Десятичные и натуральные логарифмы доклад

Обновлено: 30.06.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель: исследовать в каких областях науки, техники нашли применение логарифмы, логарифмическая функция.

На протяжении 16 века быстро возрастало количество приближенных вычислений, прежде всего, в астрономии. Совершенствование инструментов, исследование планетных движений и другие работы потребовали колоссальных, иногда многолетних, расчетов. Астрономам грозила реальная опасность утонуть в невыполненных расчетах.

С точки зрения вычислительной практики, изобретение логарифмов по возможности можно смело поставить рядом с другими, более древним великим изобретением индусов – нашей десятичной системы нумерации.

Через десяток лет после появления логарифмов Непера английский ученый Гунтер изобрел очень популярный прежде счетный прибор – логарифмическую линейку. Она помогала астрономам и инженерам при вычислениях, она позволяла быстро получать ответ с достаточной точностью в три значащие цифры.

Таким образом, потребность в сложных расчётах быстро росла. Теория логарифмов связана с именами целого ряда математиков: Генри Бригс, Эдмунд Уингейт, Уильям Отред, Н. Меркатор, Джон Спейдел, К. Бремикер, Ф. Клейн.

Анализ тематики создание логарифмов достаточно актуален и представляет научный и практический интерес.

Цель: исследовать в каких областях науки, техники нашли применение логарифмы, логарифмическая функция.

Задача: 1. Актуализация практической значимости математических знаний;

2. Развитие нравственных представлений о природе математики, сущности и происхождении математической абстракции.

Проблема: показать практическую значимость логарифмов для окружения.

Основная часть

История логарифма

Логарифмы были изобретены не позднее 1594 года независимо друг от друга шотландским бароном Непером (1550-1617) и через десять лет швейцарским механиком Бюрги (1552-1632). Оба хотели дать новое удобное средство арифметических вычислений, хотя подошли они к этой задаче по-разному. Непер кинематически выразил логарифмическую функцию и, тем самым, вступил в новую область теории функции. Бюрги остался на почве рассмотрения дискретных прогрессий. Впрочем, определение логарифма у обоих не похоже на современное.

В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое, сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной.

Сочинение было разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое, описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введенный для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом.

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

В 1615 году в беседе с профессором математики Грешем Колледжа в Лондоне Генри Бригсом (1561-1631) Непер предложил принять за логарифм единицы нуль, а за логарифм десяти - 100, или, что сводится к тому же, просто 1. Так появились десятичные логарифмы и были напечатаны первые логарифмические таблицы. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617).

Позже таблицы Бригса дополнил голландский книготорговец и любитель математики Андриан Флакк (1600-1667). Непер и Бригс, хотя пришли к логарифмам раньше всех, опубликовали свои таблицы позже других - в 1620 году.

hello_html_m518cc555.jpg

Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега́ появилось только в 1857 году в Берлине (таблицы Бремивера).

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.

Знаки log и Log были введены в 1624 году И. Кеплером.

На русском языке первые логарифмические таблицы были изданы в 1703 году. Но во всех логарифмических таблицах были допущены ошибки при вычислении. Первые безошибочные таблицы вышли в 1857 году в Берлине в обработке немецкого математика К. Бремикера (1804-1877).

Дальнейшее развитие теории логарифмов связано с более широким применением аналитической геометрии и исчисления бесконечно малых. К тому времени относится установление связи между квадратурой равносторонней гиперболы и натуральным логарифмом.

С открытием логарифмического ряда изменилась техника вычисления логарифмов: они стали определяться с помощью бесконечных рядов.

Таким образом, прошло 394 года с тех пор, как логарифмы впервые были введены (считая с 1614 г.), прежде чем математики пришли к определению понятия логарифма, которое положено теперь в основу школьного курса.

Логарифмические таблицы

Если вычислительные потребности практической жизни и технического обихода вполне обеспечиваются трех и четырехзначными таблицами то с другой стороны, к услугам теоретического исследователя имеются таблицы и с гораздо большим числом знаков, чем даже 14- значные логарифмы. Вообще говоря, логарифм в большинстве случаев есть число иррациональное и не может быть точно выражен никаким числом цифр; логарифмы большинства чисел, сколько бы знаков ни брать, выражаются лишь приближенно, тем точней, чем больше цифр в их мантиссе. Для научных работ оказывается иногда недостаточной точность 14- значных логарифмов, но среди пятисот всевозможных образов логарифмических таблиц вышедших в свет, со времени их изобретения, исследователь всегда найдет такие, которые его удовлетворяют. Например, 20- значные логарифмы чисел от 2 до1200, изданные во Франции Кале.

Для еще более ограниченной группы чисел имеются таблицы логарифмов с огромным числом десятичных знаков - настоящие логарифмические диковинки о существование которых не подозревают многие математики.

Вот эти логарифмы – исполины все они - не десятичные, а натуральные: (натуральными называются логарифмы, вычисленные не при основании 10, а при основании 2,718…, о котором у вас еще будет речь впереди. 48–значные таблицы Вольфрама для чисел до 10000; 61-значные таблицы Шарпа; 102-значные таблицы Паркхерста.

Счетная линейка

hello_html_m5358f9e4.jpg

Логарифмическая спираль

Логарифмическая спираль - плоская трансцендентная кривая, уравнение которой в полярных координатах имеет вид p=a φ, a0.

hello_html_42af415a.jpg

Рога козлов, раковина улитки и семечки в подсолнухе закручены по логарифмической спирали

hello_html_m7f5a69b.jpg
hello_html_m536375e9.jpg

Применение логарифмов в различных сферах жизнедеятельности человека

Радиоактивный распад. Изменение массы радиоактивного вещества происходит по формуле , где m 0 – где масса вещества в начальный период времени t=0, m – масса вещества в момент времени t, .
T - период полураспада. Это означает, что через время Т после начального момента времени, масса радиоактивного вещества уменьшается вдвое.

Народонаселение. Изменение количества людей в стране на небольшом отрезке времени с хорошей точностью описывается формулой , где N 0 – число людей при t=0, N – число людей в момент t, λ – некоторая константа.

Формула Циолковского. Эта формула, связывающая скорость ракеты V с ее массой m: , где Vr – скорость вылетающих газов, m 0 – стартовая масса ракеты. Скорость истечения газа при сгорании топлива Vr невелика (в настоящее время она меньше или равна 2 км/с). Логарифм растет очень медленно, и для того чтобы достичь космической скорости, необходимо сделать большим отношение , т.е. почти всю стартовую массу отдать под топливо.

Звукоизоляция стен. Коэффициент звукоизоляции стен измеряется по формуле , где p 0 – давление звука до поглощения, p – давление звука, прошедшего через стену, А – некоторая константа, которая в расчетах принимается равной 20 децибелам. Если коэффициент звукоизоляции D равен, например 20 децибел, то это означает, что и p 0 =10p, т.е. стена снижает давление звука в 10 раз. Такую изоляцию имеет деревянная дверь.

Логарифмы в музыке.

Номера клавишей рояля представляют собой логарифмы чисел – колебаний соответствующих звуков (умноженные на 12).

Мы даже можем сказать, что номер октавы представляет собой целую часть (характеристику) логарифма числа колебаний этого тона, а номер звука в данной октаве, деленный на 12 – дробную часть (мантиссу) этого логарифма.

Логарифмы в поэзии

Многообразные применения показательной (или её ещё называют, экспоненциальной) функции вдохновили английского поэта Элмера Брила на написание “Оды экспоненте”, отрывок из которой гласит:

Логарифм как число, применение которого позволяет упростить многие сложные операции арифметики. Обозначение и свойства логарифма. Основное логарифмическое тождество. Понятие десятичного и натурального логарифмов. Пользование таблицами обычных логарифмов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 18.12.2010
Размер файла 39,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

десятичный натуральный логарифм тождество

Логарифмом положительного числа N по основанию ( b > 0, b1 ) называется показатель степени x, в которую нужно возвести b, чтобы получить N .

Эта запись равнозначна следующей: bx = N .

П р и м е р ы : log3 81 = 4 , так как 34 = 81 ;

log1/3 27 = - 3 , так как ( 1/3 ) -3 = 33 = 27 .

Вышеприведенное определение логарифма можно записать в виде тождества:

Основные свойства логарифмов.

1) log b = 1 , так как b 1 = b .

2) log 1 = 0 , так как b 0 = 1 .

3) Логарифм произведения равен сумме логарифмов сомножителей:

log ( ab ) = log a + log b .

4) Логарифм частного равен разности логарифмов делимого и делителя:

log ( a / b ) = log a - log b .

5) Логарифм степени равен произведению показателя степени на логарифм её основания:

log ( b k ) = k · log b .

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак логарифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода ( т.e. перехода от одного основания логарифма к другому основанию ):

В частном случае при N = a имеем:

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, . pавны соответственно 1, 2, 3, …, т.е. имеют столько положительных единиц, сколько нулей стоит в логарифмируемом числе после единицы.

Логарифмы чисел 0.1, 0.01, 0.001, . pавны соответственно -1, -2, -3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей ( считая и нуль целых ). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой. Целая часть логарифма называется характеристикой. Для практического применения десятичные логарифмы наиболее удобны.

Натуральным логарифмом называется логарифм по основанию е. Он обозначается ln , т.е. log e N = ln N. Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число ( 1 + 1 / n ) n при неограниченном возрастании n ( см. так называемый второй замечательный предел в разделе "Пределы" ). Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию

ЛОГАРИФМ, число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление - вычитанием, возведение в степень - умножением и извлечение корней - делением.

Общее описание. Логарифмом данного числа называется показатель степени, в которую нужно возвести другое число, называемое основанием логарифма, чтобы получить данное число. Например, логарифм числа 100 по основанию 10 равен 2. Иначе говоря, 10 нужно возвести в квадрат, чтобы получить число 100 (102 = 100). Если n - заданное число, b - основание и l - логарифм, то bl = n. Число n также называется антилогарифмом по основанию b числа l. Например, антилогарифм 2 по основанию 10 равен 100. Сказанное можно записать в виде соотношений logb n = l и antilogb l = n.

Основные свойства логарифмов:

Любое положительное число, кроме единицы, может служить основанием логарифмов, но, к сожалению, оказывается, что если b и n - рациональные числа, то в редких случаях найдется такое рациональное число l, что bl = n. Однако можно определить иррациональное число l, например, такое, что 10l = 2; это иррациональное число l можно с любой требуемой точностью приблизить рациональными числами. Оказывается, что в приведенном примере l примерно равно 0,3010, и это приближенное значение логарифма по основанию 10 числа 2 можно найти в четырехзначных таблицах десятичных логарифмов. Логарифмы по основанию 10 (или десятичные логарифмы) столь часто используются при вычислениях, что их называют обычными логарифмами и записывают в виде log2 = 0,3010 или lg2 = 0,3010, опуская явное указание основания логарифма. Логарифмы по основанию e, трансцендентному числу, приближенно равному 2,71828, называются натуральными логарифмами. Они встречаются преимущественно в работах по математическому анализу и его приложениям к различным наукам. Натуральные логарифмы также записывают, не указывая явно основание, но используя специальное обозначение ln: например, ln2 = 0,6931, т.к. e0,6931 = 2. См. также ЧИСЛО e.

Пользование таблицами обычных логарифмов.

Обычный логарифм числа - это показатель степени, в которую нужно возвести 10, чтобы получить данное число. Так как 100 = 1, 101 = 10 и 102 = 100, мы сразу получаем, что log1 = 0, log10 = 1, log100 = 2 и т.д. для возрастающих целых степеней 10. Аналогично, 10-1 = 0,1, 10-2 = 0,01 и, следовательно, log0,1 = -1, log0,01 = -2 и т.д. для всех целых отрицательных степеней 10. Обычные логарифмы остальных чисел заключены между логарифмами ближайших к ним целых степеней числа 10; log2 должен быть заключен между 0 и 1, log20 - между 1 и 2, а log0,2 - между -1 и 0. Таким образом, логарифм состоит из двух частей, целого числа и десятичной дроби, заключенной между 0 и 1. Целочисленная часть называется характеристикой логарифма и определяется по самому числу, дробная часть называется мантиссой и может быть найдена из таблиц. Кроме того, log20 = log(2ґ10) = log2 + log10 = (log2) + 1. Логарифм числа 2 равен 0,3010, поэтому

log20 = 0,3010 + 1 = 1,3010. Аналогично, log0,2 = log(2ё10) = log2 - log10 = (log2) - 1 = 0,3010 - 1. Выполнив вычитание, мы получим log0,2 = - 0,6990.

Однако удобнее представить log0,2 в виде 0,3010 - 1 или как 9,3010 - 10; можно сформулировать и общее правило: все числа, получающиеся из данного числа умножением на степень числа 10, имеют одинаковые мантиссы, равные мантиссе заданного числа. В большинстве таблиц приведены мантиссы чисел, лежащих в интервале от 1 до 10, поскольку мантиссы всех остальных чисел могут быть получены из приведенных в таблице.

В большинстве таблиц логарифмы даются с четырьмя или пятью десятичными знаками, хотя существуют семизначные таблицы и таблицы с еще бульшим числом знаков. Научиться пользоваться такими таблицами легче всего на примерах. Чтобы найти log3,59, прежде всего заметим, что число 3,59 заключено между 100 и 101, поэтому его характеристика равна 0. Находим в таблице число 35 (слева) и движемся по строке до столбца, у которого сверху стоит число 9; на пересечении этого столбца и строки 35 стоит число 5551, поэтому log3,59 = 0,5551. Чтобы найти мантиссу числа с четырьмя значащими цифрами, необходимо прибегнуть к интерполяции. В некоторых таблицах интерполирование облегчается пропорциональными частями, приведенными в последних девяти столбцах в правой части каждой страницы таблиц. Найдем теперь log736,4; число 736,4 лежит между 102 и 103, поэтому характеристика его логарифма равна 2. В таблице находим строку, слева от которой стоит 73 и столбец 6. На пересечении этой строки и этого столбца стоит число 8669. Среди линейных частей находим столбец 4. На пересечении строки 73 и столбца 4 стоит число 2. Прибавив 2 к 8669, получим мантиссу - она равна 8671. Таким образом, log736,4 = 2,8671.

Натуральные логарифмы.

Таблицы и свойства натуральных логарифмов аналогичны таблицам и свойствам обычных логарифмов. Основное различие между теми и другими состоит в том, что целочисленная часть натурального логарифма не имеет существенного значения при определении положения десятичной запятой, и поэтому различие между мантиссой и характеристикой не играет особой роли. Натуральные логарифмы чисел 5,432; 54,32 и 543,2 равны, соответственно, 1,6923; 3,9949 и 6,2975. Взаимосвязь между этими логарифмами станет очевидной, если рассмотреть разности между ними: log543,2 - log54,32 = 6,2975 - 3,9949 = 2,3026; последнее число есть не что иное, как натуральный логарифм числа 10 (пишется так: ln10); log543,2 - log5,432 = 4,6052; последнее число равно 2ln10. Но 543,2 = 10ґ54,32 = 102ґ5,432. Таким образом, по натуральному логарифму данного числа a можно найти натуральные логарифмы чисел, равные произведениям числа a на любые степени n числа 10, если к lna прибавлять ln10, умноженный на n, т.е. ln(aґ10n) = lna + nln10 = lna + 2,3026n. Например, ln0,005432 = ln(5,432ґ10-3) = ln5,432 - 3ln10 = 1,6923 - (3ґ2,3026) = - 5,2155. Поэтому таблицы натуральных логарифмов, как и таблицы обычных логарифмов, обычно содержат только логарифмы чисел от 1 до 10. В системе натуральных логарифмов можно говорить об антилогарифмах, но чаще говорят об экспоненциальной функции или об экспоненте. Если x = lny, то y = ex, и y называется экспонентой от x (для удобства типографского набора часто пишут y = exp x). Экспонента играет роль антилогарифма числа x.

С помощью таблиц десятичных и натуральных логарифмов можно составить таблицы логарифмов по любому основанию, отличному от 10 и e. Если logb a = x, то bx = a, и, следовательно, logc bx = logc a или xlogc b = logc a, или x = logc a/logc b = logb a. Следовательно, с помощью этой формулы обращения из таблицы логарифмов по основанию c можно построить таблицы логарифмов по любому другому основанию b. Множитель 1/logc b называется модулем перехода от основания c к основанию b. Ничто не мешает, например, пользуясь формулой обращения, или перехода от одной системы логарифмов к другой, найти натуральные логарифмы по таблице обычных логарифмов или совершить обратный переход. Например, log105,432 = loge 5,432/loge 10 = 1,6923/2,3026 = 1,6923ґ0,4343 = 0,7350. Число 0,4343, на которое нужно умножить натуральный логарифм данного числа, чтобы получить обычный логарифм, является модулем перехода к системе обычных логарифмов.

Подобные документы

Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Введение логарифмов математиками Дж. Непером и Иостом Бюрги. Логарифмические свойства и тождества. Различие таблиц натуральных и обычных лагорифмов.

презентация [370,0 K], добавлен 26.11.2012

презентация [687,4 K], добавлен 01.03.2012

Общая терминология и история изобретения логарифма. Характеристики натурального и обычного логарифма, определение дробного числа и мантиссы. Таблицы и свойства натуральных логарифмов. Логарифмическая и экспоненциальная кривая, понятие функции логарифма.

реферат [211,2 K], добавлен 05.12.2011

Шотландский барон Джон Непер как первый изобретатель логарифмов. Пропорции Непера для логарифмирования. Применение логарифмов Кеплером в Марбурге в 1624-1625 гг. Таблица положительных, отрицательных степеней числа 2. Гиперболические логарифмы, применение.

доклад [120,5 K], добавлен 24.12.2011

История открытия логарифмов. Определение логарифма. Натуральные, десятичные, двоичные логарифмы и их применение в теории информации и информатике. Логарифмические функции и их графики. Логарифмическая спираль. Риманова поверхность. Свойства функции.

презентация [316,0 K], добавлен 20.02.2011

Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.

презентация [171,6 K], добавлен 17.09.2013

Краткие биографические данные от Джоне Непере - шотландском математике, изобретателе логарифмов и замечательного вычислительного инструмента - таблицы логарифмов. Математические заслуги Брадиса; его Таблицы. Изобретение первой логарифмической линейки.

Название введено Непером, происходит от греческих слов logoz и ariumoz - оно означает буквально “числа отношений”. Логарифмы были изобретены Непером. Непер изобрел логарифмы не позднее 1594 года. Логарифмы с основанием a ввел учитель математики Спейдел. Слово основание заимствовано из теории о степенях и перенесено в теорию логарифмов Эйлером. Глагол “логарифмировать” появился в 19 веке у Коппе. Коши первый предложил ввести различные знаки для десятичных и натуральных логарифмов. Обозначения, близкие к современным ввел немецкий математик Прингсхейм в 1893 году. Именно он обозначал логарифм натурального числа через ln . Определение логарифма как показателя степени данного основания можно найти у Валлиса (1665 год), Бернулли (1694 год).

Определение логарифма

Логарифмом числа b>0 по основанию a>0, a ≠ 1 , называется показатель степени, в которую надо возвести число a, чтобы получить число b.

Логарифм числа b по основанию a обозначается: loga b

Основное логарифмическое тождество

Это равенство является просто другой формой определения логарифма. Его часто называют основным логарифмическим тождеством.

1. 3=log2 8, так как 2³=8

2. ½=log3 √3 , так как 3= √3

3. 3 log 3 1/5 =1/5

Натуральный и десятичный логарифмы

Натуральным называется логарифм, основание которого равно e. Обозначается ln b, т.е.

Десятичным называется логарифм, основание которого равно 10. Обозначается lg b, т.е.

Основные свойства логарифмов

Пусть: a > 0, a ≠ 1. Тогда:

1. loga x*y=logax+logay (x>0, y>0)

2. loga y/x=logax−logay (x>0, y>0)

3. loga x p =p*logax (x>0)

Формы перехода от логарифма по одному основанию к логарифмы по другому основанию

Логарифмические уравнения

1) Уравнение содержащие переменную под знаком логарифма (log) называются логарифмическими. Простейшим примером логарифмического уравнения служит уравнение вида: loga x=b, где а>0 и а=1.

2) Решение логарифмического уравнения вида: loga f(x)=loga g(x) (1) основано на том, что оно равносильно уравнению вида f(x) = g(x) (2) при дополнительных условиях f(x)>0 и g(x)>0.

3) При переходе от уравнения (1) к уравнению (2) возможно появление посторонних корней поэтому для них выявления требуется проверка.

4) При решении логарифмических уравнений часто используется метод подстановки.

Логарифм число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление - вычитанием, возведение в степень - умножением и извлечение корней - делением.

Основание десятичных логарифмов \(10\gt 1\), поэтому они обладают всеми свойствами логарифмов с основанием больше единицы (см. §30 данного справочника).

Но у десятичных логарифмов есть также целых ряд дополнительных свойств, благодаря которым в докомпьютерную эпоху они широко использовались для трудоемких вычислений. Роль калькулятора тогда выполняли логарифмическая таблица и логарифмическая линейка.

Целая часть десятичного логарифма \([\lg x]\) называется характеристикой , а дробная часть \(\left\<\lg x\right\>\) – мантиссой .
Для числа \(b\), записанного в стандартном виде \(b=a\cdot 10^n\)
характеристика равна порядку числа \([\lg b]=n\), мантисса \(\left\<\lg b\right\>=\lg a\)

Число
b
Стандартный
вид
Характеристика Мантисса
b
Унифицированная
запись
Логарифм
числа
\(\lg b\)
420 4,2·10 2 2 0,623 2,623 2,623
42 4,2·10 1 1 0,623 1,623 1,623
4,2 4,2 2 0 0,623 0,623
0,42 4,2·10 –1 –1 0,623 \(\overline,623\) –0,377
0,042 4,2·10 –2 –2 0,623 \(\overline,623\) –1,377

\(\lg 4,2\approx 0.623\)

Первые таблицы логарифмов были изданы в 1617 году оксфордским математиком Бригсом. Таблицы пересчитывались, дополнялись и переиздавались вплоть до 70-х гг. ХХ века, когда на столах стали появляться калькуляторы.
Таблицы Брадиса, которыми по традиции пользуются наши школьники с 1921 года, издаются до сих пор и постепенно перекочевывают в Интернет.

Непосредственная связь десятичных логарифмов с десятичной системой исчисления делает их удобным инструментом для оценки порядка числа и сравнения чисел.

В практике приближенных вычислений используется следующая оценочная таблица:

Относительная погрешность этих приближений (кроме \(\lg 3)\) \(\delta\sim 0,5\text\)

Например:
Сравним \(\log_23\) и \(log_5⁡8\)
Сравнивая с помощью оценки, получаем: \begin \log_23=\frac<\lg 3><\lg 2>\approx\frac=\frac53,\ \ \log_58=\frac<\lg 8><\lg 5>\approx\frac=\frac97\\ \frac\gt \frac\Rightarrow \frac53\gt \frac97\Rightarrow\log_23\gt\log_58 \end

п.2. Натуральный логарифм и его свойства

Логарифмы чисел по основанию e называют натуральными.
Для натуральных логарифмов принято специальное обозначение: \begin \log_x\overset\ln x \end

Число e≈2,71828… - это математическая константа, число иррациональное и трансцендентное, которое появляется при описании моделей нашего мира ничуть не реже числа \(\pi\). Мы познакомимся с ним подробней, изучая пределы и производные.

Основание натуральных логарифмов e>1, поэтому они обладают всеми свойствами логарифмов с основанием больше единицы (см. §30 данного справочника).

Например:
С точностью до первого слагаемого: \(\ln 1,3=\ln(1+0,3)\approx 0,3\)
До второго слагаемого: \(\ln 0,3\approx 0,3-\frac=0,255\)
До третьего слагаемого: \(\ln 0,3\approx 0,3-\frac+\frac=0,264\) и т.д.

п.3. Примеры

Пример 1. Найдите \(x\):
a) \( \lg x=2\lg a+\lg 7 \)
\(\lg x=\lg a^2+\lg 7=\lg(7a^2)\)
\(x=7a^2\)

Пример 2. Прологарифмируйте по основанию 10:
a) \(x=\frac>\) \begin \lg x=\lg\frac>=\lg 3+\lg a^2+\lg\sqrt[3]-\lg c^5-\lg(a-b)=\\ =\lg 3+2\lg a+\frac73\lg b-5\lg c-\lg(a-b) \end

б) \(\log_+1>(5\sqrt-7)\)
Заметим, что: \((\sqrt-1)^3=2\sqrt-3\cdot 2+3\sqrt-1=5\sqrt-7\) $$ (\sqrt+1)(\sqrt-1)=2-1=1\Rightarrow \sqrt+1=\frac-1>=(\sqrt-1)^ $$ Перейдем к десятичному основанию: $$ \log_+1>(5\sqrt-7)=\lg\frac<(5\sqrt-7)><\lg(\sqrt+1)>=\frac<\lg(\sqrt-1)^3><\lg(\sqrt-1)^>= \frac<3\lg(\sqrt-1)-1><-\lg(\sqrt-1)>=-3 $$ Ответ: -3
Заметим, что переход к десятичному основанию в этих примерах не обязателен.
Но он значительно упрощает запись и облегчает решение.

Пример 4

Пример 4*. Постройте (с помощью какого-либо математического приложения или собственной программы) в одной системе координат для \(-1\lt x\leq 1\) график \(y=\ln⁡(1+x)\) и его приближения по ряду Меркатора: $$ y=x,\ \ y=x-\frac,\ \ y=x-\frac+\frac $$ Сделайте выводы.

Чем больше слагаемых в ряду, тем ближе соответствующая кривая к графику логарифма, тем точнее результат. В данном случае ближе всего к кривой \(y=\ln⁡(1+x)\) расположена кубическая парабола \(y=x-\frac+\frac\).
Чем меньше модуль \(|x|\), тем точнее приближение. Визуально, уже в окрестности \(|x|\lt 0,2\) квадратичная и кубическая парабола дают хорошую точность приближения.
Приближение 1-го порядка \((\ln(1+x)\approx x)\) довольно грубое, но может использоваться для предварительной оценки.

Расчет относительной погрешности приближения на границах окрестностей \(|x|\lt 0,1\) и \(|x|\lt 0,2\) представлен в таблице:

Читайте также: