,4-присоединение):

Вr Вr
| |
СН2=СН—СН=СН2 + Вг2 —> CH2—CH—CH=CH2
1,2-присоединение


Вг Вг
| l
CH2=CH—СН=СН2 + Вг2 —> CH2—CH=CH—CH2
1,4-присоединение

Соотношение продуктов зависит от условий и способа проведения соответствующих реакций.

2. Реакции полимеризации. Важнейшим свойством диенов является способность полимеризоваться под воздействием катионов или свободных радикалов. Полимеризация этих соединений является основой получения синтетических каучуков. Обратите внимание на то, что полимеризация сопряженных диенов протекает как 1,4-присоединение.

Алкадиены

В этом случае двойная связь оказывается центральной в элементарном звене, а элементарное звено, в свою очередь, может принимать как цис-, так и тракс-конфигурацию:

Рассмотрим причины, по которым в случае алкадиенов с сопряженными двойными связями возможно 1,4-присоединение на примере реакции гидробромирования (присоединения НВr).

Эта реакция протекает по механизму электрофильного присоединения и начинается с присоединения электрофильной частицы, катиона водорода , к молекуле алкадиена:

СН2=СН—СН=СН2 + H+ —> СН3—СН+—СН=СН2

Присоединение к этому карбокатиону иона Вr - приведет к продукту 1,2-присоединения:

СН3—СН+—СН=СН2 + Вr - —> СН3—СНВг—СН=СН2

Положительный заряд на атоме углерода означает наличие незаполненной р-орбитали, которая может перекрываться с л-связью, перетягивая к себе электронную плотность. В результате этого происходит перемещение двойной связи в центр молекулы, а положительный заряд оказывается на крайнем атоме углерода:

Обратите внимание на то, что мы встретились со случаем, когда одна и та же частица описывается двумя различными структурами, отличающимися друг от друга распределением электронной плотности. Присоединение аниона брома ко второму карбокатиону приведет к продукту 1,4-присоединения:

СН 3 —СН=СН—СН+ + Вг - —> СН3—СН=СН—СН 2 Вr

Натуральный и синтетический каучуки. Резина

До конца 1930-х гг. в промышленности использовали натуральный каучук, выделяемый из млечного сока (латекса) некоторых растений-каучуконосов. Наиболее ценным каучуконосом является гевея, растущая в Латинской Америке . Исследования показали, что натуральный каучук представляет собой цис-полиизопрен, т. е. полимер, элементарные звенья которого соответствуют изопрену (2-метилбутадиену-1,3) и находятся в цис-конфигурации.

Каучук, в котором все элементарные звенья находятся или в цис-, или в транс-конфигурации, называется стереорегулярным.

В середине прошлого века (Гудьир, 1839 г.) было обнаружено, что при нагревании каучука с серой (до 8%) образуется резина — эластичный материал, технические свойства которого гораздо лучше, чем у каучука. При нагревании с серой (вулканизации) происходит сшивание полимерных цепей за счет сульфидных мостиков, что приводит к увеличению прочности, устойчивости к истиранию, к действию органических растворителей и других веществ.

Алкадиены

В связи с бурным ростом промышленного производства в начале XX в. возросла потребность в каучуке. И это заставило химиков искать пути получения синтетического каучука. Первые попытки были неудачными, так как при полимеризации диенов образовывались нестереорегулярные цепи (т. е. цепи, в которых элементарные звенья находились как в цис-, так и в траке-конфигурации). Получаемый каучук был похож на смолу, вулканизация его давала резину очень плохого качества.

Впервые технологически удобный способ синтеза полибутадиенового каучука был разработан русским химиком С. В. Лебедевым. В его основе лежала полимеризация бутадиена-1,3 с использованием катализатора — металлического натрия.

Это позволило получить полибутадиен с хорошими технологическими свойствами. Однако этот полимер был нестерео-регулярным, и поэтому резина, полученная на его основе, была менее эластичной, чем резина природного каучука. Стерео-регулярные полимеры (в том числе и изопреновые) научились получать лишь в 50-е гг. XX в.

Современная химическая промышленность вырабатывает несколько видов синтетического каучука. В качестве мономеров используют изопрен, бутадиен, хлоропрен (2-хлорбутадиен-1,3), стирол (винилбензол) и т. д. Большое распространение получили резины, произведенные на основе сополимеров алкадиенов с сопряженными двойными связями и производных алкенов.

Такие резины характеризуются высокой морозоустойчивостью, прочностью и эластичностью (бутадиен-стирольный), масло-бензостойкостью (бутадиен-нитрильный (нитрил — СН2=СН—СH)), пониженной газопроницаемостью, устойчивостью к действию ультрафиолетового излучения, окислителей (бутилкаучук — сополимер изопрена и изобутилена).


Алкадиены (диены). Каучуки

Ключевые слова конспекта: Алкадиены (диены, диеновые углеводороды). Сопряжённые диены. Реакция Лебедева. Каучуки: натуральный, синтетические (бутадиеновый, изопреновый). Вулканизация каучука. Резина. Эбонит.

Понятие о сопряжённых алкадиенах

В соответствии с третьим положением теории химического строения даже незначительные изменения в структуре вещества могут существенно изменить его химические свойства, а следовательно, сделать незаменимым для производства жизненно необходимых материалов. Не будь углеводородов этого класса, нам пришлось бы обходиться без резины и каучука, а точнее без всего бесчисленного ассортимента изделий, изготовленных из этих материалов.

Большое значение в производстве каучуков имеют диеновые углеводороды особого строения: в их молекулах две двойные связи разделены одной одинарной. Такие диены называют сопряжёнными диенами.

Простейший сопряжённый диен — бутадиен-1,3 имеет формулу СН2=СН—СН=СН2. Как видите, в международных названиях алкадиенов указывают номера обоих атомов углерода, от которых начинаются двойные связи в молекуле.


Ещё один важнейший диеновый углеводород — 2-метилбутадиен-1,3 (его чаще называют изопрен) имеет формулу

Способы получения алкадиенов


Для получения диеновых углеводородов в промышленности используют реакцию дегидрирования, т. е. отщепления водорода. В качестве исходного вещества берут предельный углеводород с тем же строением углеродной цепи, что и у получаемого продукта. Понятно, что для образования двух двойных связей С=С алкан должен отдать четыре атома, т. е. две молекулы водорода. Например, для синтеза изопрена в качестве исходного вещества необходимо взять 2-метилбутан:


или

Рассмотренная реакция наглядно показывает, что в составе алкадиенов на четыре атома водорода меньше, чем в молекулах соответствующих предельных углеводородов, и на два атома водорода меньше, чем в молекулах соответствующих алкенов.

Алкадиены

Алкадиены. Химические свойства

Будучи непредельными углеводородами, алкадиены, подобно алкенам, склонны к реакциям присоединения. Они так же, как алкены, обесцвечивают бромную воду и раствор перманганата калия.


Особенность реакций присоединения диеновых углеводородов состоит в том, что две сопряжённые связи проявляют себя как единое целое. Присоединение галогена происходит не по одной двойной связи, а за счёт крайних атомов углерода сопряжённой системы двойных связей:


или


Продукт реакции 1,4-дибромбутен-2 также содержит двойную связь и, следовательно, тоже способен присоединять молекулу брома:


Аналогичным образом диеновые углеводороды присоединяют водород (реакция гидрирования):

Каучук и продукты его вулканизации

Сопряжённые диеновые углеводороды способны к реакциям полимеризации, в результате которых получают синтетические каучуки.

Каучуки можно рассматривать как продукты полимеризации сопряжённых диенов или их производных. Каучуки относят к эластомерам. Такое название эти полимеры получили потому, что обладают эластичностью (от греч. elastikos — растяжимый), т. е. способностью обратимо изменять форму под действием внешних сил. Другие ценные свойства каучуков — водо- и газонепроницаемость — также широко используют в промышленном производстве.

Природными источниками каучука служат растения, богатые млечным соком: гевея, фикусы, молочаи, одуванчики. В промышленных масштабах натуральный (природный) каучук получают из сока тропического дерева гевеи. Такой каучук можно рассматривать как продукт полимеризации изопрена, или 2-метилбутадиена-1,3.

Каучуконосы нашей страны (одуванчики кок-сагыз и тау-сагыз) содержат очень мало млечного сока, а потому не могут использоваться в качестве источника натурального каучука. Проблему получения синтетического каучука решил коллектив учёных под руководством академика С. В. Лебедева в 1931 г. Этот каучук назвали бутадиеновым каучуком, поскольку в качестве мономера для его получения был выбран бутадиен-1,3. В процессе полимеризации двойные связи алкадиена разрываются, за счёт освободившихся валентностей крайних углеродных атомов растёт полимерная цепь. Одновременно с этим между центральными атомами углерода образуется двойная связь:


Коллективом под руководством С. В. Лебедева был разработан также уникальный способ получения исходного диенового углеводорода — бутадиена-1,3 — на основе этилового спирта:


или

Эту реакцию называют реакцией Лебедева.

Синтетический бутадиеновый каучук обладает такими ценными качествами, как газо- и водонепроницаемость, однако уступает натуральному в эластичности.


В 60-х гг. прошлого столетия был получен эластичный синтетический каучук на основе изопрена — синтетический изопреновый каучук:

По эластичности и износоустойчивости изопреновый каучук сходен с природным и так же, как бутадиеновый, используется для производства шин.

Общая формула СnH2n-2 отражает состав не только алкадиенов, но и ацетиленовых углеводородов. Речь о них пойдёт в следующем конспекте.

Диеновые углеводороды. Полимеры


Каучук – природный или синтетический эластичный материал, из которого путём нагревания с серой (вулканизации) получают резину. Каучуки широко используются в повседневной жизни.

Строение и получение

Каучук – диеновый полимер. Структурная и молекулярная формула каучука зависят от вида материала. Природный каучук получают из густого млечного сока – латекса – гевеи, кастиллоа, маниота, сапиума и других растений. Такой каучук является полимером изопрена (2-метилбутадиен-1,3) и имеет формулу (C5H8)n, где n=1000-3000.

Гевея

Рис. 1. Гевея.

Искусственный каучук был получен в 1932 году методом Лебедева. Сначала получают дивинил (бутадиен-1,3) с формулой (C4H6)n из этилового спирта:

С помощью полимеризации дивинила получают бутадиеновый каучук:

Молекулы каучука

Рис. 2. Молекулы каучука.

Современная промышленность получает синтетические каучуки из разных алкадиенов. В зависимости от используемого сырья выделяют изопреновый, бутадиеновый, этилен-пропиленовый, хлоропреновый и другие виды каучука.

Свойства

Каучук обладает полезными для применения свойствами: эластичностью (упругостью) и водонепроницаемостью. Каучуки хорошо гнутся, растягиваются и задерживают влагу на поверхности.

Каучуки сохраняются в аморфном состоянии долгое время. Однако агрегатное состояние может меняться в зависимости от температуры:

  • 0-10°C – хрупкий, непрозрачный;
  • 20°C – мягкий, упругий, полупрозрачный;
  • 50°C – пластичный, липкий;
  • 80°C – непластичный;
  • 120°C – смолистый, жидкий;
  • 200-250°C – газообразный (выделяется смесь газов).

При долгом хранении на холоде материал необратимо теряет свойства: твердеет, становится неэластичным и ломким.

Каучуки обладают диэлектрическими свойствами и низкую проницаемость воды и газов. Материал не растворяется в воде, слабых кислотах, щелочах. Растворяется после разбухания в бензине, бензоле, сероуглероде и хлороформе.

Молекулы каучука имеют линейное строение, но при этом не вытянуты в прямую линию, а изогнуты, образуя свёрнутые клубки. При растяжении материала молекулы распрямляются, чем объясняется эластичность каучука.

Применение

Основное применение каучуков – производство резины для шин. Также материал используется для изготовления:

  • тепло-, электро-, звуко-, гидроизоляционных материалов;
  • твёрдого ракетного топлива;
  • уплотнителей;
  • клея;
  • лаков;
  • эластичных лент;
  • напольных покрытий;
  • шлангов;
  • перчаток;
  • обуви;
  • игрушек;
  • мебели;
  • ластиков.

Что мы узнали?

Из урока химии 10 класса узнали о строении, свойствах и применении каучуков. Каучук – природный или синтетический материал, обладающий эластичностью. Натуральные каучуки получают из латекса – вязкого сока некоторых тропических деревьев. Промышленным путём производится из алкадиенов, в частности из изопрена. Впервые синтетический каучук был получен в 1932 году. В зависимости от температуры меняются физические свойства. Чем ниже температура, тем хрупче материал. Из каучуков изготавливают резину.

Читайте также: